Search results for: deterioration modeling
4442 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models
Authors: Benbiao Song, Yan Gao, Zhuo Liu
Abstract:
Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram
Procedia PDF Downloads 2644441 Development of Structural Deterioration Models for Flexible Pavement Using Traffic Speed Deflectometer Data
Authors: Sittampalam Manoharan, Gary Chai, Sanaul Chowdhury, Andrew Golding
Abstract:
The primary objective of this paper is to present a simplified approach to develop the structural deterioration model using traffic speed deflectometer data for flexible pavements. Maintaining assets to meet functional performance is not economical or sustainable in the long terms, and it would end up needing much more investments for road agencies and extra costs for road users. Performance models have to be included for structural and functional predicting capabilities, in order to assess the needs, and the time frame of those needs. As such structural modelling plays a vital role in the prediction of pavement performance. A structural condition is important for the prediction of remaining life and overall health of a road network and also major influence on the valuation of road pavement. Therefore, the structural deterioration model is a critical input into pavement management system for predicting pavement rehabilitation needs accurately. The Traffic Speed Deflectometer (TSD) is a vehicle-mounted Doppler laser system that is capable of continuously measuring the structural bearing capacity of a pavement whilst moving at traffic speeds. The device’s high accuracy, high speed, and continuous deflection profiles are useful for network-level applications such as predicting road rehabilitations needs and remaining structural service life. The methodology adopted in this model by utilizing time series TSD maximum deflection (D0) data in conjunction with rutting, rutting progression, pavement age, subgrade strength and equivalent standard axle (ESA) data. Then, regression analyses were undertaken to establish a correlation equation of structural deterioration as a function of rutting, pavement age, seal age and equivalent standard axle (ESA). This study developed a simple structural deterioration model which will enable to incorporate available TSD structural data in pavement management system for developing network-level pavement investment strategies. Therefore, the available funding can be used effectively to minimize the whole –of- life cost of the road asset and also improve pavement performance. This study will contribute to narrowing the knowledge gap in structural data usage in network level investment analysis and provide a simple methodology to use structural data effectively in investment decision-making process for road agencies to manage aging road assets.Keywords: adjusted structural number (SNP), maximum deflection (D0), equant standard axle (ESA), traffic speed deflectometer (TSD)
Procedia PDF Downloads 1514440 Structural Equation Modeling Semiparametric in Modeling the Accuracy of Payment Time for Customers of Credit Bank in Indonesia
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
The research was conducted to apply semiparametric SEM modeling to the timeliness of paying credit. Semiparametric SEM is structural modeling in which two combined approaches of parametric and nonparametric approaches are used. The analysis method in this research is semiparametric SEM with a nonparametric approach using a truncated spline. The data in the study were obtained through questionnaires distributed to Bank X mortgage debtors and are confidential. The study used 3 variables consisting of one exogenous variable, one intervening endogenous variable, and one endogenous variable. The results showed that (1) the effect of capacity and willingness to pay variables on timeliness of payment is significant, (2) modeling the capacity variable on willingness to pay also produces a significant estimate, (3) the effect of the capacity variable on the timeliness of payment variable is not influenced by the willingness to pay variable as an intervening variable, (4) the R^2 value of 0.763 or 76.33% indicates that the model has good predictive relevance.Keywords: structural equation modeling semiparametric, credit bank, accuracy of payment time, willingness to pay
Procedia PDF Downloads 474439 Modeling and Shape Prediction for Elastic Kinematic Chains
Authors: Jiun Jeon, Byung-Ju Yi
Abstract:
This paper investigates modeling and shape prediction of elastic kinematic chains such as colonoscopy. 2D and 3D models of elastic kinematic chains are suggested and their behaviors are demonstrated through simulation. To corroborate the effectiveness of those models, experimental work is performed using a magnetic sensor system.Keywords: elastic kinematic chain, shape prediction, colonoscopy, modeling
Procedia PDF Downloads 6064438 Modeling and Simulation of Standalone Photovoltaic Charging Stations for Electric Vehicles
Authors: R. Mkahl, A. Nait-Sidi-Moh, M. Wack
Abstract:
Batteries of electric vehicles (BEV) are becoming more attractive with the advancement of new battery technologies and promotion of electric vehicles. BEV batteries are recharged on board vehicles using either the grid (G2V for Grid to Vehicle) or renewable energies in a stand-alone application (H2V for Home to Vehicle). This paper deals with the modeling, sizing and control of a photo voltaic stand-alone application that can charge the BEV at home. The modeling approach and developed mathematical models describing the system components are detailed. Simulation and experimental results are presented and commented.Keywords: electric vehicles, photovoltaic energy, lead-acid batteries, charging process, modeling, simulation, experimental tests
Procedia PDF Downloads 4454437 Performance Prediction Methodology of Slow Aging Assets
Authors: M. Ben Slimene, M.-S. Ouali
Abstract:
Asset management of urban infrastructures faces a multitude of challenges that need to be overcome to obtain a reliable measurement of performances. Predicting the performance of slowly aging systems is one of those challenges, which helps the asset manager to investigate specific failure modes and to undertake the appropriate maintenance and rehabilitation interventions to avoid catastrophic failures as well as to optimize the maintenance costs. This article presents a methodology for modeling the deterioration of slowly degrading assets based on an operating history. It consists of extracting degradation profiles by grouping together assets that exhibit similar degradation sequences using an unsupervised classification technique derived from artificial intelligence. The obtained clusters are used to build the performance prediction models. This methodology is applied to a sample of a stormwater drainage culvert dataset.Keywords: artificial Intelligence, clustering, culvert, regression model, slow degradation
Procedia PDF Downloads 1124436 Geometric Design to Improve the Temperature
Authors: H. Ghodbane, A. A. Taleb, O. Kraa
Abstract:
This paper presents geometric design of induction heating system. The objective of this design is to improve the temperature distribution in the load. The study of such a device requires the use of models or modeling representation, physical, mathematical, and numerical. This modeling is the basis of the understanding, the design, and optimization of these systems. The optimization technique is to find values of variables that maximize or minimize the objective function.Keywords: optimization, modeling, geometric design system, temperature increase
Procedia PDF Downloads 5304435 Review of Transportation Modeling Software
Authors: Hassan M. Al-Ahmadi, Hamad Bader Almobayedh
Abstract:
Planning for urban transportation is essential for developing effective and sustainable transportation networks that meet the needs of various communities. Advanced modeling software is required for effective transportation planning, management, and optimization. This paper compares PTV VISUM, Aimsun, TransCAD, and Emme, four industry-leading software tools for transportation planning and modeling. Each software has strengths and limitations, and the project's needs, financial constraints, and level of technical expertise influence the choice of software. Transportation experts can design and improve urban transportation systems that are effective, sustainable, and meet the changing needs of their communities by utilizing these software tools.Keywords: PTV VISUM, Aimsun, TransCAD, transportation modeling software
Procedia PDF Downloads 334434 Analytical Study and Conservation Processes of a Wooden Coffin of Middel Kingdom, Ancient Egypt
Authors: Mohamed Ahmed Abd El Kader
Abstract:
This paper describes the conservation processes of an Ancient Egyptian wooden coffin dating back to the Middle Kingdom, ancient Egypt, using several scientific and analytical methods in order to provide a deeper understanding of the deterioration status and a greater awareness of how well preserved the object is. Visual observation and 2D Programs, as well as Optical Microscopy (OM), Environmental scanning Electron Microscopy (ESEM), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were used in our study. The identification of wood species and the composition of the pigments and previous restoration materials were made. The coffin was previously conserved and stored in improper conditions, which led to its further deterioration; the surface of the lid dust, which obscured the decorations as well as all necessary restoration work was promptly carried out as soon as the coffin was transferred from the display hall from the Egyptian Museum to the Wood Conservation Laboratory of the Grand Egyptian Museum-Conservation Center (GEM-CC). The analyses provided detailed information concerning the original materials and the materials added during the previous treatment interventions, which was considered when applying the conservation plan. Conservation procedures have been applied with high accuracy to conserve the coffin including cleaning, consolidation of fragile painted layers, and the wooden boards forming the sides of the coffin were reassembled in their original positions. The materials and methods that were applied were extremely effective in stability and reinforcement of the coffin without harmfulness to the original materials and the coffin was successfully conserved and ready to display in the Grand Egyptian Museum (GEM).Keywords: coffin, middle kingdom, deterioration, 2d program
Procedia PDF Downloads 534433 Method of Successive Approximations for Modeling of Distributed Systems
Authors: A. Torokhti
Abstract:
A new method of mathematical modeling of the distributed nonlinear system is developed. The system is represented by a combination of the set of spatially distributed sensors and the fusion center. Its mathematical model is obtained from the iterative procedure that converges to the model which is optimal in the sense of minimizing an associated cost function.Keywords: mathematical modeling, non-linear system, spatially distributed sensors, fusion center
Procedia PDF Downloads 3834432 Modeling of the Pores Form Influence on the Hydraulic Resistance of Membranes and Their Permeability
Authors: Zhanat Umarova
Abstract:
Until the present time, modeling of the pores form influence on the hydraulic resistance of membranes and their permeability has not been analyzed. The aim of the given work is the theoretical consideration of the issue on the productivity of polymer membranes with the profile pores and determination of the optimum form of pores.Keywords: modeling, polymer membranes, permeability, pore’s density
Procedia PDF Downloads 3954431 Modeling and Simulation of Practical Metamaterial Structures
Authors: Ridha Salhi, Mondher Labidi, Fethi Choubani
Abstract:
Metamaterials have attracted much attention in recent years because of their electromagnetic exquisite proprieties. We will present, in this paper, the modeling of three metamaterial structures by equivalent circuit model. We begin by modeling the SRR (Split Ring Resonator), then we model the HIS (High Impedance Surfaces), and finally, we present the model of the CPW (Coplanar Wave Guide). In order to validate models, we compare the results obtained by an equivalent circuit models with numerical simulation.Keywords: metamaterials, SRR, HIS, CPW, IDC
Procedia PDF Downloads 4304430 A Review on Modeling and Optimization of Integration of Renewable Energy Resources (RER) for Minimum Energy Cost, Minimum CO₂ Emissions and Sustainable Development, in Recent Years
Authors: M. M. Wagh, V. V. Kulkarni
Abstract:
The rising economic activities, growing population and improving living standards of world have led to a steady growth in its appetite for quality and quantity of energy services. As the economy expands the electricity demand is going to grow further, increasing the challenges of the more generation and stresses on the utility grids. Appropriate energy model will help in proper utilization of the locally available renewable energy sources such as solar, wind, biomass, small hydro etc. to integrate in the available grid, reducing the investments in energy infrastructure. Further to these new technologies like smart grids, decentralized energy planning, energy management practices, energy efficiency are emerging. In this paper, the attempt has been made to study and review the recent energy planning models, energy forecasting models, and renewable energy integration models. In addition, various modeling techniques and tools are reviewed and discussed.Keywords: energy modeling, integration of renewable energy, energy modeling tools, energy modeling techniques
Procedia PDF Downloads 3474429 Evaluation of Groundwater and Seawater Intrusion at Tajoura Area, NW, Libya
Authors: Abdalraheem Huwaysh, Khalil Al Samarrai, Yasmin ElAhmar
Abstract:
Water quality is an important factor that determines its usage for domestic, agricultural and industrial uses. This study was carried out through the Tajoura Area, Jifarah Plain, Northwest Libya. Chemical and physical parameters were measured and analyzed for groundwater samples collected in 2021 from twenty-six wells distributed throughout the investigation area. Overexploitation of groundwater caused considerable deterioration in the water quality, especially at Tajoura Town (20 Km east of Tripoli). The aquifer shows an increase in salinization, which has reached an alarming level in many places during the past 25 years as a result of the seawater intrusion. The chemical composition of the water samples was compared with the drinking water standards of WHO and Libyan Standards. Groundwater from this area was not suitable to be a source for direct drinking based on Total Dissolved Solids. The dominant cation is sodium, while the dominant anion is chloride. Based on the Piper trilinear diagram, most of the groundwater samples (90%) were identified as sodium chloride type. The best groundwater quality exists at the southern part of the study area. Serious degradation in the water quality, expressed in salinity increase, occurs as we go towards the coastline. The abundance of NaCl waters is strong evidence to attribute the successive deterioration of the water quality to the seawater intrusion. Considering the values of Cl- concentration and the ratio of Cl-/HCO3-, about 70% of the groundwater samples were strongly affected by the saline water. Car wash stations in the study area as well as the unlined disposal pond used for the collection of untreated wastewater, contribute significantly to the deterioration of water quality. The water quality in this area needs to be monitored regularly and it is crucial to treat the water before consumption.Keywords: Tajoura, groundwater, seawater intrusion, water quality
Procedia PDF Downloads 1044428 Analysis of Sulphur-Oxidizing Bacteria Attack on Concrete Based on Waste Materials
Authors: A. Eštoková, M. Kovalčíková, A. Luptáková, A. Sičáková, M. Ondová
Abstract:
Concrete durability as an important engineering property of concrete, determining the service life of concrete structures very significantly, can be threatened and even lost due to the interactions of concrete with external environment. Bio-corrosion process caused by presence and activities of microorganisms producing sulphuric acid is a special type of sulphate deterioration of concrete materials. The effects of sulphur-oxidizing bacteria Acidithiobacillus thiooxidans on various concrete samples, based on silica fume and zeolite, were investigated in laboratory during 180 days. A laboratory study was conducted to compare the performance of concrete samples in terms of the concrete deterioration influenced by the leaching of calcium and silicon compounds from the cement matrix. The changes in the elemental concentrations of calcium and silicon in both solid samples and liquid leachates were measured by using X – ray fluorescence method. Experimental studies confirmed the silica fume based concrete samples were found out to have the best performance in terms of both silicon and calcium ions leaching.Keywords: biocorrosion, concrete, leaching, bacteria
Procedia PDF Downloads 4514427 Modeling and Simulation of Underwater Flexible Manipulator as Raleigh Beam Using Bond Graph
Authors: Sumit Kumar, Sunil Kumar, Chandan Deep Singh
Abstract:
This paper presents modeling and simulation of flexible robot in an underwater environment. The underwater environment completely contrasts with ground or space environment. The robot in an underwater situation is subjected to various dynamic forces like buoyancy forces, hydrostatic and hydrodynamic forces. The underwater robot is modeled as Rayleigh beam. The developed model further allows estimating the deflection of tip in two directions. The complete dynamics of the underwater robot is analyzed, which is the main focus of this investigation. The control of robot trajectory is not discussed in this paper. Simulation is performed using Symbol Shakti software.Keywords: bond graph modeling, dynamics. modeling, rayleigh beam, underwater robot
Procedia PDF Downloads 5874426 Antimicrobial Effect of Natamycin against Food Spoilage Fungi and Yeast Contaminated Fermented Foods
Authors: Pervin Basaran Akocak
Abstract:
Food antimicrobials are compounds that are incorporated into food matrixes in order to cause death or delay the growth of spoilage or pathogenic microorganisms. As a result, microbiological deterioration is prevented throughout storage and food distribution. In this study, the effect of natural antimycotic natamycin (C33H47NO13, with a molecular mass of 665.725), a GRAS (Generally Recognized As Safe) commercial compound produced by different strains of Streptomyces sp., was tested against various fermented food contamination fungi and yeast species. At the concentration of 100 µg/ml, natamycin exhibited stronger antifungal activity against fungi than yeast species tested. The exposure time of natamycin for complete inhibition of the species tested were found to be between 100-180 min at 300-750 µg/ml concentration. SEM observations of fungal species demonstrated that natamycin distorted and damaged the conidia and hyphae by inhibiting spore germination and mycelial growth. Natamycin can be considered as a potential candidate in hurdle food treatments for preventing fungal and yeast invasion and resulting deterioration of fermented products.Keywords: natamycin, antifungal, fermented food, food spoilage fungi
Procedia PDF Downloads 5154425 Research and Application of the Three-Dimensional Visualization Geological Modeling of Mine
Authors: Bin Wang, Yong Xu, Honggang Qu, Rongmei Liu, Zhenji Gao
Abstract:
Today's mining industry is advancing gradually toward digital and visual direction. The three dimensional visualization geological modeling of mine is the digital characterization of mineral deposit, and is one of the key technology of digital mine. The three-dimensional geological modeling is a technology that combines the geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in three-dimensional environment with computer technology, and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provided scientific bases for mine resource assessment, reserve calculation, mining design and so on.Keywords: three-dimensional geological modeling, geological database, geostatistics, block model
Procedia PDF Downloads 704424 Prediction of Rotating Machines with Rolling Element Bearings and Its Components Deterioration
Authors: Marimuthu Gurusamy
Abstract:
In vibration analysis (with accelerometers) of rotating machines with rolling element bearing, the customers are interested to know the failure of the machine well in advance to plan the spare inventory and maintenance. But in real world most of the machines fails before the prediction of vibration analyst or Expert analysis software. Presently the prediction of failure is based on ISO 10816 vibration limits only. But this is not enough to monitor the failure of machines well in advance. Because more than 50% of the machines will fail even the vibration readings are within acceptable zone as per ISO 10816.Hence it requires further detail analysis and different techniques to predict the failure well in advance. In vibration Analysis, the velocity spectrum is used to analyse the root cause of the mechanical problems like unbalance, misalignment and looseness etc. The envelope spectrum are used to analyse the bearing frequency components, hence the failure in inner race, outer race and rolling elements are identified. But so far there is no correlation made between these two concepts. The author used both velocity spectrum and Envelope spectrum to analyse the machine behaviour and bearing condition to correlated the changes in dynamic load (by unbalance, misalignment and looseness etc.) and effect of impact on the bearing. Hence we could able to predict the expected life of the machine and bearings in the rotating equipment (with rolling element bearings). Also we used process parameters like temperature, flow and pressure to correlate with flow induced vibration and load variations, when abnormal vibration occurs due to changes in process parameters. Hence by correlation of velocity spectrum, envelope spectrum and process data with 20 years of experience in vibration analysis, the author could able to predict the rotating Equipment and its component’s deterioration and expected duration for maintenance.Keywords: vibration analysis, velocity spectrum, envelope spectrum, prediction of deterioration
Procedia PDF Downloads 4514423 Proposal of Design Method in the Semi-Acausal System Model
Authors: Shigeyuki Haruyama, Ken Kaminishi, Junji Kaneko, Tadayuki Kyoutani, Siti Ruhana Omar, Oke Oktavianty
Abstract:
This study is used as a definition method to the value and function in manufacturing sector. In concurrence of discussion about present condition of modeling method, until now definition of 1D-CAE is ambiguity and not conceptual. Across all the physics fields, those methods are defined with the formulation of differential algebraic equation which only applied time derivation and simulation. At the same time, we propose semi-acausal modeling concept and differential algebraic equation method as a newly modeling method which the efficiency has been verified through the comparison of numerical analysis result between the semi-acausal modeling calculation and FEM theory calculation.Keywords: system model, physical models, empirical models, conservation law, differential algebraic equation, object-oriented
Procedia PDF Downloads 4864422 Requirements Definitions of Real-Time System Using the Behavioral Patterns Analysis (BPA) Approach: The Healthcare Multi-Agent System
Authors: Assem El-Ansary
Abstract:
This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach using the Healthcare Multi-Agent System. The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are: The Behavioral Pattern Analysis (BPA) modeling methodology. The development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.Keywords: analysis, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases, Healthcare Multi-Agent System
Procedia PDF Downloads 5524421 Intelligent Agent Travel Reservation System Requirements Definitions Using the Behavioral Patterns Analysis (BPA) Approach
Authors: Assem El-Ansary
Abstract:
This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Intelligent Agent Reservation System (IARS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are developing the Behavioral Pattern Analysis (BPA) modeling methodology, and developing an interactive software tool (DECISION) which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.Keywords: analysis, intelligent agent, reservation system, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases
Procedia PDF Downloads 4854420 Research of the Three-Dimensional Visualization Geological Modeling of Mine Based on Surpac
Authors: Honggang Qu, Yong Xu, Rongmei Liu, Zhenji Gao, Bin Wang
Abstract:
Today's mining industry is advancing gradually toward digital and visual direction. The three-dimensional visualization geological modeling of mine is the digital characterization of mineral deposits and is one of the key technology of digital mining. Three-dimensional geological modeling is a technology that combines geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in a three-dimensional environment with computer technology and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between the distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provides scientific bases for mine resource assessment, reserve calculation, mining design and so on.Keywords: three-dimensional geological modeling, geological database, geostatistics, block model
Procedia PDF Downloads 804419 Modeling of the Flow through an Earth Dam and Geotechnical Slope Analyzes
Authors: Ahmed Ferhati, Arezki Adjrad, Ratiba Mitiche-Kettab, Hakim Djafer Khodja
Abstract:
The porous media are omnipresent around us that they are natural as sand, clay, rocks, or manufactured like concretes, cement, and ceramics. The variety of porous environment indicates a wide material range which can be very different from each other. Their common point is to be made up of a solid matrix and a porous space. In our case of study, we made the modeling of the flows in porous environments through the massives as in the case of an earth dam. The computer code used (PLAXIS) offer the possibility of modeling of various structures, in particular, the works in lands because that it deals with the pore water pressure due to the underground flow and the calculation of the plastic deformations. To confirm results obtained by PLAXIS, GeoStudio SEEP/W code was used. This work treats modeling of flows and mechanical and hydraulic behavior of earth dam. A general framework which can fit the calculation of this kind of structures and the coupling of the soil consolidation and free surface flows was defined. In this study; we have confronted a real case modeling of an earth dam. It was shown, in particular, that it is possible to entirely lead the calculation of real dam and to get encouraging results from the hydraulic and mechanical point of view.Keywords: analyzes, dam, flow, modeling, PLAXIS, seep/w, slope
Procedia PDF Downloads 3104418 Conserving History: Evaluating and Selecting Effective Restoration Methods for a Fragment Mural Painting from Amarna
Authors: Kholod Khairy Salama, Shabban Hassan Thabet
Abstract:
In the present study, a comprehensive investigation has been undertaken into an Egyptian mural painting with feet wear slippers approach to choose the most successful restoration methods. The mural painting under examination dates back to the Amarna period; it was detached from a wall of an unknown tomb in Egypt, and currently, it is initially displayed in a showcase at the Egyptian Museum – Tahrir Square – Cairo, Egypt. The main objectives of this research were to (a) reveal the pigment used in the mural painting, (b) reveal the medium used with colours, (c) determine the technique of manufacturing, (e) determine the ground support, and (f) reveal the main deterioration aspects. The analytical techniques used for investigation were Optical Microscopy, Raman, X-ray Florescence, X-ray diffraction, and Fourier transform infrared coupled with attenuated total reflectance “FTIR-ATR”. The investigation revealed that the vital deterioration factors affecting the object. This research aims to examine and analyze the mural painting to choose the suitable method for the restoration process (a) define the colours through comparative analysis to choose the suitable material for cleaning, (b) define the natural structure of the ground support layer, which appeared as mud layer (c) determine the medium used with colours (d) diagnosis the presence of the white wash layer, and (e) choose the suitable restoration methods according to the results. Conclusion: This study focused mainly on the physical and chemical properties of the mural painting compound and the main changes that happened to the mural painting material, which caused deterioration and fall down of the painting parts, so we can find the best and optimum restoration ways for this object.Keywords: mural paintings, Tal Al-Amarna, digital microscope, Raman, XRF, XRD, FTIR
Procedia PDF Downloads 764417 Unveiling the Dynamics of Preservice Teachers’ Engagement with Mathematical Modeling through Model Eliciting Activities: A Comprehensive Exploration of Acceptance and Resistance Towards Modeling and Its Pedagogy
Authors: Ozgul Kartal, Wade Tillett, Lyn D. English
Abstract:
Despite its global significance in curricula, mathematical modeling encounters persistent disparities in recognition and emphasis within regular mathematics classrooms and teacher education across countries with diverse educational and cultural traditions, including variations in the perceived role of mathematical modeling. Over the past two decades, increased attention has been given to the integration of mathematical modeling into national curriculum standards in the U.S. and other countries. Therefore, the mathematics education research community has dedicated significant efforts to investigate various aspects associated with the teaching and learning of mathematical modeling, primarily focusing on exploring the applicability of modeling in schools and assessing students', teachers', and preservice teachers' (PTs) competencies and engagement in modeling cycles and processes. However, limited attention has been directed toward examining potential resistance hindering teachers and PTs from effectively implementing mathematical modeling. This study focuses on how PTs, without prior modeling experience, resist and/or embrace mathematical modeling and its pedagogy as they learn about models and modeling perspectives, navigate the modeling process, design and implement their modeling activities and lesson plans, and experience the pedagogy enabling modeling. Model eliciting activities (MEAs) were employed due to their high potential to support the development of mathematical modeling pedagogy. The mathematical modeling module was integrated into a mathematics methods course to explore how PTs embraced or resisted mathematical modeling and its pedagogy. The module design included reading, reflecting, engaging in modeling, assessing models, creating a modeling task (MEA), and designing a modeling lesson employing an MEA. Twelve senior undergraduate students participated, and data collection involved video recordings, written prompts, lesson plans, and reflections. An open coding analysis revealed acceptance and resistance toward teaching mathematical modeling. The study identified four overarching themes, including both acceptance and resistance: pedagogy, affordance of modeling (tasks), modeling actions, and adjusting modeling. In the category of pedagogy, PTs displayed acceptance based on potential pedagogical benefits and resistance due to various concerns. The affordance of modeling (tasks) category emerged from instances when PTs showed acceptance or resistance while discussing the nature and quality of modeling tasks, often debating whether modeling is considered mathematics. PTs demonstrated both acceptance and resistance in their modeling actions, engaging in modeling cycles as students and designing/implementing MEAs as teachers. The adjusting modeling category captured instances where PTs accepted or resisted maintaining the qualities and nature of the modeling experience or converted modeling into a typical structured mathematics experience for students. While PTs displayed a mix of acceptance and resistance in their modeling actions, limitations were observed in embracing complexity and adhering to model principles. The study provides valuable insights into the challenges and opportunities of integrating mathematical modeling into teacher education, emphasizing the importance of addressing pedagogical concerns and providing support for effective implementation. In conclusion, this research offers a comprehensive understanding of PTs' engagement with modeling, advocating for a more focused discussion on the distinct nature and significance of mathematical modeling in the broader curriculum to establish a foundation for effective teacher education programs.Keywords: mathematical modeling, model eliciting activities, modeling pedagogy, secondary teacher education
Procedia PDF Downloads 664416 CFD Modeling of Mixing Enhancement in a Pitted Micromixer by High Frequency Ultrasound Waves
Authors: Faezeh Mohammadi, Ebrahim Ebrahimi, Neda Azimi
Abstract:
Use of ultrasound waves is one of the techniques for increasing the mixing and mass transfer in the microdevices. Ultrasound propagation into liquid medium leads to stimulation of the fluid, creates turbulence and so increases the mixing performance. In this study, CFD modeling of two-phase flow in a pitted micromixer equipped with a piezoelectric with frequency of 1.7 MHz has been studied. CFD modeling of micromixer at different velocity of fluid flow in the absence of ultrasound waves and with ultrasound application has been performed. The hydrodynamic of fluid flow and mixing efficiency for using ultrasound has been compared with the layout of no ultrasound application. The result of CFD modeling shows well agreements with the experimental results. The results showed that the flow pattern inside the micromixer in the absence of ultrasound waves is parallel, while when ultrasound has been applied, it is not parallel. In fact, propagation of ultrasound energy into the fluid flow in the studied micromixer changed the hydrodynamic and the forms of the flow pattern and caused to mixing enhancement. In general, from the CFD modeling results, it can be concluded that the applying ultrasound energy into the liquid medium causes an increase in the turbulences and mixing and consequently, improves the mass transfer rate within the micromixer.Keywords: CFD modeling, ultrasound, mixing, mass transfer
Procedia PDF Downloads 1834415 Multi-Agent Railway Control System: Requirements Definitions of Multi-Agent System Using the Behavioral Patterns Analysis (BPA) Approach
Authors: Assem I. El-Ansary
Abstract:
This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent Railway Control System (MARCS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.Keywords: analysis, multi-agent, railway control, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases
Procedia PDF Downloads 5474414 Threat Modeling Methodology for Supporting Industrial Control Systems Device Manufacturers and System Integrators
Authors: Raluca Ana Maria Viziteu, Anna Prudnikova
Abstract:
Industrial control systems (ICS) have received much attention in recent years due to the convergence of information technology (IT) and operational technology (OT) that has increased the interdependence of safety and security issues to be considered. These issues require ICS-tailored solutions. That led to the need to creation of a methodology for supporting ICS device manufacturers and system integrators in carrying out threat modeling of embedded ICS devices in a way that guarantees the quality of the identified threats and minimizes subjectivity in the threat identification process. To research, the possibility of creating such a methodology, a set of existing standards, regulations, papers, and publications related to threat modeling in the ICS sector and other sectors was reviewed to identify various existing methodologies and methods used in threat modeling. Furthermore, the most popular ones were tested in an exploratory phase on a specific PLC device. The outcome of this exploratory phase has been used as a basis for defining specific characteristics of ICS embedded devices and their deployment scenarios, identifying the factors that introduce subjectivity in the threat modeling process of such devices, and defining metrics for evaluating the minimum quality requirements of identified threats associated to the deployment of the devices in existing infrastructures. Furthermore, the threat modeling methodology was created based on the previous steps' results. The usability of the methodology was evaluated through a set of standardized threat modeling requirements and a standardized comparison method for threat modeling methodologies. The outcomes of these verification methods confirm that the methodology is effective. The full paper includes the outcome of research on different threat modeling methodologies that can be used in OT, their comparison, and the results of implementing each of them in practice on a PLC device. This research is further used to build a threat modeling methodology tailored to OT environments; a detailed description is included. Moreover, the paper includes results of the evaluation of created methodology based on a set of parameters specifically created to rate threat modeling methodologies.Keywords: device manufacturers, embedded devices, industrial control systems, threat modeling
Procedia PDF Downloads 814413 A Comparative Study on Creep Modeling in Composites
Authors: Roham Rafiee, Behzad Mazhari
Abstract:
Composite structures, having incredible properties, have gained considerable popularity in the last few decades. Among all types, polymer matrix composites are being used extensively due to their unique characteristics including low weight, convenient fabrication process and low cost. Having polymer as matrix, these type of composites show different creep behavior when compared to metals and even other types of composites since most polymers undergo creep even in room temperature. One of the most challenging topics in creep is to introduce new techniques for predicting long term creep behavior of materials. Depending on the material which is being studied the appropriate method would be different. Methods already proposed for predicting long term creep behavior of polymer matrix composites can be divided into five categories: (1) Analytical Modeling, (2) Empirical Modeling, (3) Superposition Based Modeling (Semi-empirical), (4) Rheological Modeling, (5) Finite Element Modeling. Each of these methods has individual characteristics. Studies have shown that none of the mentioned methods can predict long term creep behavior of all PMC composites in all circumstances (loading, temperature, etc.) but each of them has its own priority in different situations. The reason to this issue can be found in theoretical basis of these methods. In this study after a brief review over the background theory of each method, they are compared in terms of their applicability in predicting long-term behavior of composite structures. Finally, the explained materials are observed through some experimental studies executed by other researchers.Keywords: creep, comparative study, modeling, composite materials
Procedia PDF Downloads 442