Search results for: Radial Basis Functions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6080

Search results for: Radial Basis Functions

6020 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network

Authors: Abdolreza Memari

Abstract:

In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.

Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model

Procedia PDF Downloads 501
6019 On the Basis Number and the Minimum Cycle Bases of the Wreath Product of Paths with Wheels

Authors: M. M. M. Jaradat

Abstract:

For a given graph G, the set Ԑ of all subsets of E(G) forms an |E(G)| dimensional vector space over Z2 with vector addition X⊕Y = (X\Y ) [ (Y \X) and scalar multiplication 1.X = X and 0.X = Ø for all X, Yϵ Ԑ. The cycle space, C(G), of a graph G is the vector subspace of (E; ⊕; .) spanned by the cycles of G. Traditionally there have been two notions of minimality among bases of C(G). First, a basis B of G is called a d-fold if each edge of G occurs in at most d cycles of the basis B. The basis number, b(G), of G is the least non-negative integer d such that C(G) has a d-fold basis; a required basis of C(G) is a basis for which each edge of G belongs to at most b(G) elements of B. Second, a basis B is called a minimum cycle basis (MCB) if its total length Σ BϵB |B| is minimum among all bases of C(G). The lexicographic product GρH has the vertex set V (GρH) = V (G) x V (H) and the edge set E(GρH) = {(u1, v1)(u2, v2)|u1 = u2 and v1 v2 ϵ E(H); or u1u2 ϵ E(G) and there is α ϵ Aut(H) such that α (v1) = v2}. In this work, a construction of a minimum cycle basis for the wreath product of wheels with paths is presented. Also, the length of the longest cycle of a minimum cycle basis is determined. Moreover, the basis number for the wreath product of the same is investigated.

Keywords: cycle space, minimum cycle basis, basis number, wreath product

Procedia PDF Downloads 280
6018 The Behavior of The Zeros of Bargmann Analytic Functions for Multiple-Mode Systems

Authors: Muna Tabuni

Abstract:

The paper contains an investigation of the behavior of the Zeros of Bargmann functions for one and two-mode systems. A brief introduction to Harmonic oscillator formalism for one and two-mode is given. The Bargmann analytic representation for one and two-mode has been studied. The zeros of Bargmann analytic function for one-mode are considered. The Q Husimi functions are introduced. The Bargmann functions and the Husimi functions have the same zeros. The Bargmann functions f(z) have exactly q zeros. The evolution time of the zeros are discussed. The zeros of Bargmann analytic functions for two-mode are introduced. Various examples have been given.

Keywords: Bargmann functions, two-mode, zeros, harmonic oscillator

Procedia PDF Downloads 570
6017 Numerical Wave Solutions for Nonlinear Coupled Equations Using Sinc-Collocation Method

Authors: Kamel Al-Khaled

Abstract:

In this paper, numerical solutions for the nonlinear coupled Korteweg-de Vries, (abbreviated as KdV) equations are calculated by Sinc-collocation method. This approach is based on a global collocation method using Sinc basis functions. First, discretizing time derivative of the KdV equations by a classic finite difference formula, while the space derivatives are approximated by a $\theta-$weighted scheme. Sinc functions are used to solve these two equations. Soliton solutions are constructed to show the nature of the solution. The numerical results are shown to demonstrate the efficiency of the newly proposed method.

Keywords: Nonlinear coupled KdV equations, Soliton solutions, Sinc-collocation method, Sinc functions

Procedia PDF Downloads 524
6016 Angular-Coordinate Driven Radial Tree Drawing

Authors: Farshad Ghassemi Toosi, Nikola S. Nikolov

Abstract:

We present a visualization technique for radial drawing of trees consisting of two slightly different algorithms. Both of them make use of node-link diagrams for visual encoding. This visualization creates clear drawings without edge crossing. One of the algorithms is suitable for real-time visualization of large trees, as it requires minimal recalculation of the layout if leaves are inserted or removed from the tree; while the other algorithm makes better utilization of the drawing space. The algorithms are very similar and follow almost the same procedure but with different parameters. Both algorithms assign angular coordinates for all nodes which are then converted into 2D Cartesian coordinates for visualization. We present both algorithms and discuss how they compare to each other.

Keywords: Radial drawing, Visualization, Algorithm, Use of node-link diagrams

Procedia PDF Downloads 338
6015 Derivatives Formulas Involving I-Functions of Two Variables and Generalized M-Series

Authors: Gebreegziabher Hailu Gebrecherkos

Abstract:

This study explores the derivatives of functions defined by I-functions of two variables and their connections to generalized M-series. We begin by defining I-functions, which are generalized functions that encompass various special functions, and analyze their properties. By employing advanced calculus techniques, we derive new formulas for the first and higher-order derivatives of I-functions with respect to their variables; we establish some derivative formulae of the I-function of two variables involving generalized M-series. The special cases of our derivatives yield interesting results.

Keywords: I-function, Mellin-Barners control integral, generalized M-series, higher order derivative

Procedia PDF Downloads 15
6014 Decentralized Control of Interconnected Systems with Non-Linear Unknown Interconnections

Authors: Haci Mehmet Guzey, Levent Acar

Abstract:

In this paper, a novel decentralized controller is developed for linear systems with nonlinear unknown interconnections. A model linear decoupled system is assigned for each system. By using the difference actual and model state dynamics, the problem is formulated as inverse problem. Then, the interconnected dynamics are approximated by using Galerkin’s expansion method for inverse problems. Two different sets of orthogonal basis functions are utilized to approximate the interconnected dynamics. Approximated interconnections are utilized in the controller to cancel the interconnections and decouple the systems. Subsequently, the interconnected systems behave as a collection of decoupled systems.

Keywords: decentralized control, inverse problems, large scale systems, nonlinear interconnections, basis functions, system identification

Procedia PDF Downloads 532
6013 Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model

Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes

Abstract:

In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain.

Keywords: mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity

Procedia PDF Downloads 324
6012 Analytical Investigation of Viscous and Non-Viscous Fluid Particles in a Restricted Region Using Diffusion Magnetic Resonance Imaging Equation

Authors: Yusuf, S. I., Saba, A., Olaoye, D. O., Ibrahim J. A., Yahaya H. M., Jatto A. O

Abstract:

Nuclear Magnetic Resonance (NMR) technology has been applied in several ways to provide vital information about petro-physical properties of reservoirs. However, due to the need to study the molecular behaviours of particles of the fluids in different restricted media, diffusion magnetic resonance equation is hereby applied in spherical coordinates and solved analytically using the method of separation of variables and solution of Legendre equation by Frobenius method. The viscous fluid considered in this research work is unused oil while the non-viscous fluid is water. The results obtained show that water begins to manifest appreciable change at radial adjustment value of 10 and Magnetization of 2.31191995400015x1014 and relaxes finally at 2.30x1014 at radial adjustment value of 1. On the other hand, unused engine oil begins to manifest its changes at radial adjustment value of 40 and Magnetization of 1.466557018x1014and relaxes finally at 1.48x1014 at radial adjustment value of 5.

Keywords: viscous and non-viscous fluid, restricted medium, relaxation times, coefficient of diffusion

Procedia PDF Downloads 83
6011 Some Inequalities Related with Starlike Log-Harmonic Mappings

Authors: Melike Aydoğan, Dürdane Öztürk

Abstract:

Let H(D) be the linear space of all analytic functions defined on the open unit disc. A log-harmonic mappings is a solution of the nonlinear elliptic partial differential equation where w(z) ∈ H(D) is second dilatation such that |w(z)| < 1 for all z ∈ D. The aim of this paper is to define some inequalities of starlike logharmonic functions of order α(0 ≤ α ≤ 1).

Keywords: starlike log-harmonic functions, univalent functions, distortion theorem

Procedia PDF Downloads 523
6010 Analysis of Motor Nerve Conduction Velocity (MNCV) of Selected Nerves in Athletics

Authors: Jogbinder Singh Soodan, Ashok Kumar, Gobind Singh

Abstract:

Background: This study aims to describe the motor nerve conduction velocity of selected nerves of both the upper and lower extremities in athletes. Thirty high-level sprinters (100 mts and 200 mts) and thirty high level distance runners (3000 mts) were volunteered to participate in the study. Method: Motor nerve conduction velocities (MNCV) of radial and sural nerves were recorded with the help of computerized equipment, NEUROPERFECT (MEDICAID SYSTEMS, India), with standard techniques of supramaximal percutaneus stimulation. The anthropometric measurements taken were body height (cms), age (yrs) and body weight (kgs). The neurophysiological parameters taken were MNCV of radial nerve (upper extremity) and sural nerve (lower extremity) of both sides (i.e. dominant and non-dominant) of the body. The room temperature was maintained at 37 degree Celsius. Results: Significant differences in motor nerve conduction velocities were found between dominant and non-dominant limbs in each group. The MNCV of radial nerve was obtained was significantly higher in the sprinters than long distance runners. The MNCV of sural nerve recorded was significantly higher in sprinters as compared to distance runners. Conclusion: The motor nerve conduction velocity of radial nerve was found to be higher in sprinters as compared to the distance runners and also, the MNCV for sural nerve was found to be higher in sprinters as compared to distance runners. In case of sprinters, the MNCV of radial and sural nerves were higher in dominant limbs (i.e. arms and legs) of both sides of the body. But, in case of distance runners, the MNCV of radial and sural nerves is higher in non dominant limbs.

Keywords: motor nerve conduction velocity, radial nerve, sural nerve, sprinters

Procedia PDF Downloads 564
6009 Comparative Study of Skeletonization and Radial Distance Methods for Automated Finger Enumeration

Authors: Mohammad Hossain Mohammadi, Saif Al Ameri, Sana Ziaei, Jinane Mounsef

Abstract:

Automated enumeration of the number of hand fingers is widely used in several motion gaming and distance control applications, and is discussed in several published papers as a starting block for hand recognition systems. The automated finger enumeration technique should not only be accurate, but also must have a fast response for a moving-picture input. The high performance of video in motion games or distance control will inhibit the program’s overall speed, for image processing software such as Matlab need to produce results at high computation speeds. Since an automated finger enumeration with minimum error and processing time is desired, a comparative study between two finger enumeration techniques is presented and analyzed in this paper. In the pre-processing stage, various image processing functions were applied on a real-time video input to obtain the final cleaned auto-cropped image of the hand to be used for the two techniques. The first technique uses the known morphological tool of skeletonization to count the number of skeleton’s endpoints for fingers. The second technique uses a radial distance method to enumerate the number of fingers in order to obtain a one dimensional hand representation. For both discussed methods, the different steps of the algorithms are explained. Then, a comparative study analyzes the accuracy and speed of both techniques. Through experimental testing in different background conditions, it was observed that the radial distance method was more accurate and responsive to a real-time video input compared to the skeletonization method. All test results were generated in Matlab and were based on displaying a human hand for three different orientations on top of a plain color background. Finally, the limitations surrounding the enumeration techniques are presented.

Keywords: comparative study, hand recognition, fingertip detection, skeletonization, radial distance, Matlab

Procedia PDF Downloads 382
6008 RAFU Functions in Robotics and Automation

Authors: Alicia C. Sanchez

Abstract:

This paper investigates the implementation of RAFU functions (radical functions) in robotics and automation. Specifically, the main goal is to show how these functions may be useful in lane-keeping control and the lateral control of autonomous machines, vehicles, robots or the like. From the knowledge of several points of a certain route, the RAFU functions are used to achieve the lateral control purpose and maintain the lane-keeping errors within the fixed limits. The stability that these functions provide, their ease of approaching any continuous trajectory and the control of the possible error made on the approximation may be useful in practice.

Keywords: automatic navigation control, lateral control, lane-keeping control, RAFU approximation

Procedia PDF Downloads 302
6007 Radial Distortion Correction Based on the Concept of Verifying the Planarity of a Specimen

Authors: Shih-Heng Tung, Ming-Hsiang Shih, Wen-Pei Sung

Abstract:

Because of the rapid development of digital camera and computer, digital image correlation method has drawn lots of attention recently and has been applied to a variety of fields. However, the image distortion is inevitable when the image is captured through a lens. This image distortion problem can result in an innegligible error while using digital image correlation method. There are already many different ways to correct the image distortion, and most of them require specific image patterns or precise control points. A new distortion correction method is proposed in this study. The proposed method is based on the fact that a flat surface should keep flat when it is measured using three-dimensional (3D) digital image measurement technique. Lens distortion can be divided into radial distortion, decentering distortion and thin prism distortion. Because radial distortion has a more noticeable influence than the other types of distortions, this method deals only with radial distortion. The simplified 3D digital image measurement technique is adopted to measure the surface coordinates of a flat specimen. Then the gradient method is applied to find the best correction parameters. A few experiments are carried out in this study to verify the correctness of this method. The results show that this method can achieve a good accuracy and it is suitable for both large and small distortion conditions. The most important advantage is that it requires neither mark with specific pattern nor precise control points.

Keywords: 3D DIC, radial distortion, distortion correction, planarity

Procedia PDF Downloads 551
6006 DG Power Plants Placement and Evaluation of its Effect on Improving Voltage Security Margin in Radial Distribution Networks

Authors: Atabak Faramarzpour, Mohsen Mohammadian

Abstract:

In this article, we introduce the stability of power system voltage and state DG power plants placement and its effect on improving voltage security margin in radial distribution networks. For this purpose, first, important definitions in voltage stability area such as small and big voltage disturbances, instability, and voltage collapse, and voltage security definitions are stated. Then, according to voltage collapse time, voltage stability is classified and each one's characteristics are stated.

Keywords: DG power plants, evaluation, voltage security, radial distribution networks

Procedia PDF Downloads 670
6005 Subclasses of Bi-Univalent Functions Associated with Hohlov Operator

Authors: Rashidah Omar, Suzeini Abdul Halim, Aini Janteng

Abstract:

The coefficients estimate problem for Taylor-Maclaurin series is still an open problem especially for a function in the subclass of bi-univalent functions. A function f ϵ A is said to be bi-univalent in the open unit disk D if both f and f-1 are univalent in D. The symbol A denotes the class of all analytic functions f in D and it is normalized by the conditions f(0) = f’(0) – 1=0. The class of bi-univalent is denoted by  The subordination concept is used in determining second and third Taylor-Maclaurin coefficients. The upper bound for second and third coefficients is estimated for functions in the subclasses of bi-univalent functions which are subordinated to the function φ. An analytic function f is subordinate to an analytic function g if there is an analytic function w defined on D with w(0) = 0 and |w(z)| < 1 satisfying f(z) = g[w(z)]. In this paper, two subclasses of bi-univalent functions associated with Hohlov operator are introduced. The bound for second and third coefficients of functions in these subclasses is determined using subordination. The findings would generalize the previous related works of several earlier authors.

Keywords: analytic functions, bi-univalent functions, Hohlov operator, subordination

Procedia PDF Downloads 292
6004 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation

Authors: Somayeh Komeylian

Abstract:

The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).

Keywords: DoA estimation, Adaptive antenna array, Deep Neural Network, LS-SVM optimization model, Radial basis function, and MSE

Procedia PDF Downloads 100
6003 Evaluation of Ensemble Classifiers for Intrusion Detection

Authors: M. Govindarajan

Abstract:

One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection. 

Keywords: data mining, ensemble, radial basis function, support vector machine, accuracy

Procedia PDF Downloads 248
6002 Experimental Characterization and Modelling of Microfluidic Radial Diffusers

Authors: Eric Chappel, Dimitry Dumont-Fillon, Hugo Musard, Harald van Lintel

Abstract:

A microfluidic radial diffuser typically comprises a hole in a membrane, a small gap and pillar centred with the hole. The fluid is forced to flow radially in this gap between the membrane and the pillar. Such diffusers are notably used to form flow control valves, wherein several holes are machined into a flexible membrane progressively deflecting against pillars as the pressure increases. The fluidic modelling of such diffuser is made difficult by the presence of a transition region between the hole and the diffuser itself. An experimental investigation has been conducted using SOI wafers to form membranes with only one centred hole and Pyrex wafers for the substrate and pillars, both wafers being anodically bonded after alignment. A simple fluidic model accounting for the specific geometry of the diffuser is proposed and compared to experimental results. A good match is obtained, for Reynolds number in the range 0.5 to 35 using the analytical formula of a radial diffuser in the laminar regime with an effective inner radius that is 40% smaller than the real radius, in order to simulate correctly the flow constriction at the entrance of the diffuser.

Keywords: radial diffuser, flow control valve, numerical modelling, drug delivery

Procedia PDF Downloads 278
6001 On the Numerical and Experimental Analysis of Internal Pressure in Air Bearings

Authors: Abdurrahim Dal, Tuncay Karaçay

Abstract:

Dynamics of a rotor supported by air bearings is strongly depends on the pressure distribution between the rotor and the bearing. In this study, internal pressure in air bearings is numerical and experimental analyzed for different radial clearances. Firstly the pressure distribution between rotor and bearing is modeled using Reynold's equation and this model is solved numerically. The rotor-bearing system is also modeled in four degree of freedom and it is simulated for different radial clearances. Then, in order to validate numerical results, a test rig is designed and the rotor bearing system is run under the same operational conditions. Pressure signals of left and right bearings are recorded. Internal pressure variations are compared for numerical and experimental results for different radial clearances.

Keywords: air bearing, internal pressure, Reynold’s equation, rotor

Procedia PDF Downloads 440
6000 Reduced General Dispersion Model in Cylindrical Coordinates and Isotope Transient Kinetic Analysis in Laminar Flow

Authors: Masood Otarod, Ronald M. Supkowski

Abstract:

This abstract discusses a method that reduces the general dispersion model in cylindrical coordinates to a second order linear ordinary differential equation with constant coefficients so that it can be utilized to conduct kinetic studies in packed bed tubular catalytic reactors at a broad range of Reynolds numbers. The model was tested by 13CO isotope transient tracing of the CO adsorption of Boudouard reaction in a differential reactor at an average Reynolds number of 0.2 over Pd-Al2O3 catalyst. Detailed experimental results have provided evidence for the validity of the theoretical framing of the model and the estimated parameters are consistent with the literature. The solution of the general dispersion model requires the knowledge of the radial distribution of axial velocity. This is not always known. Hence, up until now, the implementation of the dispersion model has been largely restricted to the plug-flow regime. But, ideal plug-flow is impossible to achieve and flow regimes approximating plug-flow leave much room for debate as to the validity of the results. The reduction of the general dispersion model transpires as a result of the application of a factorization theorem. Factorization theorem is derived from the observation that a cross section of a catalytic bed consists of a solid phase across which the reaction takes place and a void or porous phase across which no significant measure of reaction occurs. The disparity in flow and the heterogeneity of the catalytic bed cause the concentration of reacting compounds to fluctuate radially. These variabilities signify the existence of radial positions at which the radial gradient of concentration is zero. Succinctly, factorization theorem states that a concentration function of axial and radial coordinates in a catalytic bed is factorable as the product of the mean radial cup-mixing function and a contingent dimensionless function. The concentration of adsorbed compounds are also factorable since they are piecewise continuous functions and suffer the same variability but in the reverse order of the concentration of mobile phase compounds. Factorability is a property of packed beds which transforms the general dispersion model to an equation in terms of the measurable mean radial cup-mixing concentration of the mobile phase compounds and mean cross-sectional concentration of adsorbed species. The reduced model does not require the knowledge of the radial distribution of the axial velocity. Instead, it is characterized by new transport parameters so denoted by Ωc, Ωa, Ωc, and which are respectively denominated convection coefficient cofactor, axial dispersion coefficient cofactor, and radial dispersion coefficient cofactor. These cofactors adjust the dispersion equation as compensation for the unavailability of the radial distribution of the axial velocity. Together with the rest of the kinetic parameters they can be determined from experimental data via an optimization procedure. Our data showed that the estimated parameters Ωc, Ωa Ωr, are monotonically correlated with the Reynolds number. This is expected to be the case based on the theoretical construct of the model. Computer generated simulations of methanation reaction on nickel provide additional support for the utility of the newly conceptualized dispersion model.

Keywords: factorization, general dispersion model, isotope transient kinetic, partial differential equations

Procedia PDF Downloads 269
5999 Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction

Authors: Kudzanayi Chiteka, Wellington Makondo

Abstract:

The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models.

Keywords: solar energy, global horizontal irradiation, artificial intelligence, predictive models

Procedia PDF Downloads 273
5998 Geometric Properties of Some q-Bessel Functions

Authors: İbrahim Aktaş, Árpád Baricz

Abstract:

In this paper, the radii of star likeness of the Jackson and Hahn-Exton q-Bessel functions are considered, and for each of them three different normalizations is applied. By applying Euler-Rayleigh inequalities for the first positive zeros of these functions tight lower, and upper bounds for the radii of starlikeness of these functions are obtained. The Laguerre-Pólya class of real entire functions plays an important role in this study. In particular, we obtain some new bounds for the first positive zero of the derivative of the classical Bessel function of the first kind.

Keywords: bessel function, lommel function, radius of starlikeness and convexity, Struve function

Procedia PDF Downloads 276
5997 Effect of Sodium Chloride Concentration and Degree of Neutralization on the Structure and Dynamics of Poly(Methacrylic Acid) (PMA) in Dilute Aqueous Solutions – a Molecular Dynamics Simulations Study

Authors: Abhishek Kumar Gupta

Abstract:

Atomistic Molecular Dynamics (MD) Simulations have been performed to study the effect of monovalent salt i.e. NaCl concentration (Cs) and chain degree of neutralization (f) on the structure and dynamics of anionic poly(methacrylic acid) (PMA) in dilute aqueous solutions. In the present study, the attention is to unveil the conformational structure, hydrogen-bonding, local polyion-counterion structure, h-bond dynamics, chain dynamics and thermodynamic enthalpy of solvation of a-PMA in dilute aqueous solutions as a function of salt concentration, Cs and f. The results have revealed that at low salt concentration, the conformational radius of gyration (Rg) increases and then decreases reaching a maximum in agreement with the reported light scattering experimental results. The Rg at f = 1 shows a continual decrease and acquire a plateau value at higher salt concentration in agreement with results obtained by light scattering experiments. The radial distribution functions between PMA, salt and water atoms has been computed with respect to atom and centre-of-mass to understand the intermolecular structure in detail. The results pertaining to PMA chain conformations and hydrogen bond autocorrelation function showcasing the h-bond dynamics will be presented. The results pertaining to chain dynamics will be presented. The results pertaining to counterion condensation on the PMA chain shows greater condensation of Na+ ions on to the carboxylate ions with increase in salt concentration. Moreover, the solvation enthalpy of the system as a function of salt concentration will be presented.

Keywords: conformations, molecular dynamics simulations, NaCl concentration, radial distribution functions

Procedia PDF Downloads 115
5996 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain

Procedia PDF Downloads 467
5995 Intelligent Earthquake Prediction System Based On Neural Network

Authors: Emad Amar, Tawfik Khattab, Fatma Zada

Abstract:

Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information of Earthquake Existed throughout history & Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.

Keywords: BP neural network, prediction, RBF neural network, earthquake

Procedia PDF Downloads 496
5994 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification

Authors: Anita Kushwaha

Abstract:

We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.

Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining

Procedia PDF Downloads 272
5993 Decision Support System for Fetus Status Evaluation Using Cardiotocograms

Authors: Oyebade K. Oyedotun

Abstract:

The cardiotocogram is a technical recording of the heartbeat rate and uterine contractions of a fetus during pregnancy. During pregnancy, several complications can occur to both the mother and the fetus; hence it is very crucial that medical experts are able to find technical means to check the healthiness of the mother and especially the fetus. It is very important that the fetus develops as expected in stages during the pregnancy period; however, the task of monitoring the health status of the fetus is not that which is easily achieved as the fetus is not wholly physically available to medical experts for inspection. Hence, doctors have to resort to some other tests that can give an indication of the status of the fetus. One of such diagnostic test is to obtain cardiotocograms of the fetus. From the analysis of the cardiotocograms, medical experts can determine the status of the fetus, and therefore necessary medical interventions. Generally, medical experts classify examined cardiotocograms into ‘normal’, ‘suspect’, or ‘pathological’. This work presents an artificial neural network based decision support system which can filter cardiotocograms data, producing the corresponding statuses of the fetuses. The capability of artificial neural network to explore the cardiotocogram data and learn features that distinguish one class from the others has been exploited in this research. In this research, feedforward and radial basis neural networks were trained on a publicly available database to classify the processed cardiotocogram data into one of the three classes: ‘normal’, ‘suspect’, or ‘pathological’. Classification accuracies of 87.8% and 89.2% were achieved during the test phase of the trained network for the feedforward and radial basis neural networks respectively. It is the hope that while the system described in this work may not be a complete replacement for a medical expert in fetus status evaluation, it can significantly reinforce the confidence in medical diagnosis reached by experts.

Keywords: decision support, cardiotocogram, classification, neural networks

Procedia PDF Downloads 332
5992 Optimal Mother Wavelet Function for Shoulder Muscles of Upper Limb Amputees

Authors: Amanpreet Kaur

Abstract:

Wavelet transform (WT) is a powerful statistical tool used in applied mathematics for signal and image processing. The different mother, wavelet basis function, has been compared to select the optimal wavelet function that represents the electromyogram signal characteristics of upper limb amputees. Four different EMG electrode has placed on different location of shoulder muscles. Twenty one wavelet functions from different wavelet families were investigated. These functions included Daubechies (db1-db10), Symlets (sym1-sym5), Coiflets (coif1-coif5) and Discrete Meyer. Using mean square error value, the significance of the mother wavelet functions has been determined for teres, pectorals, and infraspinatus around shoulder muscles. The results show that the best mother wavelet is the db3 from the Daubechies family for efficient classification of the signal.

Keywords: Daubechies, upper limb amputation, shoulder muscles, Symlets, Coiflets

Procedia PDF Downloads 235
5991 Approximation of Analytic Functions of Several Variables by Linear K-Positive Operators in the Closed Domain

Authors: Tulin Coskun

Abstract:

We investigate the approximation of analytic functions of several variables in polydisc by the sequences of linear k-positive operators in Gadjiev sence. The approximation of analytic functions of complex variable by linear k-positive operators was tackled, and k-positive operators and formulated theorems of Korovkin's type for these operators in the space of analytic functions on the unit disc were introduced in the past. Recently, very general results on convergence of the sequences of linear k-positive operators on a simply connected bounded domain within the space of analytic functions were proved. In this presentation, we extend some of these results to the approximation of analytic functions of several complex variables by sequences of linear k-positive operators.

Keywords: analytic functions, approximation of analytic functions, Linear k-positive operators, Korovkin type theorems

Procedia PDF Downloads 338