Search results for: Rupal Ranjan
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 73

Search results for: Rupal Ranjan

13 Development of an Integrated System for the Treatment of Rural Domestic Wastewater: Emphasis on Nutrient Removal

Authors: Prangya Ranjan Rout, Puspendu Bhunia, Rajesh Roshan Dash

Abstract:

In a developing country like India, providing reliable and affordable wastewater treatment facilities in rural areas is a huge challenge. With the aim of enhancing the nutrient removal from rural domestic wastewater while reducing the cost of treatment process, a novel, integrated treatment system consisting of a multistage bio-filter with drop aeration and a post positioned attached growth carbonaceous denitrifying-bioreactor was designed and developed in this work. The bio-filter was packed with ‘dolochar’, a sponge iron industry waste, as an adsorbent mainly for phosphate removal through physiochemical approach. The Denitrifying bio-reactor was packed with many waste organic solid substances (WOSS) as carbon sources and substrates for biomass attachment, mainly to remove nitrate in biological denitrification process. The performance of the modular system, treating real domestic wastewater was monitored for a period of about 60 days and the average removal efficiencies during the period were as follows: phosphate, 97.37%; nitrate, 85.91%, ammonia, 87.85%, with mean final effluent concentration of 0.73, 9.86, and 9.46 mg/L, respectively. The multistage bio-filter played an important role in ammonium oxidation and phosphate adsorption. The multilevel drop aeration with increasing oxygenation, and the special media used, consisting of certain oxides were likely beneficial for nitrification and phosphorus removal, respectively, whereas the nitrate was effectively reduced by biological denitrification in the carbonaceous bioreactor. This treatment system would allow multipurpose reuse of the final effluent. Moreover, the saturated dolochar can be used as nutrient suppliers in agricultural practices and the partially degraded carbonaceous substances can be subjected to composting, and subsequently used as an organic fertilizer. Thus, the system displays immense potential for treating domestic wastewater significantly decreasing the concentrations of nutrients and more importantly, facilitating the conversion of the waste materials into usable ones.

Keywords: nutrient removal, denitrifying bioreactor, multi-stage bio-filter, dolochar, waste organic solid substances

Procedia PDF Downloads 381
12 Gestalt in Music and Brain: A Non-Linear Chaos Based Study with Detrended/Adaptive Fractal Analysis

Authors: Shankha Sanyal, Archi Banerjee, Sayan Biswas, Sourya Sengupta, Sayan Nag, Ranjan Sengupta, Dipak Ghosh

Abstract:

The term ‘gestalt’ has been widely used in the field of psychology which defined the perception of human mind to group any object not in part but as a 'unified' whole. Music, in general, is polyphonic - i.e. a combination of a number of pure tones (frequencies) mixed together in a manner that sounds harmonious. The study of human brain response due to different frequency groups of the acoustic signal can give us an excellent insight regarding the neural and functional architecture of brain functions. Hence, the study of music cognition using neuro-biosensors is becoming a rapidly emerging field of research. In this work, we have tried to analyze the effect of different frequency bands of music on the various frequency rhythms of human brain obtained from EEG data. Four widely popular Rabindrasangeet clips were subjected to Wavelet Transform method for extracting five resonant frequency bands from the original music signal. These frequency bands were initially analyzed with Detrended/Adaptive Fractal analysis (DFA/AFA) methods. A listening test was conducted on a pool of 100 respondents to assess the frequency band in which the music becomes non-recognizable. Next, these resonant frequency bands were presented to 20 subjects as auditory stimulus and EEG signals recorded simultaneously in 19 different locations of the brain. The recorded EEG signals were noise cleaned and subjected again to DFA/AFA technique on the alpha, theta and gamma frequency range. Thus, we obtained the scaling exponents from the two methods in alpha, theta and gamma EEG rhythms corresponding to different frequency bands of music. From the analysis of music signal, it is seen that loss of recognition is proportional to the loss of long range correlation in the signal. From the EEG signal analysis, we obtain frequency specific arousal based response in different lobes of brain as well as in specific EEG bands corresponding to musical stimuli. In this way, we look to identify a specific frequency band beyond which the music becomes non-recognizable and below which in spite of the absence of other bands the music is perceivable to the audience. This revelation can be of immense importance when it comes to the field of cognitive music therapy and researchers of creativity.

Keywords: AFA, DFA, EEG, gestalt in music, Hurst exponent

Procedia PDF Downloads 332
11 Experimental Investigation of Seawater Thermophysical Properties: Understanding Climate Change Impacts on Marine Ecosystems Through Internal Pressure and Cohesion Energy Analysis

Authors: Nishaben Dholakiya, Anirban Roy, Ranjan Dey

Abstract:

The unprecedented rise in global temperatures has triggered complex changes in marine ecosystems, necessitating a deeper understanding of seawater's thermophysical properties by experimentally measuring ultrasonic velocity and density at varying temperatures and salinity. This study investigates the critical relationship between temperature variations and molecular-level interactions in Arabian Sea surface waters, specifically focusing on internal pressure (π) and cohesion energy density (CED) as key indicators of ecosystem disruption. Our experimental findings reveal that elevated temperatures significantly reduce internal pressure, weakening the intermolecular forces that maintain seawater's structural integrity. This reduction in π correlates directly with decreased habitat stability for marine organisms, particularly affecting pressure-sensitive species and their physiological processes. Similarly, the observed decline in cohesion energy density at higher temperatures indicates a fundamental shift in water molecule organization, impacting the dissolution and distribution of vital nutrients and gases. These molecular-level changes cascade through the ecosystem, affecting everything from planktonic organisms to complex food webs. By employing advanced machine learning techniques, including Stacked Ensemble Machine Learning (SEML) and AdaBoost (AB), we developed highly accurate predictive models (>99% accuracy) for these thermophysical parameters. The results provide crucial insights into the mechanistic relationship between climate warming and marine ecosystem degradation, offering valuable data for environmental policymaking and conservation strategies. The novelty of this research serves as no such thermodynamic investigation has been conducted before in literature, whereas this research establishes a quantitative framework for understanding how molecular-level changes in seawater properties directly influence marine ecosystem stability, emphasizing the urgent need for climate change mitigation efforts.

Keywords: thermophysical properties, Arabian Sea, internal pressure, cohesion energy density, machine learning

Procedia PDF Downloads 3
10 A Parametric Investigation into the Free Vibration and Flutter Characteristics of High Aspect Ratio Aircraft Wings Using Polynomial Distributions of Stiffness and Mass Properties

Authors: Ranjan Banerjee, W. D. Gunawardana

Abstract:

The free vibration and flutter analysis plays a major part in aircraft design which is indeed, a mandatory requirement. In particular, high aspect ratio transport airliner wings are prone to free vibration and flutter problems that must be addressed during the design process as demanded by the airworthiness authorities. The purpose of this paper is to carry out a detailed free vibration and flutter analysis for a wide range of high aspect ratio aircraft wings and generate design curves to provide useful visions and understandings of aircraft design from an aeroelastic perspective. In the initial stage of the investigation, the bending and torsional stiffnesses of a number of transport aircraft wings are looked at and critically examined to see whether it is possible to express the stiffness distributions in polynomial form, but in a sufficiently accurate manner. A similar attempt is made for mass and mass moment of inertia distributions of the wing. Once the choice of stiffness and mass distributions in polynomial form is made, the high aspect ratio wing is idealised by a series of bending-torsion coupled beams from a structural standpoint. Then the dynamic stiffness method is applied to compute the natural frequencies and mode shape of the wing. Next the wing is idealised aerodynamically and to this end, unsteady aerodynamic of Theodorsen type is employed to represent the harmonically oscillating wing. Following this step, a normal mode method through the use of generalised coordinates is applied to formulate the flutter problem. In essence, the generalised mass, stiffness and aerodynamic matrices are combined to obtain the flutter matrix which is subsequently solved in the complex domain to determine the flutter speed and flutter frequency. In the final stage of the investigation, an exhaustive parametric study is carried out by varying significant wing parameters to generate design curves which help to predict the free vibration and flutter behaviour of high aspect ratio transport aircraft wings in a generic manner. It is in the aeroelastic context of aircraft design where the results are expected to be most useful.

Keywords: high-aspect ratio wing, flutter, dynamic stiffness method, free vibration, aeroelasticity

Procedia PDF Downloads 285
9 Altering Surface Properties of Magnetic Nanoparticles with Single-Step Surface Modification with Various Surface Active Agents

Authors: Krupali Mehta, Sandip Bhatt, Umesh Trivedi, Bhavesh Bharatiya, Mukesh Ranjan, Atindra D. Shukla

Abstract:

Owing to the dominating surface forces and large-scale surface interactions, the nano-scale particles face difficulties in getting suspended in various media. Magnetic nanoparticles of iron oxide offer a great deal of promise due to their ease of preparation, reasonable magnetic properties, low cost and environmental compatibility. We intend to modify the surface of magnetic Fe₂O₃ nanoparticles with selected surface modifying agents using simple and effective single-step chemical reactions in order to enhance dispersibility of magnetic nanoparticles in non-polar media. Magnetic particles were prepared by hydrolysis of Fe²⁺/Fe³⁺ chlorides and their subsequent oxidation in aqueous medium. The dried particles were then treated with Octadecyl quaternary ammonium silane (Terrasil™), stearic acid and gallic acid ester of stearyl alcohol in ethanol separately to yield S-2 to S-4 respectively. The untreated Fe₂O₃ was designated as S-1. The surface modified nanoparticles were then analysed with Dynamic Light Scattering (DLS), Fourier Transform Infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric Gravimetric Analysis (TGA) and Scanning Electron Microscopy and Energy dispersive X-Ray analysis (SEM-EDAX). Characterization reveals the particle size averaging 20-50 nm with and without modification. However, the crystallite size in all cases remained ~7.0 nm with the diffractogram matching to Fe₂O₃ crystal structure. FT-IR suggested the presence of surfactants on nanoparticles’ surface, also confirmed by SEM-EDAX where mapping of elements proved their presence. TGA indicated the weight losses in S-2 to S-4 at 300°C onwards suggesting the presence of organic moiety. Hydrophobic character of modified surfaces was confirmed with contact angle analysis, all modified nanoparticles showed super hydrophobic behaviour with average contact angles ~129° for S-2, ~139.5° for S-3 and ~151° for S-4. This indicated that surface modified particles are super hydrophobic and they are easily dispersible in non-polar media. These modified particles could be ideal candidates to be suspended in oil-based fluids, polymer matrices, etc. We are pursuing elaborate suspension/sedimentation studies of these particles in various oils to establish this conjecture.

Keywords: iron nanoparticles, modification, hydrophobic, dispersion

Procedia PDF Downloads 141
8 Remote Sensing-Based Prediction of Asymptomatic Rice Blast Disease Using Hyperspectral Spectroradiometry and Spectral Sensitivity Analysis

Authors: Selvaprakash Ramalingam, Rabi N. Sahoo, Dharmendra Saraswat, A. Kumar, Rajeev Ranjan, Joydeep Mukerjee, Viswanathan Chinnasamy, K. K. Chaturvedi, Sanjeev Kumar

Abstract:

Rice is one of the most important staple food crops in the world. Among the various diseases that affect rice crops, rice blast is particularly significant, causing crop yield and economic losses. While the plant has defense mechanisms in place, such as chemical indicators (proteins, salicylic acid, jasmonic acid, ethylene, and azelaic acid) and resistance genes in certain varieties that can protect against diseases, susceptible varieties remain vulnerable to these fungal diseases. Early prediction of rice blast (RB) disease is crucial, but conventional techniques for early prediction are time-consuming and labor-intensive. Hyperspectral remote sensing techniques hold the potential to predict RB disease at its asymptomatic stage. In this study, we aimed to demonstrate the prediction of RB disease at the asymptomatic stage using non-imaging hyperspectral ASD spectroradiometer under controlled laboratory conditions. We applied statistical spectral discrimination theory to identify unknown spectra of M. Oryzae, the fungus responsible for rice blast disease. The infrared (IR) region was found to be significantly affected by RB disease. These changes may result in alterations in the absorption, reflection, or emission of infrared radiation by the affected plant tissues. Our research revealed that the protein spectrum in the IR region is impacted by RB disease. In our study, we identified strong correlations in the region (Amide group - I) around X 1064 nm and Y 1300 nm with the Lambda / Lambda derived spectra methods for protein detection. During the stages when the disease is developing, typically from day 3 to day 5, the plant's defense mechanisms are not as effective. This is especially true for the PB-1 variety of rice, which is highly susceptible to rice blast disease. Consequently, the proteins in the plant are adversely affected during this critical time. The spectral contour plot reveals the highly correlated spectral regions 1064 nm and Y 1300 nm associated with RB disease infection. Based on these spectral sensitivities, we developed new spectral disease indices for predicting different stages of disease emergence. The goal of this research is to lay the foundation for future UAV and satellite-based studies aimed at long-term monitoring of RB disease.

Keywords: rice blast, asymptomatic stage, spectral sensitivity, IR

Procedia PDF Downloads 86
7 Analysis of Epileptic Electroencephalogram Using Detrended Fluctuation and Recurrence Plots

Authors: Mrinalini Ranjan, Sudheesh Chethil

Abstract:

Epilepsy is a common neurological disorder characterised by the recurrence of seizures. Electroencephalogram (EEG) signals are complex biomedical signals which exhibit nonlinear and nonstationary behavior. We use two methods 1) Detrended Fluctuation Analysis (DFA) and 2) Recurrence Plots (RP) to capture this complex behavior of EEG signals. DFA considers fluctuation from local linear trends. Scale invariance of these signals is well captured in the multifractal characterisation using detrended fluctuation analysis (DFA). Analysis of long-range correlations is vital for understanding the dynamics of EEG signals. Correlation properties in the EEG signal are quantified by the calculation of a scaling exponent. We report the existence of two scaling behaviours in the epileptic EEG signals which quantify short and long-range correlations. To illustrate this, we perform DFA on extant ictal (seizure) and interictal (seizure free) datasets of different patients in different channels. We compute the short term and long scaling exponents and report a decrease in short range scaling exponent during seizure as compared to pre-seizure and a subsequent increase during post-seizure period, while the long-term scaling exponent shows an increase during seizure activity. Our calculation of long-term scaling exponent yields a value between 0.5 and 1, thus pointing to power law behaviour of long-range temporal correlations (LRTC). We perform this analysis for multiple channels and report similar behaviour. We find an increase in the long-term scaling exponent during seizure in all channels, which we attribute to an increase in persistent LRTC during seizure. The magnitude of the scaling exponent and its distribution in different channels can help in better identification of areas in brain most affected during seizure activity. The nature of epileptic seizures varies from patient-to-patient. To illustrate this, we report an increase in long-term scaling exponent for some patients which is also complemented by the recurrence plots (RP). RP is a graph that shows the time index of recurrence of a dynamical state. We perform Recurrence Quantitative analysis (RQA) and calculate RQA parameters like diagonal length, entropy, recurrence, determinism, etc. for ictal and interictal datasets. We find that the RQA parameters increase during seizure activity, indicating a transition. We observe that RQA parameters are higher during seizure period as compared to post seizure values, whereas for some patients post seizure values exceeded those during seizure. We attribute this to varying nature of seizure in different patients indicating a different route or mechanism during the transition. Our results can help in better understanding of the characterisation of epileptic EEG signals from a nonlinear analysis.

Keywords: detrended fluctuation, epilepsy, long range correlations, recurrence plots

Procedia PDF Downloads 176
6 Role of Institutional Quality as a Key Determinant of FDI Flows in Developing Asian Economies

Authors: Bikash Ranjan Mishra, Lopamudra D. Satpathy

Abstract:

In the wake of the phenomenal surge in international business in the last decades or more, both the developed and developing economies around the world are in massive competition to attract more and more FDI flows. While the developed countries have marched ahead in the race, the developing countries, especially those of Asian economies, have followed them at a rapid pace. While most of the previous studies have analysed the role of institutional quality in the promotion of FDI flows in developing countries, very few studies have taken an integrated approach of examining the comprehensive impact of institutional quality, globalization pattern and domestic financial development on FDI flows. In this context, the paper contributes to the literature in two important ways. Firstly, two composite indices of institutional quality and domestic financial development for the Asian countries are constructed in comparison to earlier studies that resort to a single variable for indicating the institutional quality and domestic financial development. Secondly, the impact of these variables on FDI flows through their interaction with geographical region is investigated. The study uses panel data covering the time period of 1996 to 2012 by selecting twenty Asian developing countries by emphasizing the quality of institutions from the geographical regions of eastern, south-eastern, southern and western Asia. Control of corruption, better rule of law, regulatory quality, effectiveness of the government, political stability and voice and accountability are used as indicators of institutional quality. Besides these, the study takes into account the domestic credits in the hands of public, private sectors and in stock markets as domestic financial indicators. First in the specification of model, a factor analysis is performed to reduce the vast determinants, which are highly correlated with each other, to a manageable size. Afterwards, a reduced version of the model is estimated with the extracted factors in the form of index as independent variables along with a set of control variables. It is found that the institutional quality index and index of globalization exert a significant effect on FDI inflows of the host countries; in contrast, the domestic financial index does not seem to play much worthy role. Finally, some robustness tests are performed to make sure that the results are not sensitive to temporal and spatial unobserved heterogeneity. On the basis of the above study, one general inference can be drawn from the policy prescription point of view that the government of these developing countries should strengthen their domestic institution, both financial and non-financial. In addition to these, welfare policies should also target for rapid globalization. If the financial and non-financial institutions of these developing countries become sound and grow more globalized in the economic, social and political domain, then they can appeal to more amounts of FDI inflows that will subsequently result in advancement of these economies.

Keywords: Asian developing economies, FDI, institutional quality, panel data

Procedia PDF Downloads 313
5 A Machine Learning Approach for Assessment of Tremor: A Neurological Movement Disorder

Authors: Rajesh Ranjan, Marimuthu Palaniswami, A. A. Hashmi

Abstract:

With the changing lifestyle and environment around us, the prevalence of the critical and incurable disease has proliferated. One such condition is the neurological disorder which is rampant among the old age population and is increasing at an unstoppable rate. Most of the neurological disorder patients suffer from some movement disorder affecting the movement of their body parts. Tremor is the most common movement disorder which is prevalent in such patients that infect the upper or lower limbs or both extremities. The tremor symptoms are commonly visible in Parkinson’s disease patient, and it can also be a pure tremor (essential tremor). The patients suffering from tremor face enormous trouble in performing the daily activity, and they always need a caretaker for assistance. In the clinics, the assessment of tremor is done through a manual clinical rating task such as Unified Parkinson’s disease rating scale which is time taking and cumbersome. Neurologists have also affirmed a challenge in differentiating a Parkinsonian tremor with the pure tremor which is essential in providing an accurate diagnosis. Therefore, there is a need to develop a monitoring and assistive tool for the tremor patient that keep on checking their health condition by coordinating them with the clinicians and caretakers for early diagnosis and assistance in performing the daily activity. In our research, we focus on developing a system for automatic classification of tremor which can accurately differentiate the pure tremor from the Parkinsonian tremor using a wearable accelerometer-based device, so that adequate diagnosis can be provided to the correct patient. In this research, a study was conducted in the neuro-clinic to assess the upper wrist movement of the patient suffering from Pure (Essential) tremor and Parkinsonian tremor using a wearable accelerometer-based device. Four tasks were designed in accordance with Unified Parkinson’s disease motor rating scale which is used to assess the rest, postural, intentional and action tremor in such patient. Various features such as time-frequency domain, wavelet-based and fast-Fourier transform based cross-correlation were extracted from the tri-axial signal which was used as input feature vector space for the different supervised and unsupervised learning tools for quantification of severity of tremor. A minimum covariance maximum correlation energy comparison index was also developed which was used as the input feature for various classification tools for distinguishing the PT and ET tremor types. An automatic system for efficient classification of tremor was developed using feature extraction methods, and superior performance was achieved using K-nearest neighbors and Support Vector Machine classifiers respectively.

Keywords: machine learning approach for neurological disorder assessment, automatic classification of tremor types, feature extraction method for tremor classification, neurological movement disorder, parkinsonian tremor, essential tremor

Procedia PDF Downloads 154
4 The Construction Women Self in Law: A Case of Medico-Legal Jurisprudence Textbooks in Rape Cases

Authors: Rahul Ranjan

Abstract:

Using gender as a category to cull out historical analysis, feminist scholars have produced plethora of literature on the sexual symbolics and carnal practices of modern European empires. At a symbolic level, the penetration and conquest of faraway lands was charged with sexual significance and intrigue. The white male’s domination and possession of dark and fertile lands in Africa, Asia and the Americas offered, in Anne McClintock’s words, ‘a fantastic magic lantern of the mind onto which Europe projected its forbidden sexual desires and fears’. The politics of rape were also symbolically a question significant to the politics of empire. To the colonized subject, rape was a fearsome factor, a language that spoke of violent and voracious nature of imperial exploitation. The colonized often looked at rape as an act which colonizers used as tool of oppression. The rape as act of violence got encoded into the legal structure under the helm of Lord Macaulay in the so called ‘Age of Reform’ in 1860 under IPC (Indian penal code). Initially Lord Macaulay formed Indian Law Commission in 1837 in which he drafted a bill and defined the ‘crime of rape as sexual intercourse by a man to a woman against her will and without her consent , except in cases involving girls under nine years of age where consent was immaterial’. The modern English law of rape formulated under the colonial era introduced twofold issues to the forefront. On the one hand it deployed ‘technical experts’ who wrote textbooks of medical jurisprudence that were used as credential citation to make case more ‘objective’, while on the other hand the presumptions about barbaric subjects, the colonized women’s body that was docile which is prone to adultery reflected in cases. The untrustworthiness of native witness also remained an imperative for British jurists to put extra emphasis making ‘objective’ and ‘presumptuous’. This sort of formulation put women down on the pedestrian of justice because it disadvantaged her doubly through British legality and their thinking about the rape. The Imperial morality that acted as vanguards of women’s chastity coincided language of science propagated in the post-enlightenment which not only annulled non-conformist ideas but also made itself a hegemonic language, was often used as a tool and language in encoding of law. The medico-legal understanding of rape in the colonial India has its clear imprints in the post-colonial legality. The onus on the part of rape’s victim was dictated for the longest time and still continues does by widely referred idea that ‘there should signs, marks of resistance on the body of the victim’ otherwise it is likely to be considered consensual. Having said so, this paper looks at the textual continuity that had prolonged the colonial construct of women’s body and the self.

Keywords: body, politics, textual construct, phallocentric

Procedia PDF Downloads 377
3 Encephalon-An Implementation of a Handwritten Mathematical Expression Solver

Authors: Shreeyam, Ranjan Kumar Sah, Shivangi

Abstract:

Recognizing and solving handwritten mathematical expressions can be a challenging task, particularly when certain characters are segmented and classified. This project proposes a solution that uses Convolutional Neural Network (CNN) and image processing techniques to accurately solve various types of equations, including arithmetic, quadratic, and trigonometric equations, as well as logical operations like logical AND, OR, NOT, NAND, XOR, and NOR. The proposed solution also provides a graphical solution, allowing users to visualize equations and their solutions. In addition to equation solving, the platform, called CNNCalc, offers a comprehensive learning experience for students. It provides educational content, a quiz platform, and a coding platform for practicing programming skills in different languages like C, Python, and Java. This all-in-one solution makes the learning process engaging and enjoyable for students. The proposed methodology includes horizontal compact projection analysis and survey for segmentation and binarization, as well as connected component analysis and integrated connected component analysis for character classification. The compact projection algorithm compresses the horizontal projections to remove noise and obtain a clearer image, contributing to the accuracy of character segmentation. Experimental results demonstrate the effectiveness of the proposed solution in solving a wide range of mathematical equations. CNNCalc provides a powerful and user-friendly platform for solving equations, learning, and practicing programming skills. With its comprehensive features and accurate results, CNNCalc is poised to revolutionize the way students learn and solve mathematical equations. The platform utilizes a custom-designed Convolutional Neural Network (CNN) with image processing techniques to accurately recognize and classify symbols within handwritten equations. The compact projection algorithm effectively removes noise from horizontal projections, leading to clearer images and improved character segmentation. Experimental results demonstrate the accuracy and effectiveness of the proposed solution in solving a wide range of equations, including arithmetic, quadratic, trigonometric, and logical operations. CNNCalc features a user-friendly interface with a graphical representation of equations being solved, making it an interactive and engaging learning experience for users. The platform also includes tutorials, testing capabilities, and programming features in languages such as C, Python, and Java. Users can track their progress and work towards improving their skills. CNNCalc is poised to revolutionize the way students learn and solve mathematical equations with its comprehensive features and accurate results.

Keywords: AL, ML, hand written equation solver, maths, computer, CNNCalc, convolutional neural networks

Procedia PDF Downloads 122
2 Raman Spectroscopic Detection of the Diminishing Toxic Effect of Renal Waste Creatinine by Its in vitro Reaction with Drugs N-Acetylcysteine and Taurine

Authors: Debraj Gangopadhyay, Moumita Das, Ranjan K. Singh, Poonam Tandon

Abstract:

Creatinine is a toxic chemical waste generated from muscle metabolism. Abnormally high levels of creatinine in the body fluid indicate possible malfunction or failure of the kidneys. This leads to a condition termed as creatinine induced nephrotoxicity. N-acetylcysteine is an antioxidant drug which is capable of preventing creatinine induced nephrotoxicity and is helpful to treat renal failure in its early stages. Taurine is another antioxidant drug which serves similar purpose. The kidneys have a natural power that whenever reactive oxygen species radicals increase in the human body, the kidneys make an antioxidant shell so that these radicals cannot harm the kidney function. Taurine plays a vital role in increasing the power of that shell such that the glomerular filtration rate can remain in its normal level. Thus taurine protects the kidneys against several diseases. However, taurine also has some negative effects on the body as its chloramine derivative is a weak oxidant by nature. N-acetylcysteine is capable of inhibiting the residual oxidative property of taurine chloramine. Therefore, N-acetylcysteine is given to a patient along with taurine and this combination is capable of suppressing the negative effect of taurine. Both N-acetylcysteine and taurine being affordable, safe, and widely available medicines, knowledge of the mechanism of their combined effect on creatinine, the favored route of administration, and the proper dose may be highly useful in their use for treating renal patients. Raman spectroscopy is a precise technique to observe minor structural changes taking place when two or more molecules interact. The possibility of formation of a complex between a drug molecule and an analyte molecule in solution can be explored by analyzing the changes in the Raman spectra. The formation of a stable complex of creatinine with N-acetylcysteinein vitroin aqueous solution has been observed with the help of Raman spectroscopic technique. From the Raman spectra of the mixtures of aqueous solutions of creatinine and N-acetylcysteinein different molar ratios, it is observed that the most stable complex is formed at 1:1 ratio of creatinine andN-acetylcysteine. Upon drying, the complex obtained is gel-like in appearance and reddish yellow in color. The complex is hygroscopic and has much better water solubility compared to creatinine. This highlights that N-acetylcysteineplays an effective role in reducing the toxic effect of creatinine by forming this water soluble complex which can be removed through urine. Since the drug taurine is also known to be useful in reducing nephrotoxicity caused by creatinine, the aqueous solution of taurine with those of creatinine and N-acetylcysteinewere mixed in different molar ratios and were investigated by Raman spectroscopic technique. It is understood that taurine itself does not undergo complexation with creatinine as no additional changes are observed in the Raman spectra of creatinine when it is mixed with taurine. However, when creatinine, N-acetylcysteine and taurine are mixed in aqueous solution in molar ratio 1:1:3, several changes occurring in the Raman spectra of creatinine suggest the diminishing toxic effect of creatinine in the presence ofantioxidant drugs N-acetylcysteine and taurine.

Keywords: creatinine, creatinine induced nephrotoxicity, N-acetylcysteine, taurine

Procedia PDF Downloads 151
1 Septic Pulmonary Emboli as a Complication of Peripheral Venous Cannula Insertion

Authors: Ankita Baidya, Vanishri Ganakumar, Ranveer S. Jadon, Piyush Ranjan, Rita Sood

Abstract:

Septic embolism can have varied presentations and clinical considerations. Infected central venous catheters are commonly associated with septic emboli but peripheral vascular catheters are rarely implicated. We describe a rare case of septic pulmonary emboli related to infected peripheral venous cannulation caused by an unusual etiological agent. A young male presented with complaints of fever, productive cough, sudden onset shortness of breath and cellulitis in both the upper limbs. He was recently hospitalised for dengue fever and administered intravenous fluids through peripheral venous line. The patient was febrile, tachypneic and in respiratory distress, there were multiple pus filled bullae in left hand alongwith swelling and erythema involving right forearm that started at the site of cannulation. Chest examination showed active accessory muscles of respiration, stony dull percussion at the base of right lung and decreased breath sounds at right infrascapular, infraaxillary and mammary area. Other system examination was within normal limits. Chest X-ray revealed bilateral multiple patchy heterogenous peripheral opacities and infiltrates with right-sided pleural effusion. Contrast-enhanced computed tomography (CECT) chest showed feeding vessel sign confirming the diagnosis as septic emboli. Venous Doppler and 2D-echocardiogarm were normal. Laboratory findings showed marked leucocytosis (22000/mm3). Pus aspirate, blood sample, and sputum sample were sent for microbiological testing. The patient was started empirically on ceftriaxone, vancomycin, and clindamycin. The Pus culture and sputum culture showed Klebsiella pneumoniae sensitive to cefoperazone-sulbactum, piperacillin-tazobactum, meropenem and amikacin. The antibiotics were modified accordingly to antimicrobial sensitivity profile to Cefoperazone-sulbactum. Bronchoalveolar lavage (BAL) was done and sent for microbiological investigations. BAL culture showed Klebsiella pneumoniae with same antimicrobial resistance profile. On day 6 of starting cefoperazone-sulbactum, he became afebrile. The skin lesions improved significantly. He was administered 2 weeks of cefoperazone–sulbactum and discharged on oral faropenem for 4 weeks. At the time of discharge, TLC was 11200/mm3 with marked radiological resolution of infection and healed skin lesions. He was kept in regular follow up. Chest X-ray and skin lesions showed complete resolution after 8 weeks. Till date, only couple of case reports of septic emboli through peripheral intravenous line have been reported in English literature. This case highlights that a simple procedure of peripheral intravenous cannulation can lead to catastrophic complication of septic pulmonary emboli and widespread cellulitis if not done with proper care and precautions. Also, the usual pathogens in such clinical settings are gram positive bacteria, but with the history of recent hospitalization, empirical therapy should also cover drug resistant gram negative microorganisms. It also emphasise the importance of appropriate healthcare practices to be taken care during all procedures.

Keywords: antibiotics, cannula, Klebsiella pneumoniae, septic emboli

Procedia PDF Downloads 160