Search results for: adaptive%20fuzzy%20PI%20controller
976 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic
Authors: Budoor Al Abid
Abstract:
Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.Keywords: machine learning, adaptive, fuzzy logic, data mining
Procedia PDF Downloads 194975 Dynamic Process Monitoring of an Ammonia Synthesis Fixed-Bed Reactor
Authors: Bothinah Altaf, Gary Montague, Elaine B. Martin
Abstract:
This study involves the modeling and monitoring of an ammonia synthesis fixed-bed reactor using partial least squares (PLS) and its variants. The process exhibits complex dynamic behavior due to the presence of heat recycling and feed quench. One limitation of static PLS model in this situation is that it does not take account of the process dynamics and hence dynamic PLS was used. Although it showed, superior performance to static PLS in terms of prediction, the monitoring scheme was inappropriate hence adaptive PLS was considered. A limitation of adaptive PLS is that non-conforming observations also contribute to the model, therefore, a new adaptive approach was developed, robust adaptive dynamic PLS. This approach updates a dynamic PLS model and is robust to non-representative data. The developed methodology showed a clear improvement over existing approaches in terms of the modeling of the reactor and the detection of faults.Keywords: ammonia synthesis fixed-bed reactor, dynamic partial least squares modeling, recursive partial least squares, robust modeling
Procedia PDF Downloads 392974 A Multi-Population DE with Adaptive Mutation and Local Search for Global Optimization
Authors: Zhoucheng Bao, Haiyan Zhu, Tingting Pang, Zuling Wang
Abstract:
This paper proposes a multi-population DE with adaptive mutation and local search for global optimization, named AMMADE. In order to better coordinate the cooperation between the populations and the rational use of resources. In AMMADE, the population is divided based on the Euclidean distance sorting method at each generation to appropriately coordinate the cooperation between subpopulations and the usage of resources, such that the best-performed subpopulation will get more computing resources in the next generation. Further, an adaptive local search strategy is employed on the best-performed subpopulation to achieve a balanced search. The proposed algorithm has been tested by solving optimization problems taken from CEC2014 benchmark problems. Experimental results show that our algorithm can achieve a competitive or better than related methods. The results also confirm the significance of devised strategies in the proposed algorithm.Keywords: differential evolution, multi-mutation strategies, memetic algorithm, adaptive local search
Procedia PDF Downloads 155973 Compensatory Neuro-Fuzzy Inference (CNFI) Controller for Bilateral Teleoperation
Abstract:
This paper presents a new adaptive neuro-fuzzy controller equipped with compensatory fuzzy control (CNFI) in order to not only adjusts membership functions but also to optimize the adaptive reasoning by using a compensatory learning algorithm. The proposed control structure includes both CNFI controllers for which one is used to control in force the master robot and the second one for controlling in position the slave robot. The experimental results obtained, show a fairly high accuracy in terms of position and force tracking under free space motion and hard contact motion, what highlights the effectiveness of the proposed controllers.Keywords: compensatory fuzzy, neuro-fuzzy, control adaptive, teleoperation
Procedia PDF Downloads 323972 A Fast Convergence Subband BSS Structure
Authors: Salah Al-Din I. Badran, Samad Ahmadi, Ismail Shahin
Abstract:
A blind source separation method is proposed; in this method we use a non-uniform filter bank and a novel normalisation. This method provides a reduced computational complexity and increased convergence speed comparing to the full-band algorithm. Recently, adaptive sub-band scheme has been recommended to solve two problems: reduction of computational complexity and increase the convergence speed of the adaptive algorithm for correlated input signals. In this work the reduction in computational complexity is achieved with the use of adaptive filters of orders less than the full-band adaptive filters, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each sub-band than the input signal at full bandwidth, and can promote better rates of convergence.Keywords: blind source separation, computational complexity, subband, convergence speed, mixture
Procedia PDF Downloads 553971 Adaptive Motion Planning for 6-DOF Robots Based on Trigonometric Functions
Authors: Jincan Li, Mingyu Gao, Zhiwei He, Yuxiang Yang, Zhongfei Yu, Yuanyuan Liu
Abstract:
Building an appropriate motion model is crucial for trajectory planning of robots and determines the operational quality directly. An adaptive acceleration and deceleration motion planning based on trigonometric functions for the end-effector of 6-DOF robots in Cartesian coordinate system is proposed in this paper. This method not only achieves the smooth translation motion and rotation motion by constructing a continuous jerk model, but also automatically adjusts the parameters of trigonometric functions according to the variable inputs and the kinematic constraints. The results of computer simulation show that this method is correct and effective to achieve the adaptive motion planning for linear trajectories.Keywords: kinematic constraints, motion planning, trigonometric function, 6-DOF robots
Procedia PDF Downloads 270970 Utilizing Spatial Uncertainty of On-The-Go Measurements to Design Adaptive Sampling of Soil Electrical Conductivity in a Rice Field
Authors: Ismaila Olabisi Ogundiji, Hakeem Mayowa Olujide, Qasim Usamot
Abstract:
The main reasons for site-specific management for agricultural inputs are to increase the profitability of crop production, to protect the environment and to improve products’ quality. Information about the variability of different soil attributes within a field is highly essential for the decision-making process. Lack of fast and accurate acquisition of soil characteristics remains one of the biggest limitations of precision agriculture due to being expensive and time-consuming. Adaptive sampling has been proven as an accurate and affordable sampling technique for planning within a field for site-specific management of agricultural inputs. This study employed spatial uncertainty of soil apparent electrical conductivity (ECa) estimates to identify adaptive re-survey areas in the field. The original dataset was grouped into validation and calibration groups where the calibration group was sub-grouped into three sets of different measurements pass intervals. A conditional simulation was performed on the field ECa to evaluate the ECa spatial uncertainty estimates by the use of the geostatistical technique. The grouping of high-uncertainty areas for each set was done using image segmentation in MATLAB, then, high and low area value-separate was identified. Finally, an adaptive re-survey was carried out on those areas of high-uncertainty. Adding adaptive re-surveying significantly minimized the time required for resampling whole field and resulted in ECa with minimal error. For the most spacious transect, the root mean square error (RMSE) yielded from an initial crude sampling survey was minimized after an adaptive re-survey, which was close to that value of the ECa yielded with an all-field re-survey. The estimated sampling time for the adaptive re-survey was found to be 45% lesser than that of all-field re-survey. The results indicate that designing adaptive sampling through spatial uncertainty models significantly mitigates sampling cost, and there was still conformity in the accuracy of the observations.Keywords: soil electrical conductivity, adaptive sampling, conditional simulation, spatial uncertainty, site-specific management
Procedia PDF Downloads 132969 Signal Processing Techniques for Adaptive Beamforming with Robustness
Authors: Ju-Hong Lee, Ching-Wei Liao
Abstract:
Adaptive beamforming using antenna array of sensors is useful in the process of adaptively detecting and preserving the presence of the desired signal while suppressing the interference and the background noise. For conventional adaptive array beamforming, we require a prior information of either the impinging direction or the waveform of the desired signal to adapt the weights. The adaptive weights of an antenna array beamformer under a steered-beam constraint are calculated by minimizing the output power of the beamformer subject to the constraint that forces the beamformer to make a constant response in the steering direction. Hence, the performance of the beamformer is very sensitive to the accuracy of the steering operation. In the literature, it is well known that the performance of an adaptive beamformer will be deteriorated by any steering angle error encountered in many practical applications, e.g., the wireless communication systems with massive antennas deployed at the base station and user equipment. Hence, developing effective signal processing techniques to deal with the problem due to steering angle error for array beamforming systems has become an important research work. In this paper, we present an effective signal processing technique for constructing an adaptive beamformer against the steering angle error. The proposed array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. Based on the presumed steering vector and a preset angle range for steering mismatch tolerance, we first create a matrix related to the direction vector of signal sources. Two projection matrices are generated from the matrix. The projection matrix associated with the desired signal information and the received array data are utilized to iteratively estimate the actual direction vector of the desired signal. The estimated direction vector of the desired signal is then used for appropriately finding the quiescent weight vector. The other projection matrix is set to be the signal blocking matrix required for performing adaptive beamforming. Accordingly, the proposed beamformer consists of adaptive quiescent weights and partially adaptive weights. Several computer simulation examples are provided for evaluating and comparing the proposed technique with the existing robust techniques.Keywords: adaptive beamforming, robustness, signal blocking, steering angle error
Procedia PDF Downloads 122968 Emerging Threats and Adaptive Defenses: Navigating the Future of Cybersecurity in a Hyperconnected World
Authors: Olasunkanmi Jame Ayodeji, Adebayo Adeyinka Victor
Abstract:
In a hyperconnected world, cybersecurity faces a continuous evolution of threats that challenge traditional defence mechanisms. This paper explores emerging cybersecurity threats like malware, ransomware, phishing, social engineering, and the Internet of Things (IoT) vulnerabilities. It delves into the inadequacies of existing cybersecurity defences in addressing these evolving risks and advocates for adaptive defence mechanisms that leverage AI, machine learning, and zero-trust architectures. The paper proposes collaborative approaches, including public-private partnerships and information sharing, as essential to building a robust defence strategy to address future cyber threats. The need for continuous monitoring, real-time incident response, and adaptive resilience strategies is highlighted to fortify digital infrastructures in the face of escalating global cyber risks.Keywords: cybersecurity, hyperconnectivity, malware, adaptive defences, zero-trust architecture, internet of things vulnerabilities
Procedia PDF Downloads 19967 Adaptive Transmission Scheme Based on Channel State in Dual-Hop System
Authors: Seung-Jun Yu, Yong-Jun Kim, Jung-In Baik, Hyoung-Kyu Song
Abstract:
In this paper, a dual-hop relay based on channel state is studied. In the conventional relay scheme, a relay uses the same modulation method without reference to channel state. But, a relay uses an adaptive modulation method with reference to channel state. If the channel state is poor, a relay eliminates latter 2 bits and uses Quadrature Phase Shift Keying (QPSK) modulation. If channel state is good, a relay modulates the received symbols with 16-QAM symbols by using 4 bits. The performance of the proposed scheme for Symbol Error Rate (SER) and throughput is analyzed.Keywords: adaptive transmission, channel state, dual-hop, hierarchical modulation, relay
Procedia PDF Downloads 377966 Developing a Comprehensive Model for the Prevention of Tension Neck Syndrome: A Focus on Musculoskeletal Disorder Prevention Strategies
Authors: Behnaz Sohani, Ifeoluwa Joshua Adigun, Amir Rahmani, Khaled Goher
Abstract:
This paper provides initial results on the efficacy of the designed ergonomic-oriented neck support to mitigate and alleviate tension neck syndrome musculoskeletal disorder. This is done using both simulations and measurements. Tension Neck Syndrome Musculoskeletal Disorder (TNS MSD) causes discomfort in the muscles around the neck and shoulder. TNS MSD is one of the leading causes of early retirement. This research focuses on the design of an adaptive neck supporter by integrating a soft actuator massager to help deliver a soothing massage. The massager and adaptive neck supporter prototype were validated by finite element analysis prior to fabrication to envisage the feasibility of the design concept. Then a prototype for the massager was fabricated and tested for concept validation. Future work will be focused on fabricating the full-scale prototype and upgrading and optimizing the design concept for the adaptive neck supporter.Keywords: adaptive neck supporter, tension neck syndrome, musculoskeletal disorder, soft actuator massager, soft robotics
Procedia PDF Downloads 108965 An Adaptive Opportunistic Transmission for Unlicensed Spectrum Sharing in Heterogeneous Networks
Authors: Daehyoung Kim, Pervez Khan, Hoon Kim
Abstract:
Efficient utilization of spectrum resources is a fundamental issue of wireless communications due to its scarcity. To improve the efficiency of spectrum utilization, the spectrum sharing for unlicensed bands is being regarded as one of key technologies in the next generation wireless networks. A number of schemes such as Listen-Before-Talk(LBT) and carrier sensor adaptive transmission (CSAT) have been suggested from this aspect, but more efficient sharing schemes are required for improving spectrum utilization efficiency. This work considers an opportunistic transmission approach and a dynamic Contention Window (CW) adjustment scheme for LTE-U users sharing the unlicensed spectrum with Wi-Fi, in order to enhance the overall system throughput. The decision criteria for the dynamic adjustment of CW are based on the collision evaluation, derived from the collision probability of the system. The overall performance can be improved due to the adaptive adjustment of the CW. Simulation results show that our proposed scheme outperforms the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 MAC.Keywords: spectrum sharing, adaptive opportunistic transmission, unlicensed bands, heterogeneous networks
Procedia PDF Downloads 350964 Matrix Completion with Heterogeneous Cost
Authors: Ilqar Ramazanli
Abstract:
The matrix completion problem has been studied broadly under many underlying conditions. The problem has been explored under adaptive or non-adaptive, exact or estimation, single-phase or multi-phase, and many other categories. In most of these cases, the observation cost of each entry is uniform and has the same cost across the columns. However, in many real-life scenarios, we could expect elements from distinct columns or distinct positions to have a different cost. In this paper, we explore this generalization under adaptive conditions. We approach the problem under two different cost models. The first one is that entries from different columns have different observation costs, but within the same column, each entry has a uniform cost. The second one is any two entry has different observation cost, despite being the same or different columns. We provide complexity analysis of our algorithms and provide tightness guarantees.Keywords: matroid optimization, matrix completion, linear algebra, algorithms
Procedia PDF Downloads 107963 A Subband BSS Structure with Reduced Complexity and Fast Convergence
Authors: Salah Al-Din I. Badran, Samad Ahmadi, Ismail Shahin
Abstract:
A blind source separation method is proposed; in this method, we use a non-uniform filter bank and a novel normalisation. This method provides a reduced computational complexity and increased convergence speed comparing to the full-band algorithm. Recently, adaptive sub-band scheme has been recommended to solve two problems: reduction of computational complexity and increase the convergence speed of the adaptive algorithm for correlated input signals. In this work, the reduction in computational complexity is achieved with the use of adaptive filters of orders less than the full-band adaptive filters, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each subband than the input signal at full bandwidth, and can promote better rates of convergence.Keywords: blind source separation, computational complexity, subband, convergence speed, mixture
Procedia PDF Downloads 577962 Novel Adaptive Radial Basis Function Neural Networks Based Approach for Short-Term Load Forecasting of Jordanian Power Grid
Authors: Eyad Almaita
Abstract:
In this paper, a novel adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to forecast the hour by hour electrical load demand in Jordan. A small and effective RBFNN model is used to forecast the hourly total load demand based on a small number of features. These features are; the load in the previous day, the load in the same day in the previous week, the temperature in the same hour, the hour number, the day number, and the day type. The proposed adaptive RBFNN model can enhance the reliability of the conventional RBFNN after embedding the network in the system. This is achieved by introducing an adaptive algorithm that allows the change of the weights of the RBFNN after the training process is completed, which will eliminates the need to retrain the RBFNN model again. The data used in this paper is real data measured by National Electrical Power co. (Jordan). The data for the period Jan./2012-April/2013 is used train the RBFNN models and the data for the period May/2013- Sep. /2013 is used to validate the models effectiveness.Keywords: load forecasting, adaptive neural network, radial basis function, short-term, electricity consumption
Procedia PDF Downloads 343961 Implementation of Model Reference Adaptive Control in Tuning of Controller Gains for Following-Vehicle System with Fixed Time Headway
Authors: Fatemeh Behbahani, Rubiyah Yusof
Abstract:
To avoid collision between following vehicles and vehicles in front, it is vital to keep appropriate, safe spacing between both vehicles over all speeds. Therefore, the following vehicle needs to have exact information regarding the speed and spacing between vehicles. This project is conducted to simulate the tuning of controller gain for a vehicle-following system through the selected control strategy, spacing control policy and fixed-time headway policy. In addition, the paper simulates and designs an adaptive gain controller for a road-vehicle-following system which uses information on the spacing, velocity and also acceleration of a preceding vehicle in the proposed one-vehicle look-ahead strategy. The mathematical model is implemented using Kirchhoff and Newton’s Laws, and stability simulated. The trial-error method was used to obtain a suitable value of controller gain. However, the adaptive-based controller system was able to optimize the gain value automatically. Model Reference Adaptive Control (MRAC) is designed and utilized and based on firstly the Gradient and secondly the Lyapunov approach. The Lyapunov approach considers stability. The Gradient approach was found to improve the best value of gain in the controller system with fixed-time headway.Keywords: one-vehicle look-ahead, model reference adaptive, stability, tuning gain controller, MRAC
Procedia PDF Downloads 236960 UML Model for Double-Loop Control Self-Adaptive Braking System
Authors: Heung Sun Yoon, Jong Tae Kim
Abstract:
In this paper, we present an activity diagram model for double-loop control self-adaptive braking system. Since activity diagram helps to improve visibility of self-adaption, we can easily find where improvement is needed on double-loop control. Double-loop control is adopted since the design conditions and actual conditions can be different. The system is reconfigured in runtime by using double-loop control. We simulated to verify and validate our model by using MATLAB. We compared single-loop control model with double-loop control model. Simulation results show that double-loop control provides more consistent brake power control than single-loop control.Keywords: activity diagram, automotive, braking system, double-loop, self-adaptive, UML, vehicle
Procedia PDF Downloads 414959 A Comprehensive Review of Adaptive Building Energy Management Systems Based on Users’ Feedback
Authors: P. Nafisi Poor, P. Javid
Abstract:
Over the past few years, the idea of adaptive buildings and specifically, adaptive building energy management systems (ABEMS) has become popular. Well-performed management in terms of energy is to create a balance between energy consumption and user comfort; therefore, in new energy management models, efficient energy consumption is not the sole factor and the user's comfortability is also considered in the calculations. One of the main ways of measuring this factor is by analyzing user feedback on the conditions to understand whether they are satisfied with conditions or not. This paper provides a comprehensive review of recent approaches towards energy management systems based on users' feedbacks and subsequently performs a comparison between them premised upon their efficiency and accuracy to understand which approaches were more accurate and which ones resulted in a more efficient way of minimizing energy consumption while maintaining users' comfortability. It was concluded that the highest accuracy rate among the presented works was 95% accuracy in determining satisfaction and up to 51.08% energy savings can be achieved without disturbing user’s comfort. Considering the growing interest in designing and developing adaptive buildings, these studies can support diverse inquiries about this subject and can be used as a resource to support studies and researches towards efficient energy consumption while maintaining the comfortability of users.Keywords: adaptive buildings, energy efficiency, intelligent buildings, user comfortability
Procedia PDF Downloads 132958 Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion
Authors: P.-W. Tsai, C.-Y. Chen, C.-W. Chen
Abstract:
In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology.Keywords: adaptive fuzzy sliding mode control, Lyapunov direct method, swarm intelligence, evolved bat algorithm
Procedia PDF Downloads 444957 An Adaptive Distributed Incremental Association Rule Mining System
Authors: Adewale O. Ogunde, Olusegun Folorunso, Adesina S. Sodiya
Abstract:
Most existing Distributed Association Rule Mining (DARM) systems are still facing several challenges. One of such challenges that have not received the attention of many researchers is the inability of existing systems to adapt to constantly changing databases and mining environments. In this work, an Adaptive Incremental Mining Algorithm (AIMA) is therefore proposed to address these problems. AIMA employed multiple mobile agents for the entire mining process. AIMA was designed to adapt to changes in the distributed databases by mining only the incremental database updates and using this to update the existing rules in order to improve the overall response time of the DARM system. In AIMA, global association rules were integrated incrementally from one data site to another through Results Integration Coordinating Agents. The mining agents in AIMA were made adaptive by defining mining goals with reasoning and behavioral capabilities and protocols that enabled them to either maintain or change their goals. AIMA employed Java Agent Development Environment Extension for designing the internal agents’ architecture. Results from experiments conducted on real datasets showed that the adaptive system, AIMA performed better than the non-adaptive systems with lower communication costs and higher task completion rates.Keywords: adaptivity, data mining, distributed association rule mining, incremental mining, mobile agents
Procedia PDF Downloads 391956 Adaptive Cooperative Scheme Considering the User Location
Authors: Bit-Na Kwon, Hyun-Jee Yang, Dong-Hyun Ha, Hyoung-Kyu Song
Abstract:
In this paper, an adaptive cooperative scheme in the cell edge is proposed. The proposed scheme considers the location of a user and applies the suitable cooperative scheme. In cellular systems, the performance of communication is degraded if the user is located in the cell edge. In conventional scheme, two base stations are used in order to obtain diversity gain. However, the performance of communication is not sufficiently improved since the distance between each base station and a user is still distant. Therefore, we propose a scheme that the relays are used and the cooperative scheme is adaptively applied according to the user location. Through simulation results, it is confirmed that the proposed scheme has better performance than the conventional scheme.Keywords: adaptive transmission, cooperative communication, diversity gain, OFDM
Procedia PDF Downloads 570955 Design of Reconfigurable Fixed-Point LMS Adaptive FIR Filter
Authors: S. Padmapriya, V. Lakshmi Prabha
Abstract:
In this paper, an efficient reconfigurable fixed-point Least Mean Square Adaptive FIR filter is proposed. The proposed architecture has two methods of operation: one is area efficient design and the other is optimized power. Pipelining of the adder blocks and partial product generator are used to achieve low area and reversible logic is used to obtain low power design. Depending upon the input samples and filter coefficients, one of the techniques is chosen. Least-Mean-Square adaptation is performed to update the weights. The architecture is coded using Verilog and synthesized in cadence encounter 0.18μm technology. The synthesized results show that the area reduction ratio of the proposed when compared with conventional technique is about 1.2%.Keywords: adaptive filter, carry select adder, least mean square algorithm, reversible logic
Procedia PDF Downloads 328954 Self-Tuning Dead-Beat PD Controller for Pitch Angle Control of a Bench-Top Helicopter
Authors: H. Mansor, S.B. Mohd-Noor, N. I. Othman, N. Tazali, R. I. Boby
Abstract:
This paper presents an improved robust Proportional Derivative controller for a 3-Degree-of-Freedom (3-DOF) bench-top helicopter by using adaptive methodology. Bench-top helicopter is a laboratory scale helicopter used for experimental purposes which is widely used in teaching laboratory and research. Proportional Derivative controller has been developed for a 3-DOF bench-top helicopter by Quanser. Experiments showed that the transient response of designed PD controller has very large steady state error i.e., 50%, which is very serious. The objective of this research is to improve the performance of existing pitch angle control of PD controller on the bench-top helicopter by integration of PD controller with adaptive controller. Usually standard adaptive controller will produce zero steady state error; however response time to reach desired set point is large. Therefore, this paper proposed an adaptive with deadbeat algorithm to overcome the limitations. The output response that is fast, robust and updated online is expected. Performance comparisons have been performed between the proposed self-tuning deadbeat PD controller and standard PD controller. The efficiency of the self-tuning dead beat controller has been proven from the tests results in terms of faster settling time, zero steady state error and capability of the controller to be updated online.Keywords: adaptive control, deadbeat control, bench-top helicopter, self-tuning control
Procedia PDF Downloads 321953 Adaptive Control of Magnetorheological Damper Using Duffing-Like Model
Authors: Hung-Jiun Chi, Cheng-En Tsai, Jia-Ying Tu
Abstract:
Semi-active control of Magnetorheological (MR) dampers for vibration reduction of structural systems has received considerable attention in civil and earthquake engineering, because the effective stiffness and damping properties of MR fluid can change in a very short time in reaction to external loading, requiring only a low level of power. However, the inherent nonlinear dynamics of hysteresis raise challenges in the modeling and control processes. In order to control the MR damper, an innovative Duffing-like equation is proposed to approximate the hysteresis dynamics in a deterministic and systematic manner than previously has been possible. Then, the model-reference adaptive control technique based on the Duffing-like model and the Lyapunov method is discussed. Parameter identification work with experimental data is presented to show the effectiveness of the Duffing-like model. In addition, simulation results show that the resulting adaptive gains enable the MR damper force to track the desired response of the reference model satisfactorily, verifying the effectiveness of the proposed modeling and control techniques.Keywords: magnetorheological damper, duffing equation, model-reference adaptive control, Lyapunov function, hysteresis
Procedia PDF Downloads 368952 Cessna Citation X Performances Improvement by an Adaptive Winglet during the Cruise Flight
Authors: Marine Segui, Simon Bezin, Ruxandra Mihaela Botez
Abstract:
As part of a ‘Morphing-Wing’ idea, this study consists of measuring how a winglet, which is able to change its shape during the flight, is efficient. Conventionally, winglets are fixed-vertical platforms at the wingtips, optimized for a cruise condition that the airplane should use most of the time. However, during a cruise, an airplane flies through a lot of cruise conditions corresponding to altitudes variations from 30,000 to 45,000 ft. The fixed winglets are not optimized for these variations, and consequently, they are supposed to generate some drag, and thus to deteriorate aircraft fuel consumption. This research assumes that it exists a winglet position that reduces the fuel consumption for each cruise condition. In this way, the methodology aims to find these optimal winglet positions, and to further simulate, and thus estimate the fuel consumption of an aircraft wearing this type of adaptive winglet during several cruise conditions. The adaptive winglet is assumed to have degrees of freedom given by the various changes of following surfaces: the tip chord, the sweep and the dihedral angles. Finally, results obtained during cruise simulations are presented in this paper. These results show that an adaptive winglet can reduce, thus improve up to 2.12% the fuel consumption of an aircraft during a cruise.Keywords: aerodynamic, Cessna, Citation X, optimization, winglet
Procedia PDF Downloads 239951 Particle Swarm Optimization Based Vibration Suppression of a Piezoelectric Actuator Using Adaptive Fuzzy Sliding Mode Controller
Authors: Jin-Siang Shaw, Patricia Moya Caceres, Sheng-Xiang Xu
Abstract:
This paper aims to integrate the particle swarm optimization (PSO) method with the adaptive fuzzy sliding mode controller (AFSMC) to achieve vibration attenuation in a piezoelectric actuator subject to base excitation. The piezoelectric actuator is a complicated system made of ferroelectric materials and its performance can be affected by nonlinear hysteresis loop and unknown system parameters and external disturbances. In this study, an adaptive fuzzy sliding mode controller is proposed for the vibration control of the system, because the fuzzy sliding mode controller is designed to tackle the unknown parameters and external disturbance of the system, and the adaptive algorithm is aimed for fine-tuning this controller for error converging purpose. Particle swarm optimization method is used in order to find the optimal controller parameters for the piezoelectric actuator. PSO starts with a population of random possible solutions, called particles. The particles move through the search space with dynamically adjusted speed and direction that change according to their historical behavior, allowing the values of the particles to quickly converge towards the best solutions for the proposed problem. In this paper, an initial set of controller parameters is applied to the piezoelectric actuator which is subject to resonant base excitation with large amplitude vibration. The resulting vibration suppression is about 50%. Then PSO is applied to search for an optimal controller in the neighborhood of this initial controller. The performance of the optimal fuzzy sliding mode controller found by PSO indeed improves up to 97.8% vibration attenuation. Finally, adaptive version of fuzzy sliding mode controller is adopted for further improving vibration suppression. Simulation result verifies the performance of the adaptive controller with 99.98% vibration reduction. Namely the vibration of the piezoelectric actuator subject to resonant base excitation can be completely annihilated using this PSO based adaptive fuzzy sliding mode controller.Keywords: adaptive fuzzy sliding mode controller, particle swarm optimization, piezoelectric actuator, vibration suppression
Procedia PDF Downloads 144950 Weighted Rank Regression with Adaptive Penalty Function
Authors: Kang-Mo Jung
Abstract:
The use of regularization for statistical methods has become popular. The least absolute shrinkage and selection operator (LASSO) framework has become the standard tool for sparse regression. However, it is well known that the LASSO is sensitive to outliers or leverage points. We consider a new robust estimation which is composed of the weighted loss function of the pairwise difference of residuals and the adaptive penalty function regulating the tuning parameter for each variable. Rank regression is resistant to regression outliers, but not to leverage points. By adopting a weighted loss function, the proposed method is robust to leverage points of the predictor variable. Furthermore, the adaptive penalty function gives us good statistical properties in variable selection such as oracle property and consistency. We develop an efficient algorithm to compute the proposed estimator using basic functions in program R. We used an optimal tuning parameter based on the Bayesian information criterion (BIC). Numerical simulation shows that the proposed estimator is effective for analyzing real data set and contaminated data.Keywords: adaptive penalty function, robust penalized regression, variable selection, weighted rank regression
Procedia PDF Downloads 470949 Image Denoising Using Spatial Adaptive Mask Filter for Medical Images
Authors: R. Sumalatha, M. V. Subramanyam
Abstract:
In medical image processing the quality of the image is degraded in the presence of noise. Especially in ultra sound imaging and Magnetic resonance imaging the data was corrupted by signal dependent noise known as salt and pepper noise. Removal of noise from the medical images is a critical issue for researchers. In this paper, a new type of technique Adaptive Spatial Mask Filter (ASMF) has been proposed. The proposed filter is used to increase the quality of MRI and ultra sound images. Experimental results show that the proposed filter outperforms the implementation of mean, median, adaptive median filters in terms of MSE and PSNR.Keywords: salt and pepper noise, ASMF, PSNR, MSE
Procedia PDF Downloads 434948 Research on Robot Adaptive Polishing Control Technology
Authors: Yi Ming Zhang, Zhan Xi Wang, Hang Chen, Gang Wang
Abstract:
Manual polishing has problems such as high labor intensity, low production efficiency and difficulty in guaranteeing the consistency of polishing quality. It is more and more necessary to replace manual polishing with robot polishing. Polishing force directly affects the quality of polishing, so accurate tracking and control of polishing force is one of the most important conditions for improving the accuracy of robot polishing. The traditional force control strategy is difficult to adapt to the strong coupling of force control and position control during the robot polishing process. Therefore, based on the analysis of force-based impedance control and position-based impedance control, this paper proposed a new type of adaptive controller. Based on force feedback control of active compliance control, the controller can adaptively estimate the stiffness and position of the external environment and eliminate the steady-state force error produced by traditional impedance control. The simulation results of the model shows that the adaptive controller has good adaptability to changing environmental positions and environmental stiffness, and can accurately track and control polishing force.Keywords: robot polishing, force feedback, impedance control, adaptive control
Procedia PDF Downloads 196947 Reduction of Impulsive Noise in OFDM System using Adaptive Algorithm
Authors: Alina Mirza, Sumrin M. Kabir, Shahzad A. Sheikh
Abstract:
The Orthogonal Frequency Division Multiplexing (OFDM) with high data rate, high spectral efficiency and its ability to mitigate the effects of multipath makes them most suitable in wireless application. Impulsive noise distorts the OFDM transmission and therefore methods must be investigated to suppress this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based adaptive impulsive noise suppressor for OFDM communication system is proposed. And a comparison with another adaptive algorithm is conducted. The state space model-dependent recursive parameters of proposed scheme enables to achieve steady state mean squared error (MSE), low bit error rate (BER), and faster convergence than that of some of existing algorithm.Keywords: OFDM, impulsive noise, SSRLS, BER
Procedia PDF Downloads 455