Search results for: flexible heatsink
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1105

Search results for: flexible heatsink

1045 A Modified NSGA-II Algorithm for Solving Multi-Objective Flexible Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk, Ozan Bahadir

Abstract:

NSGA-II is one of the most well-known and most widely used evolutionary algorithms. In addition to its new versions, such as NSGA-III, there are several modified types of this algorithm in the literature. In this paper, a hybrid NSGA-II algorithm has been suggested for solving the multi-objective flexible job shop scheduling problem. For a better search, new neighborhood-based crossover and mutation operators are defined. To create new generations, the neighbors of the selected individuals by the tournament selection are constructed. Also, at the end of each iteration, before sorting, neighbors of a certain number of good solutions are derived, except for solutions protected by elitism. The neighbors are generated using a constraint-based neural network that uses various constructs. The non-dominated sorting and crowding distance operators are same as the classic NSGA-II. A comparison based on some multi-objective benchmarks from the literature shows the efficiency of the algorithm.

Keywords: flexible job shop scheduling problem, multi-objective optimization, NSGA-II algorithm, neighborhood structures

Procedia PDF Downloads 229
1044 Schedule a New Production Plan by Heuristic Methods

Authors: Hanife Merve Öztürk, Sıdıka Dalgan

Abstract:

In this project, a capacity analysis study is done at TAT A. Ş. Maret Plant. Production capacity of products which generate 80% of sales amount are determined. Obtained data entered the LEKIN Scheduling Program and we get production schedules by using heuristic methods. Besides heuristic methods, as mathematical model, disjunctive programming formulation is adapted to flexible job shop problems by adding a new constraint to find optimal schedule solution.

Keywords: scheduling, flexible job shop problem, shifting bottleneck heuristic, mathematical modelling

Procedia PDF Downloads 401
1043 Suppressing Vibration in a Three-axis Flexible Satellite: An Approach with Composite Control

Authors: Jalal Eddine Benmansour, Khouane Boulanoir, Nacera Bekhadda, Elhassen Benfriha

Abstract:

This paper introduces a novel composite control approach that addresses the challenge of stabilizing the three-axis attitude of a flexible satellite in the presence of vibrations caused by flexible appendages. The key contribution of this research lies in the development of a disturbance observer, which effectively observes and estimates the unwanted torques induced by the vibrations. By utilizing the estimated disturbance, the proposed approach enables efficient compensation for the detrimental effects of vibrations on the satellite system. To govern the attitude angles of the spacecraft, a proportional derivative controller (PD) is specifically designed and proposed. The PD controller ensures precise control over all attitude angles, facilitating stable and accurate spacecraft maneuvering. In order to demonstrate the global stability of the system, the Lyapunov method, a well-established technique in control theory, is employed. Through rigorous analysis, the Lyapunov method verifies the convergence of system dynamics, providing strong evidence of system stability. To evaluate the performance and efficacy of the proposed control algorithm, extensive simulations are conducted. The simulation results validate the effectiveness of the combined approach, showcasing significant improvements in the stabilization and control of the satellite's attitude, even in the presence of disruptive vibrations from flexible appendages. This novel composite control approach presented in this paper contributes to the advancement of satellite attitude control techniques, offering a promising solution for achieving enhanced stability and precision in challenging operational environments.

Keywords: attitude control, flexible satellite, vibration control, disturbance observer

Procedia PDF Downloads 86
1042 The LMPA/Epoxy Mixture Encapsulation of OLED on Polyimide Substrate

Authors: Chuyi Ye, Minsang Kim, Cheol-Hee Moon

Abstract:

The organic light emitting diode(OLED), is a potential organic optical functional materials which is considered as the next generation display technology with the advantages such as all-solid state, ultra-thin thickness, active luminous and flexibility. Due to the development of polymer-inorganic substrate, it becomes possible to achieve the flexible OLED display. However the organic light-emitting material is very sensitive to the oxygen and water vapor, and the encapsulation requires water vapor transmission rate(WVTR) and oxygen transmission rate(OTR) as lower as 10-6 g/(m2.d) and 10-5 cm3/(m2.d) respectively. In current situation, the rigorous WVTR and OTR have restricted the application of the OLED display. Traditional epoxy/getter or glass frit approaches, which have been widely applied on glass-substrate-based devices, are not suitable for transparent flexible organic devices, and mechanically flexible thin-film approaches are required. To ensure the OLED’s lifetime, the encapsulation material of the OLED package is very important. In this paper, a low melting point alloy(LMPA)-epoxy mixture in the encapsulation process is introduced. There will be a phase separation when the mixture is heated to the melting of LMPA and the formation of the double line structure between two substrates: the alloy barrier has extremely low WVTR and OTR and the epoxy fills the potential tiny cracks. In our experiment, the PI film is chosen as a flexible transparent substrate, and Mo and Cu are deposited on the PI film successively. Then the two metal layers are photolithographied to the sealing pattern line. The Mo is a transition layer between the PI film and Cu, at the same time, the Cu has a good wettability with the LMPA(Sn-58Bi). At last, pattern is printed with LMPA layer and applied voltage, the gathering Joule heat melt the LMPA and form the double line structure and the OLED package is sealed in the same time. In this research, the double-line encapsulating structure of LMPA and epoxy on the PI film is manufactured for the flexible OLED encapsulation, and in this process it is investigated whether the encapsulation satisfies the requirement of WVTR and OTR for the flexible OLED.

Keywords: encapsulation, flexible, low melting point alloy, OLED

Procedia PDF Downloads 598
1041 Dynamic Test and Numerical Analysis of Twin Tunnel

Authors: Changwon Kwak, Innjoon Park, Dongin Jang

Abstract:

Seismic load affects the behavior of underground structure like tunnel broadly. Seismic soil-structure interaction can play an important role in the dynamic behavior of tunnel. In this research, twin tunnel with flexible joint was physically modeled and the dynamic centrifuge test was performed to investigate seismic behavior of twin tunnel. Seismic waves have different frequency were exerted and the characteristics of response were obtained from the test. Test results demonstrated the amplification of peak acceleration in the longitudinal direction in seismic waves. The effect of the flexible joint was also verified. Additionally, 3-dimensional finite difference dynamic analysis was conducted and the analysis results exhibited good agreement with the test results.

Keywords: 3-dimensional finite difference dynamic analysis, dynamic centrifuge test, flexible joint, seismic soil-structure interaction

Procedia PDF Downloads 258
1040 Flexible Technologies of Granulated Complex Fertilizers

Authors: Andrey M. Norov, Denis A. Pagaleshkin, Pavel S. Fedotov, Viacheslav M. Kolpakov, Konstantin G. Gorbovskiy

Abstract:

The article focuses on the latest research and developments (R&D) aimed at the development of plants for production of complex phosphorus-containing fertilizers which are in line with the principles of the best available techniques (BAT). The advantages of the implemented technical solutions are given. The paper describes developed options of flexible technologies for schemes with DGD (drum granulator dryer) and for schemes with AG-DD (ammoniator-granulator and dryer drum).

Keywords: ammoniator-granulator drier drum, phosphorus-containing fertilizer technology, PK, PKS and NPKS-fertilizers, WPA

Procedia PDF Downloads 203
1039 A Flexible High Energy Density Zn-Air Battery by Screen Printing Technique

Authors: Sira Suren, Soorathep Kheawhom

Abstract:

This work investigates the development of a high energy density zinc-air battery. Printed and flexible thin film zinc-air battery with an overall thickness of about 350 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder, ZnO, and Bi2O3 was used to prepare the anode electrode. The suitable concentration of Bi2O3 and types of binders (styrene-butadiene and sodium silicate) were investigated. Results showed that battery using 20% Bi2O3 and sodium silicate binder provided the best performance. The open-circuit voltage and energy density observed were 1.59 V and 690 Wh/kg, respectively. When the battery was discharged at 20 mA/cm2, the potential voltage observed was 1.3 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed.

Keywords: flexible, printed battery, screen printing, Zn-air

Procedia PDF Downloads 278
1038 Inkjet Printed Silver Nanowire Network as Semi-Transparent Electrode for Organic Photovoltaic Devices

Authors: Donia Fredj, Marie Parmentier, Florence Archet, Olivier Margeat, Sadok Ben Dkhil, Jorg Ackerman

Abstract:

Transparent conductive electrodes (TCEs) or transparent electrodes (TEs) are a crucial part of many electronic and optoelectronic devices such as touch panels, liquid crystal displays (LCDs), organic light-emitting diodes (OLEDs), solar cells, and transparent heaters. The indium tin oxide (ITO) electrode is the most widely utilized transparent electrode due to its excellent optoelectrical properties. However, the drawbacks of ITO, such as the high cost of this material, scarcity of indium, and the fragile nature, limit the application in large-scale flexible electronic devices. Importantly, flexibility is becoming more and more attractive since flexible electrodes have the potential to open new applications which require transparent electrodes to be flexible, cheap, and compatible with large-scale manufacturing methods. So far, several materials as alternatives to ITO have been developed, including metal nanowires, conjugated polymers, carbon nanotubes, graphene, etc., which have been extensively investigated for use as flexible and low-cost electrodes. Among them, silver nanowires (AgNW) are one of the promising alternatives to ITO thanks to their excellent properties, high electrical conductivity as well as desirable light transmittance. In recent years, inkjet printing became a promising technique for large-scale printed flexible and stretchable electronics. However, inkjet printing of AgNWs still presents many challenges. In this study, a synthesis of stable AgNW that could compete with ITO was developed. This material was printed by inkjet technology directly on a flexible substrate. Additionally, we analyzed the surface microstructure, optical and electrical properties of the printed AgNW layers. Our further research focused on the study of all inkjet-printed organic modules with high efficiency.

Keywords: transparent electrodes, silver nanowires, inkjet printing, formulation of stable inks

Procedia PDF Downloads 221
1037 Testing a Flexible Manufacturing System Facility Production Capacity through Discrete Event Simulation: Automotive Case Study

Authors: Justyna Rybicka, Ashutosh Tiwari, Shane Enticott

Abstract:

In the age of automation and computation aiding manufacturing, it is clear that manufacturing systems have become more complex than ever before. Although technological advances provide the capability to gain more value with fewer resources, sometimes utilisation of the manufacturing capabilities available to organisations is difficult to achieve. Flexible manufacturing systems (FMS) provide a unique capability to manufacturing organisations where there is a need for product range diversification by providing line efficiency through production flexibility. This is very valuable in trend driven production set-ups or niche volume production requirements. Although FMS provides flexible and efficient facilities, its optimal set-up is key in achieving production performance. As many variables are interlinked due to the flexibility provided by the FMS, analytical calculations are not always sufficient to predict the FMS’ performance. Simulation modelling is capable of capturing the complexity and constraints associated with FMS. This paper demonstrates how discrete event simulation (DES) can address complexity in an FMS to optimise the production line performance. A case study of an automotive FMS is presented. The DES model demonstrates different configuration options depending on prioritising objectives: utilisation and throughput. Additionally, this paper provides insight into understanding the impact of system set-up constraints on the FMS performance and demonstrates the exploration into the optimal production set-up.

Keywords: discrete event simulation, flexible manufacturing system, capacity performance, automotive

Procedia PDF Downloads 327
1036 Decision Tree Based Scheduling for Flexible Job Shops with Multiple Process Plans

Authors: H.-H. Doh, J.-M. Yu, Y.-J. Kwon, J.-H. Shin, H.-W. Kim, S.-H. Nam, D.-H. Lee

Abstract:

This paper suggests a decision tree based approach for flexible job shop scheduling with multiple process plans, i. e. each job can be processed through alternative operations, each of which can be processed on alternative machines. The main decision variables are: (a) selecting operation/machine pair; and (b) sequencing the jobs assigned to each machine. As an extension of the priority scheduling approach that selects the best priority rule combination after many simulation runs, this study suggests a decision tree based approach in which a decision tree is used to select a priority rule combination adequate for a specific system state and hence the burdens required for developing simulation models and carrying out simulation runs can be eliminated. The decision tree based scheduling approach consists of construction and scheduling modules. In the construction module, a decision tree is constructed using a four-stage algorithm, and in the scheduling module, a priority rule combination is selected using the decision tree. To show the performance of the decision tree based approach suggested in this study, a case study was done on a flexible job shop with reconfigurable manufacturing cells and a conventional job shop, and the results are reported by comparing it with individual priority rule combinations for the objectives of minimizing total flow time and total tardiness.

Keywords: flexible job shop scheduling, decision tree, priority rules, case study

Procedia PDF Downloads 357
1035 Electromechanical Reliability of ITO/Ag/ITO Multilayer Coated Pet Substrate for Optoelectronic Application

Authors: D. W. Mohammed, J. Bowen, S. N. Kukureka

Abstract:

Successful design and fabrication of flexible devices for electrode components requires a low sheet resistance, high optical transmittance, high mechanical reliability. Indium tin oxide (ITO) film is currently the predominant transparent conductive oxide (TCO) film in potential applications such as flexible organic light- emitting diodes, flat-panel displays, solar cells, and thin film transistors (TFTs). However ITO films are too brittle and their resistivity is rather high in some cases compared with ITO/Ag/ ITO, and they cannot completely meet flexible optoelectronic device requirements. Therefore, in this work the mechanical properties of ITO /Ag/ITO multilayer film that deposited on Polyethylene terephthalate (PET) compared with the single layered ITO sample were investigated using bending fatigue, twisting fatigue and thermal cycling experiments. The electrical resistance was monitored during the application of mechanical and thermal loads to see the pattern of relationship between the load and the electrical continuity as a consequent of failure. Scanning electron microscopy and atomic force microscopy were used to provide surface characterization of the mechanically-tested samples. The effective embedment of the Ag layer between upper and lower ITO films led to metallic conductivity and superior flexibility to the single ITO electrode, due to the high failure strain of the ductile Ag layer. These results indicate that flexible ITO/Ag/ITO multilayer electrodes are a promising candidate for use as transparent conductor in flexible displays. They provided significantly reduced sheet resistance compared to ITO, and improved bending and twisting properties both as a function of radius, angle and thermal cycling.

Keywords: ITO/Ag/ITO multilayer, failure strain, mechanical properties, PET

Procedia PDF Downloads 294
1034 On Flexible Preferences for Standard Taxis, Electric Taxis, and Peer-to-Peer Ridesharing

Authors: Ricardo Daziano

Abstract:

In the analysis and planning of the mobility ecosystem, preferences for ride-hailing over incumbent street-hailing services need better understanding. In this paper, a seminonparametric discrete choice model that allows for flexible preference heterogeneity is fitted with data from a discrete choice experiment among adult commuters in Montreal, Canada (N=760). Participants chose among Uber, Teo (a local electric ride-hailing service that was in operation when data was collected in 2018), and a standard taxi when presented with information about cost, time (on-trip, waiting, walking), powertrain of the car (gasoline/hybrid) for Uber and taxi, and whether the available electric Teo was a Tesla (which was one of the actual features of the Teo fleet). The fitted flexible model offers several behavioral insights. Waiting time for ride-hailing services is associated with a statistically significant but low marginal disutility. For other time components, including on-ride, and street-hailing waiting and walking the estimates of the value of time show an interesting pattern: whereas in a conditional logit on-ride time reductions are valued higher, in the flexible LML specification means of the value of time follow the expected pattern of waiting and walking creating a higher disutility. At the same time, the LML estimates show the presence of important, multimodal unobserved preference heterogeneity.

Keywords: discrete choice, electric taxis, ridehailing, semiparametrics

Procedia PDF Downloads 162
1033 Flexible and Color Tunable Inorganic Light Emitting Diode Array for High Resolution Optogenetic Devices

Authors: Keundong Lee, Dongha Yoo, Youngbin Tchoe, Gyu-Chul Yi

Abstract:

Light emitting diode (LED) array is an ideal optical stimulation tool for optogenetics, which controls inhibition and excitation of specific neurons with light-sensitive ion channels or pumps. Although a fiber-optic cable with an external light source, either a laser or LED mechanically connected to the end of the fiber-optic cable has widely been used for illumination on neural tissue, a new approach to use micro LEDs (µLEDs) has recently been demonstrated. The LEDs can be placed directly either on the cortical surface or within the deep brain using a penetrating depth probe. Accordingly, this method would not need a permanent opening in the skull if the LEDs are integrated with miniature electrical power source and wireless communication. In addition, multiple color generation from single µLED cell would enable to excite and/or inhibit neurons in localized regions. Here, we demonstrate flexible and color tunable µLEDs for the optogenetic device applications. The flexible and color tunable LEDs was fabricated using multifaceted gallium nitride (GaN) nanorod arrays with GaN nanorods grown on InxGa1−xN/GaN single quantum well structures (SQW) anisotropically formed on the nanorod tips and sidewalls. For various electroluminescence (EL) colors, current injection paths were controlled through a continuous p-GaN layer depending on the applied bias voltage. The electric current was injected through different thickness and composition, thus changing the color of light from red to blue that the LED emits. We believe that the flexible and color tunable µLEDs enable us to control activities of the neuron by emitting various colors from the single µLED cell.

Keywords: light emitting diode, optogenetics, graphene, flexible optoelectronics

Procedia PDF Downloads 211
1032 Synergistic Effect of Carbon Nanostructures and Titanium Dioxide Nanotubes on the Piezoelectric Property of Polyvinylidene Fluoride

Authors: Deepalekshmi Ponnamma, Erturk Alper, Pradeep Sharma, Mariam Al Ali AlMaadeed

Abstract:

Integrating efficient energy harvesting materials into soft, flexible and eco-friendly substrates could yield significant breakthroughs in wearable and flexible electronics. Here we present a hybrid filler combination of titanium dioxide nanotubes and the carbon nanostructures-carbon nanotubes and reduced graphene oxide- synthesized by hydrothermal method and then introduced into a semi crystalline polymer, polyvinylidene fluoride (PVDF). Simple mixing method is adopted for the PVDF nanocomposite fabrication after ensuring a high interaction among the fillers. The films prepared were mainly tested for the piezoelectric responses and for the mechanical stretchability. The results show that the piezoelectric constant has increased while changing the total filler concentration. We propose integration of these materials in fabricating energy conversion devices useful in flexible and wearable electronics.

Keywords: dielectric property, hydrothermal growth, piezoelectricity, polymer nanocomposite

Procedia PDF Downloads 353
1031 Assessment of Memetic and Genetic Algorithm for a Flexible Integrated Logistics Network

Authors: E. Behmanesh, J. Pannek

Abstract:

The distribution-allocation problem is known as one of the most comprehensive strategic decision. In real-world cases, it is impossible to solve a distribution-allocation problem in traditional ways with acceptable time. Hence researchers develop efficient non-traditional techniques for the large-term operation of the whole supply chain. These techniques provide near-optimal solutions particularly for large scales test problems. This paper, presents an integrated supply chain model which is flexible in the delivery path. As the solution methodology, we apply a memetic algorithm with a novelty in population presentation. To illustrate the performance of the proposed memetic algorithm, LINGO optimization software serves as a comparison basis for small size problems. In large size cases that we are dealing with in the real world, the Genetic algorithm as the second metaheuristic algorithm is considered to compare the results and show the efficiency of the memetic algorithm.

Keywords: integrated logistics network, flexible path, memetic algorithm, genetic algorithm

Procedia PDF Downloads 374
1030 A Hybrid Pareto-Based Swarm Optimization Algorithm for the Multi-Objective Flexible Job Shop Scheduling Problems

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a new hybrid particle swarm optimization algorithm is proposed for the multi-objective flexible job shop scheduling problem that is very important and hard combinatorial problem. The Pareto approach is used for solving the multi-objective problem. Several new local search heuristics are integrated into an algorithm based on the critical block concept to enhance the performance of the algorithm. The algorithm is compared with the recently published multi-objective algorithms based on benchmarks selected from the literature. Several metrics are used for quantifying performance and comparison of the achieved solutions. The algorithms are also compared based on the Weighting summation of objectives approach. The proposed algorithm can find the Pareto solutions more efficiently than the compared algorithms in less computational time.

Keywords: swarm-based optimization, local search, Pareto optimality, flexible job shop scheduling, multi-objective optimization

Procedia PDF Downloads 366
1029 Numerical Study of Sloshing in a Flexible Tank

Authors: Wissem Tighidet, Faïçal Naït Bouda, Moussa Allouche

Abstract:

The numerical study of the Fluid-Structure Interaction (FSI) in a partially filled flexible tank submitted to a horizontal harmonic excitation motion. It is investigated by using two-way Fluid-Structure Interaction (FSI) in a flexible tank by Coupling between the Transient Structural (Mechanical) and Fluid Flow (Fluent) in ANSYS-Workbench Student version. The Arbitrary Lagrangian-Eulerian (ALE) formulation is adopted to solve with the finite volume method, the Navier-Stokes equations in two phases in a moving domain. The Volume of Fluid (VOF) method is applied to track the free surface. However, the equations of the dynamics of the structure are solved with the finite element method assuming a linear elastic behavior. To conclude, the Fluid-Structure Interaction (IFS) has a vital role in the analysis of the dynamic behavior of the rectangular tank. The results indicate that the flexibility of the tank walls has a significant impact on the amplitude of tank sloshing and the deformation of the free surface as well as the effect of liquid sloshing on wall deformation.

Keywords: arbitrary lagrangian-eulerian, fluid-structure interaction, sloshing, volume of fluid

Procedia PDF Downloads 104
1028 Comparative Assessment of Geocell and Geogrid Reinforcement for Flexible Pavement: Numerical Parametric Study

Authors: Anjana R. Menon, Anjana Bhasi

Abstract:

Development of highways and railways play crucial role in a nation’s economic growth. While rigid concrete pavements are durable with high load bearing characteristics, growing economies mostly rely on flexible pavements which are easier in construction and more economical. The strength of flexible pavement is based on the strength of subgrade and load distribution characteristics of intermediate granular layers. In this scenario, to simultaneously meet economy and strength criteria, it is imperative to strengthen and stabilize the load transferring layers, namely subbase and base. Geosynthetic reinforcement in planar and cellular forms have been proven effective in improving soil stiffness and providing a stable load transfer platform. Studies have proven the relative superiority of cellular form-geocells over planar geosynthetic forms like geogrid, owing to the additional confinement of infill material and pocket effect arising from vertical deformation. Hence, the present study investigates the efficiency of geocells over single/multiple layer geogrid reinforcements by a series of three-dimensional model analyses of a flexible pavement section under a standard repetitive wheel load. The stress transfer mechanism and deformation profiles under various reinforcement configurations are also studied. Geocell reinforcement is observed to take up a higher proportion of stress caused by the traffic loads compared to single and double-layer geogrid reinforcements. The efficiency of single geogrid reinforcement reduces with an increase in embedment depth. The contribution of lower geogrid is insignificant in the case of the double-geogrid reinforced system.

Keywords: Geocell, Geogrid, Flexible Pavement, Repetitive Wheel Load, Numerical Analysis

Procedia PDF Downloads 75
1027 Thermal Resistance Analysis of Flexible Composites Based on Al2O3 Aerogels

Authors: Jianzheng Wei, Duo Zhen, Zhihan Yang, Huifeng Tan

Abstract:

The deployable descent technology is a lightweight entry method using an inflatable heat shield. The heatshield consists of a pressurized core which is covered by different layers of thermal insulation and flexible ablative materials in order to protect against the thermal loads. In this paper, both aluminum and silicon-aluminum aerogels were prepared by freeze-drying method. The latter material has bigger specific surface area and nano-scale pores. Mullite fibers are used as the reinforcing fibers to prepare the aerogel matrix to improve composite flexibility. The flexible composite materials were performed as an insulation layer to an underlying aramid fabric by a thermal shock test at a heat flux density of 120 kW/m2 and uniaxial tensile test. These results show that the aramid fabric with untreated mullite fibers as the thermal protective layer is completely carbonized at the heat of about 60 s. The aramid fabric as a thermal resistance layer of the composite material still has good mechanical properties at the same heat condition.

Keywords: aerogel, aramid fabric, flexibility, thermal resistance

Procedia PDF Downloads 153
1026 Flexibility Cost and Its Application for Construction Projects

Authors: Rashmi Shahu

Abstract:

Flexibility is becoming a more widely accepted aspect of project management. Although contingency theory in project management states that the unknowns are controllable, complexity theory believes that the best way to handle the unknowns would be to have a flexible approach rather than rigidity. Designing a flexible system is a method of managing uncertainty. The present research work aims to evaluate flexibility in the initial design phase of projects taking examples of construction projects. Flexibility in the initial design phase is modeled in order to know the advantage in future. The comparison between the extra cost of flexibility in the initial design phase and the discount that can be achieved in future due to this premium will help the developers in making strategic decisions. This research uses a methodology for valuing flexibility by developing a mathematical formula for predicting future saving of cost. Two case studies were considered in this research to validate the mathematical formula. This research explains three case studies of an educational institution 28 years old for explaining the concept and giving benefits of flexible design for modification/renovation work of building.

Keywords: flexibility, future saving, flexibility cost, construction projects

Procedia PDF Downloads 357
1025 Flexible Coupling between Gearbox and Pump (High Speed Machine)

Authors: Naif Mohsen Alharbi

Abstract:

This paper present failure occurred on flexible coupling installed at oil anf gas operation. Also it presents maintenance ideas implemented on the flexible coupling installed to transmit high torque from gearbox to pump. Basically, the machine train is including steam turbine which drives the pump and there is gearbox located in between for speed reduction. investigation are identifying the root causes, solving and developing the technology designs or bad actor. This report provides the study intentionally for continues operation optimization, utilize the advanced opportunity and implement a improvement. Objective: The main objectives of the investigation are identifying the root causes, solving and developing the technology designs or bad actor. Ultimately, fulfilling the operation productivity, also ensuring better technology, quality and design by solutions. This report provides the study intentionally for continues operation optimization, utilize the advanced opportunity and implemet improvement. Method: The method used in this project was a very focused root cause analysis procedure that incorporated engineering analysis and measurements. The analysis method extensively covers the measuring of the complete coupling dimensions. Including the membranes thickness, hubs, bore diameter and total length, dismantle flexible coupling to diagnose how deep the coupling has been affected. Also, defining failure modes, so that the causes could be identified and verified. Moreover, Vibration analysis and metallurgy test. Lastly applying several solutions by advanced tools (will be mentioned in detail). Results and observation: Design capacity: Coupling capacity is an inadequate to fulfil 100% of operating conditions. Therefore, design modification of service factor to be at least 2.07 is crucial to address this issue and prevent recurrence of similar scenario, especially for the new upgrading project. Discharge fluctuation: High torque flexible coupling encountered during the operation. Therefore, discharge valve behaviour, tuning, set point and general conditions revaluated and modified subsequently, it can be used as baseline for upcoming Coupling design project. Metallurgy test: Material of flexible coupling membrane (discs) tested at the lab, for a detailed metallurgical investigation, better material grade has been selected for our operating conditions,

Keywords: high speed machine, reliabilty, flexible coupling, rotating equipment

Procedia PDF Downloads 68
1024 Stress Recovery and Durability Prediction of a Vehicular Structure with Random Road Dynamic Simulation

Authors: Jia-Shiun Chen, Quoc-Viet Huynh

Abstract:

This work develops a flexible-body dynamic model of an all-terrain vehicle (ATV), capable of recovering dynamic stresses while the ATV travels on random bumpy roads. The fatigue life of components is forecasted as well. While considering the interaction between dynamic forces and structure deformation, the proposed model achieves a highly accurate structure stress prediction and fatigue life prediction. During the simulation, stress time history of the ATV structure is retrieved for life prediction. Finally, the hot sports of the ATV frame are located, and the frame life for combined road conditions is forecasted, i.e. 25833.6 hr. If the usage of vehicle is eight hours daily, the total vehicle frame life is 8.847 years. Moreover, the reaction force and deformation due to the dynamic motion can be described more accurately by using flexible body dynamics than by using rigid-body dynamics. Based on recommendations made in the product design stage before mass production, the proposed model can significantly lower development and testing costs.

Keywords: flexible-body dynamics, veicle, dynamics, fatigue, durability

Procedia PDF Downloads 394
1023 Development of a Flexible Lora-Based Wireless Sensory System for Long-Time Health Monitoring of Civil Structures

Authors: Hui Zhang, Sherif Beskhyroun

Abstract:

In this study, a highly flexible LoRa-Based wireless sensing system was used to assess the strain state performance of building structures. The system was developed to address the local damage limitation of structural health monitoring (SHM) systems. The system is part of an intelligent SHM system designed to monitor, collect and transmit strain changes in key structural components. The main purpose of the wireless sensor system is to reduce the development and installation costs, and reduce the power consumption of the system, so as to achieve long-time monitoring. The highly stretchable flexible strain gauge is mounted on the surface of the structure and is waterproof, heat resistant, and low temperature resistant, greatly reducing the installation and maintenance costs of the sensor. The system was also developed with the aim of using LoRa wireless communication technology to achieve both low power consumption and long-distance transmission, therefore solving the problem of large-scale deployment of sensors to cover more areas in large structures. In the long-term monitoring of the building structure, the system shows very high performance, very low actual power consumption, and wireless transmission stability. The results show that the developed system has a high resolution, sensitivity, and high possibility of long-term monitoring.

Keywords: LoRa, SHM system, strain measurement, civil structures, flexible sensing system

Procedia PDF Downloads 103
1022 Investigation on Development of Pv and Wind Power with Hydro Pumped Storage to Increase Renewable Energy Penetration: A Parallel Analysis of Taiwan and Greece

Authors: Robel Habtemariam

Abstract:

Globally, wind energy and photovoltaics (PV) solar energy are among the leading renewable energy sources (RES) in terms of installed capacity. In order to increase the contribution of RES to the power supply system, large scale energy integration is required, mainly due to wind energy and PV. In this paper, an investigation has been made on the electrical power supply systems of Taiwan and Greece in order to integrate high level of wind and photovoltaic (PV) to increase the penetration of renewable energy resources. Currently, both countries heavily depend on fossil fuels to meet the demand and to generate adequate electricity. Therefore, this study is carried out to look into the two cases power supply system by developing a methodology that includes major power units. To address the analysis, an approach for simulation of power systems is formulated and applied. The simulation is based on the non-dynamic analysis of the electrical system. This simulation results in calculating the energy contribution of different types of power units; namely the wind, PV, non-flexible and flexible power units. The calculation is done for three different scenarios (2020, 2030, & 2050), where the first two scenarios are based on national targets and scenario 2050 is a reflection of ambitious global targets. By 2030 in Taiwan, the input of the power units is evaluated as 4.3% (wind), 3.7% (PV), 65.2 (non-flexible), 25.3% (flexible), and 1.5% belongs to hydropower plants. In Greece, much higher renewable energy contribution is observed for the same scenario with 21.7% (wind), 14.3% (PV), 38.7% (non-flexible), 14.9% (flexible), and 10.3% (hydro). Moreover, it examines the ability of the power systems to deal with the variable nature of the wind and PV generation. For this reason, an investigation has also been done on the use of the combined wind power with pumped storage systems (WPS) to enable the system to exploit the curtailed wind energy & surplus PV and thus increase the wind and PV installed capacity and replace the peak supply by conventional power units. Results show that the feasibility of pumped storage can be justified in the high scenario (that is the scenario of 2050) of RES integration especially in the case of Greece.

Keywords: large scale energy integration, photovoltaics solar energy, pumped storage systems, renewable energy sources

Procedia PDF Downloads 277
1021 Three Dimensional Flexible Dynamics of Continuous Cislunar Payloads Transfer System

Authors: Y. Yang, Dian Ming Xing, Qiu Hua Du

Abstract:

Based on the Motorized Momentum Exchange Tether (MMET), with the principle of momentum exchange, the three dimension flexible dynamics of continuous cislunar payloads transferring system (CCPTS) is built by Lagrange method and its numerical solution is solved by Mathematica software. In the derivation precession of potential energy, this paper uses the Tylor expansion method to simplify the Lagrange equation. Furthermore, the tension coming from the centripetal load is considered in the elastic potential energy. The comparison simulation results between the 3D rigid model and 3D flexible model of CCPTS shows that the tether flexibility has important influence on CCPTS’s orbital parameters (such as radius of CCPTS’s COM and the true anomaly) and the tether’s rotational movement, the relative deviation of radius and the true anomaly between the two dynamic models is about 0.00678% and 0.00259%, the relative deviation of the angle of tether-span and local gravity gradient is about 3.55%. Additionally, the external torque has an apparent influence on the tether’s axial vibration.

Keywords: cislunar transfer, dynamics, momentum exchange, tether

Procedia PDF Downloads 269
1020 Comparison of Elastic and Viscoelastic Modeling for Asphalt Concrete Surface Layer

Authors: Fouzieh Rouzmehr, Mehdi Mousavi

Abstract:

Hot mix asphalt concrete (HMAC) is a mixture of aggregates and bitumen. The primary ingredient that determines the mechanical properties of HMAC is the bitumen in it, which displays viscoelastic behavior under normal service conditions. For simplicity, asphalt concrete is considered an elastic material, but this is far from reality at high service temperatures and longer loading times. Viscoelasticity means that the material's stress-strain relationship depends on the strain rate and loading duration. The goal of this paper is to simulate the mechanical response of flexible pavements using linear elastic and viscoelastic modeling of asphalt concrete and predict pavement performance. Falling Weight Deflectometer (FWD) load will be simulated and the results for elastic and viscoelastic modeling will be evaluated. The viscoelastic simulation is performed by the Prony series, which will be modeled by using ANSYS software. Inflexible pavement design, tensile strain at the bottom of the surface layer and compressive strain at the top of the last layer plays an important role in the structural response of the pavement and they will imply the number of loads for fatigue (Nf) and rutting (Nd) respectively. The differences of these two modelings are investigated on fatigue cracking and rutting problem, which are the two main design parameters in flexible pavement design. Although the differences in rutting problem between the two models were negligible, in fatigue cracking, the viscoelastic model results were more accurate. Results indicate that modeling the flexible pavement with elastic material is efficient enough and gives acceptable results.

Keywords: flexible pavement, asphalt, FEM, viscoelastic, elastic, ANSYS, modeling

Procedia PDF Downloads 131
1019 Ant Colony Optimization Control for Multilevel STATCOM

Authors: H. Tédjini, Y. Meslem, B. Guesbaoui, A. Safa

Abstract:

Flexible AC Transmission Systems (FACTS) are potentially becoming more flexible and more economical local controllers in the power system; and because of the high MVA ratings, it would be expensive to provide independent, equal, regulated DC voltage sources to power the multilevel converters which are presently proposed for STATCOMs. DC voltage sources can be derived from the DC link capacitances which are charged by the rectified ac power. In this paper a new stronger control combined of nonlinear control based Lyapunov’s theorem and Ant Colony Algorithm (ACA) to maintain stability of multilevel STATCOM and the utility.

Keywords: Static Compensator (STATCOM), ant colony optimization (ACO), lyapunov control theory, Decoupled power control, neutral point clamped (NPC)

Procedia PDF Downloads 556
1018 Ureteral Stents with Extraction Strings: Patient-Reported Outcomes

Authors: Rammah Abdlbagi, Similoluwa Biyi, Aakash Pai

Abstract:

Introduction: Short-term ureteric stents are commonly placed after ureteroscopy procedures. The removal usually entails having a flexible cystoscopy, which entails a further invasive procedure. There are often delays in removing the stent as departments have limited cystoscopy availability. However, if stents with extraction strings are used, the patient or a clinician can remove them. The aim of the study is to assess the safety and effectiveness of the use of a stent with a string. Method: A retrospective, single-institution study was conducted over a three-month period. Twenty consecutive patients had ureteric stents with string insertion. Ten of the patients had a stent removal procedure previously with flexible cystoscopy. A validated questionnaire was used to assess outcomes. Primary outcomes included: dysuria, hematuria, urinary frequency, and disturbance of the patient’s daily activities. Secondary outcomes included pain experience during the stent removal. Result: Fifteen patients (75%) experienced hematuria and frequency. Two patients experienced pain and discomfort during the stent removal (10%). Two patients had experienced a disturbance in their daily activity (10%). All patients who had stent removal before using flexible cystoscopy preferred the removal of the stent using a string. None of the patients had stent displacement. The median stent dwell time was five days. Conclusion: Patient reported outcomes measures for the indwelling period of a stent with extraction string are equivalent to the published data on stents. Extraction strings mean that the stent dwell time can be reduced. The removal of the stent on extraction strings is more tolerable than the conventional stent.

Keywords: ureteric stent, string flexible cystoscopy, stent symptoms, validated questionnaire

Procedia PDF Downloads 93
1017 In-situ Raman Spectroscopy of Flexible Graphene Oxide Films Containing Pt Nanoparticles in The Presense of Atomic Hydrogen

Authors: Ali Moafi, Kourosh Kalantarzadeh, Richard Kaner, Parviz Parvin, Ebrahim Asl Soleimani, Dougal McCulloch

Abstract:

In-situ Raman spectroscopy of flexible graphene-oxide films examined upon exposure to hydrogen gas, air, and synthetic air. The changes in D and G peaks are attributed to defects responding to atomic hydrogen spilled over from the catalytic behavior of Pt nanoparticles distributed all over the film. High-resolution transmission electron microscopy images (HRTEM) as well as electron energy loss spectroscopy (EELS) were carried out to define the density of the samples.

Keywords: in situ Raman Spectroscopy, EELS, TEM, graphene oxide, graphene, atomic hydrogen

Procedia PDF Downloads 449
1016 Enhancing Performance of Semi-Flexible Pavements through Self-Compacting Cement Mortar as Cementitious Grout

Authors: Mohamed Islam Dahmani

Abstract:

This research investigates the performance enhancement of semi-flexible pavements by incorporating self-compacting cement mortar as a cementitious grout. The study is divided into three phases for comprehensive evaluation. In the initial phase, a porous asphalt mixture is formulated with a target voids content of 25-30%. The goal is to achieve optimal interconnected voids that facilitate effective penetration of self-compacting cement mortar. The mixture's compliance with porous asphalt performance standards is ensured through tests such as marshal stability, indirect tensile strength, contabro test, and draindown test. The second phase focuses on creating a self-compacting cement mortar with high workability and superior penetration capabilities. This mortar is designed to fill the interconnected voids within the porous asphalt mixture. The formulated mortar's characteristics are assessed through tests like mini V funnel flow time, slump flow mini cone, as well as mechanical properties such as compressive strength, bending strength, and shrinkage strength. In the final phase, the performance of the semi-flexible pavement is thoroughly studied. Various tests, including marshal stability, indirect tensile strength, high-temperature bending, low-temperature bending, resistance to rutting, and fatigue life, are conducted to assess the effectiveness of the self-compacting cement mortar-enhanced pavement.

Keywords: semi-flexible pavements, cementitious grout, self-compacting cement mortar, porous asphalt mixture, interconnected voids, rutting resistance

Procedia PDF Downloads 91