Search results for: quest based learning
31430 Organisational Blogging: Reviewing Its Effectiveness as an Organisational Learning Tool
Authors: Gavin J. Baxter, Mark H. Stansfield
Abstract:
This paper reviews the internal use of blogs and their potential effectiveness as organisational learning tools. Prior to and since the emergence of the concept of ‘Enterprise 2.0’ there still remains a lack of empirical evidence associated with how organisations are applying social media tools and whether they are effective towards supporting organisational learning. Surprisingly, blogs, one of the more traditional social media tools, still remains under-researched in the context of ‘Enterprise 2.0’ and organisational learning. The aim of this paper is to identify the theoretical linkage between blogs and organisational learning in addition to reviewing prior research on organisational blogging with a view towards exploring why this area remains under-researched and identifying what needs to be done to try and move the area forward. Through a review of the literature, one of the principal findings of this paper is that organisational blogs, dependent on their use, do have a mutual compatibility with the interpretivist aspect of organisational learning. This paper further advocates that further empirical work in this subject area is required to substantiate this theoretical assumption.Keywords: Enterprise 2.0, blogs, organisational learning, social media tools
Procedia PDF Downloads 28631429 Regression Model Evaluation on Depth Camera Data for Gaze Estimation
Authors: James Purnama, Riri Fitri Sari
Abstract:
We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python
Procedia PDF Downloads 53831428 Reinforcement Learning for Self Driving Racing Car Games
Authors: Adam Beaunoyer, Cory Beaunoyer, Mohammed Elmorsy, Hanan Saleh
Abstract:
This research aims to create a reinforcement learning agent capable of racing in challenging simulated environments with a low collision count. We present a reinforcement learning agent that can navigate challenging tracks using both a Deep Q-Network (DQN) and a Soft Actor-Critic (SAC) method. A challenging track includes curves, jumps, and varying road widths throughout. Using open-source code on Github, the environment used in this research is based on the 1995 racing game WipeOut. The proposed reinforcement learning agent can navigate challenging tracks rapidly while maintaining low racing completion time and collision count. The results show that the SAC model outperforms the DQN model by a large margin. We also propose an alternative multiple-car model that can navigate the track without colliding with other vehicles on the track. The SAC model is the basis for the multiple-car model, where it can complete the laps quicker than the single-car model but has a higher collision rate with the track wall.Keywords: reinforcement learning, soft actor-critic, deep q-network, self-driving cars, artificial intelligence, gaming
Procedia PDF Downloads 4631427 Interior Design: Changing Values
Authors: Kika Ioannou Kazamia
Abstract:
This paper examines the action research cycle of the second phase of longitudinal research on sustainable interior design practices, between two groups of stakeholders, designers and clients. During this phase of the action research, the second step - the change stage - of Lewin’s change management model has been utilized to change values, approaches, and attitudes toward sustainable design practices among the participants. Affective domain learning theory is utilized to attach new values. Learning with the use of information technology, collaborative learning, and problem-based learning are the learning methods implemented toward the acquisition of the objectives. Learning methods, and aims, require the design of interventions with participants' involvement in activities that would lead to the acknowledgment of the benefits of sustainable practices. Interventions are steered to measure participants’ decisions for the worth and relevance of ideas, and experiences; accept or commit to a particular stance or action. The data collection methods used in this action research are observers’ reports, participants' questionnaires, and interviews. The data analyses use both quantitative and qualitative methods. The main beneficial aspect of the quantitative method was to provide the means to separate many factors that obscured the main qualitative findings. The qualitative method allowed data to be categorized, to adapt the deductive approach, and then examine for commonalities that could reflect relevant categories or themes. The results from the data indicate that during the second phase, designers and clients' participants altered their behaviours.Keywords: design, change, sustainability, learning, practices
Procedia PDF Downloads 7731426 Post Earthquake Volunteer Learning That Build up Caring Learning Communities
Authors: Naoki Okamura
Abstract:
From a perspective of moral education, this study has examined the experiences of a group of college students who volunteered in disaster areas after the magnitude 9.0 Earthquake, which struck the Northeastern region of Japan in March, 2011. The research, utilizing the method of grounded theory, has uncovered that most of the students have gone through positive changes in their development of moral and social characters, such as attaining deeper sense of empathy and caring personalities. The study expresses, in identifying the nature of those transformations, that the importance of volunteer work should strongly be recognized by the colleges and universities in Japan, in fulfilling their public responsibility of creating and building learning communities that are responsible and caring.Keywords: moral development, moral education, service learning, volunteer learning
Procedia PDF Downloads 32031425 The Impact of Corporate Social Responsibility and Knowledge Management Factors on University's Students' Learning Process
Authors: Naritphol Boonyakiat
Abstract:
This research attempts to investigate the effects of corporate social responsibility and knowledge management factors on students’ learning process of the Silpakorn University. The goal of this study is to fill the literature gap by gaining an understanding of corporate social responsibility and the knowledge management factors that fundamentally relate to students’ learning process within the university context. Thus, this study will focus on the outcomes that derive from a set of quantitative data that were obtained using Silpakorn university’s database of 200 students. The results represent the perceptions of students regarding the impact of corporate social responsibility and knowledge management factors on their learning process within the university. The findings indicate that corporate social responsibility and knowledge management have significant effects on students’ learning process. This study may assist us in gaining a better understanding of the integrated aspects of university and learning environments to discover how to allocate optimally university’s resources and management approaches to gain benefits from corporate social responsibility and knowledge management practices toward students’ learning process within the university bodies. Therefore, there is a sufficient reason to believe that the findings can contribute to research in the area of CSR, KM and students’ learning process as an essential aspect of university’s stakeholder.Keywords: corporate social responsibility, knowledge management, learning process, university’s students
Procedia PDF Downloads 31731424 Integration of Best Practices and Requirements for Preliminary E-Learning Courses
Authors: Sophie Huck, Knut Linke
Abstract:
This study will examine how IT practitioners can be motivated for IT studies and which kind of support they need during their occupational studies. Within this research project, the challenge of supporting students being engaged in business for several years arose. Here, it is especially important to successfully guide them through their studies. The problem of this group is that they finished their school education years ago. In order to gather first experiences, preliminary e-learning courses were introduced and tested with a group of users studying General Management. They had to work with these courses and have been questioned later on about their approach to the different methods. Moreover, a second group of potential students was interviewed with the help of online questionnaires to give information about their expectations regarding extra occupational studies. We also want to present best practices and cases in e-education in the subarea of mathematics and distance learning. Within these cases and practices, we use state of the art systems and technologies in e-education to find a way to increase teaching quality and the success of students. Our research indicated that the first group of enrolled students appreciated the new preliminary e-learning courses. The second group of potential students was convinced of this way of learning as a significant component of extra occupational studies. It can be concluded that this part of the project clarified the acceptance of the e-learning strategy by both groups and led to satisfactory results with the enrolled students.Keywords: e-learning evaluation, self-learning, virtual classroom, virtual learning environments
Procedia PDF Downloads 32231423 Impact of Work Cycles on Autonomous Digital Learning
Authors: Bi̇rsen Tutunis, Zuhal Aydin
Abstract:
Guided digital learning has attracted many researchers as it leads to autonomous learning.The developments in Guided digital learning have led to changes in teaching and learning in English Language Teaching classes (Jeong-Bae, 2014). This study reports on tasks designed under the principles of learner autonomy in an online learning platform ‘’Webquest’’ with the purpose of teaching English to Turkish tertiary level students at a foundation university in Istanbul. Guided digital learning blog project contents were organized according to work-cycles phases (planning and negotiation phase, decision-making phase, project phase and evaluation phase) which are compatible with the principles of autonomous learning (Legenhausen,2003). The aim of the study was to implement the class blog project to find out its impact on students’ behaviours and beliefs towards autonomous learning. The mixed method research approach was taken. 24 tertiary level students participated in the study on voluntary basis. Data analysis was performed with Statistical Package for the Social Sciences. According to the results, students' attitudes towards digital learning did not differ before and after the training application. The learning styles of the students and their knowledge on digital learning scores differed. It has been observed that the students' learning styles and their digital learning scores increased after the training application. Autonomous beliefs, autonomous behaviors, group cohesion and group norms differed before and after the training application. Students' motivation level, strategies for learning English, perceptions of responsibility and out-of-class activity scores differed before and after the training application. It was seen that work-cycles in online classes create student centered learning that fosters autonomy. This paper will display the work cycles in detail and the researchers will give examples of in and beyond class activities and blog projects.Keywords: guided digital learning, work cycles, english language teaching, autonomous learning
Procedia PDF Downloads 7831422 Identifying Learning Support Patterns for Enhancing Quality Outputs in Massive Open Online Courses
Authors: Cristina Galván-Fernández, Elena Barberà, Jingjing Zhang
Abstract:
In recent years, MOOCs have been in the spotlight for its high drop-out rates, which potentially impact on the quality of the learning experience. This study attempts to explore how learning support can be used to keep student retention, and in turn to improve the quality of learning in MOOCs. In this study, the patterns of learning support were identified from a total of 4202592 units of video sessions, clickstream data of 25600 students, and 382 threads generated in 10 forums (optional and mandatory) in five different types of MOOCs (e.g. conventional MOOCs, professional MOOCs, and informal MOOCs). The results of this study have shown a clear correlation between the types of MOOCs, the design framework of the MOOCs, and the learning support. The patterns of tutor-peer interaction are identified, and are found to be highly correlated with student retention in all five types of MOOCs. In addition, different patterns of ‘good’ students were identified, which could potentially inform the instruction design of MOOCs.Keywords: higher education, learning support, MOOC, retention
Procedia PDF Downloads 33531421 Escape Room Pedagogy: Using Gamification to Promote Engagement, Encourage Connections, and Facilitate Skill Development in Undergraduate Students
Authors: Scott McCutcheon, Karen Schreder
Abstract:
Higher education is facing a new reality. Student connection with coursework, instructor, and peers competes with online gaming, screen time, and instant gratification. Pedagogical methods that align student connection and critical thinking in a content-rich environment are important in supporting student learning, a sense of community, and emotional health. This mixed methods study focuses on exploring how the use of educational escape rooms (EERs) can support student learning and learning retention while fostering engagement with each other, the instructor, and the coursework. EERs are content-specific, cooperative, team-based learning activities designed to be completed within a short segment of a typical class. Data for the study was collected over three semesters and includes results from the implementation of EERs in science-based and liberal studies courses taught by different instructors. Twenty-seven students were surveyed regarding their learning experiences with this pedagogy, and interviews with four student volunteers were conducted to add depth to the survey data. A key finding from this research indicates that students felt more connected to each other and the course content after participating in the escape room activity. Additional findings point to increased engagement and comprehension of the class material. Data indicates that the use of an EER pedagogy supports student engagement, well-being, subject comprehension, and student-student and student-instructor connection.Keywords: gamification, innovative pedagogy, student engagement, student emotional well being
Procedia PDF Downloads 6831420 Teachers’ Awareness of the Significance of Lifelong Learning: A Case Study of Secondary School Teachers of Batna - Algeria
Authors: Bahloul Amel
Abstract:
This study is an attempt to raise the awareness of the stakeholders and the authorities on the sensitivity of Algerian secondary school teachers of English as a Foreign Language about the students’ loss of English language skills learned during formal schooling with effort and at expense and the supposed measures to arrest that loss. Data was collected from secondary school teachers of EFL and analyzed quantitatively using a questionnaire containing open-ended and close-ended questions. The results advocate a consensus about the need for actions to be adopted to make assessment techniques outcome-oriented. Most of the participants were in favor of including curricular activities involving contextualized learning, problem-solving learning critical self-awareness, self and peer-assisted learning, use of computers and internet so as to make learners autonomous.Keywords: lifelong learning, EFL, contextualized learning, Algeria
Procedia PDF Downloads 34831419 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques
Authors: Gizem Eser Erdek
Abstract:
This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet
Procedia PDF Downloads 7731418 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.Keywords: clustering, load profiling, load modeling, machine learning, energy efficiency and quality
Procedia PDF Downloads 16431417 Predictive Maintenance of Electrical Induction Motors Using Machine Learning
Authors: Muhammad Bilal, Adil Ahmed
Abstract:
This study proposes an approach for electrical induction motor predictive maintenance utilizing machine learning algorithms. On the basis of a study of temperature data obtained from sensors put on the motor, the goal is to predict motor failures. The proposed models are trained to identify whether a motor is defective or not by utilizing machine learning algorithms like Support Vector Machines (SVM) and K-Nearest Neighbors (KNN). According to a thorough study of the literature, earlier research has used motor current signature analysis (MCSA) and vibration data to forecast motor failures. The temperature signal methodology, which has clear advantages over the conventional MCSA and vibration analysis methods in terms of cost-effectiveness, is the main subject of this research. The acquired results emphasize the applicability and effectiveness of the temperature-based predictive maintenance strategy by demonstrating the successful categorization of defective motors using the suggested machine learning models.Keywords: predictive maintenance, electrical induction motors, machine learning, temperature signal methodology, motor failures
Procedia PDF Downloads 11731416 Active Learning Management for Teacher's Professional Courses in Curriculum and Instruction, Faculty of Education Thaksin University
Authors: Chuanphit Chumkhong
Abstract:
This research aimed 1) to study the effects of the management of Active Learning among 3rd year students enrolled in teacher’s profession courses and 2) to assess the satisfaction of the students with courses using the Active Learning approach. The population for the study consisted of 442 3rd year undergraduate students enrolled in two teacher education courses in 2015: Curriculum Development and Learning Process Management. They were 442 from 11 education programs. Respondents for evaluation of satisfaction with Active Learning management comprised 432 students. The instruments used in research included a detailed course description and rating scale questionnaire on Active Learning. The data were analyzed using arithmetic mean and standard deviation. The results of the study reveal the following: 1. Overall, students gain a better understanding of the Active Learning due to their actual practice on the activity of course. Students have the opportunity to exchange learning knowledge and skills. The AL teaching activities make students interested in the contents and they seek to search for knowledge on their own. 2. Overall, 3rd year students are satisfied with the Active Learning management at a ‘high’ level with a mean score (μ) of 4.12 and standard deviation (σ) of. 51. By individual items, students are satisfied with the 10 elements in the two courses at a ‘high’ level with the mean score (μ) between 3.79 to 4.41 and a standard deviation (σ) between to 68. 79.Keywords: active learning teaching model, teacher’s professional courses, professional courses, curriculum and instruction teacher's
Procedia PDF Downloads 24831415 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7
Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit
Abstract:
In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety
Procedia PDF Downloads 6831414 A Method for Consensus Building between Teachers and Learners in a Value Co-Creative Learning Service
Authors: Ryota Sugino, Satoshi Mizoguchi, Koji Kimita, Keiichi Muramatsu, Tatsunori Matsui, Yoshiki Shimomura
Abstract:
Improving added value and productivity of services entails improving both value-in-exchange and value-in-use. Value-in-use is realized by value co-creation, where providers and receivers create value together. In higher education services, value-in-use comes from learners achieving learning outcomes (e.g., knowledge and skills) that are consistent with their learning goals. To enhance the learning outcomes of a learner, it is necessary to enhance and utilize the abilities of the teacher along with the abilities of the learner. To do this, however, the learner and the teacher need to build a consensus about their respective roles. Teachers need to provide effective learning content; learners need to choose the appropriate learning strategies by using the learning content through consensus building. This makes consensus building an important factor in value co-creation. However, methods to build a consensus about their respective roles may not be clearly established, making such consensus difficult. In this paper, we propose some strategies for consensus building between a teacher and a learner in value co-creation. We focus on a teacher and learner co-design and propose an analysis method to clarify a collaborative design process to realize value co-creation. We then analyze some counseling data obtained from a university class. This counseling aimed to build a consensus for value-in-use, learning outcomes, and learning strategies between the teacher and the learner.Keywords: consensus building, value co-creation, higher education, learning service
Procedia PDF Downloads 30331413 A Study of EFL Learners with Different Goal Orientations in Response to Cognitive Diagnostic Reading Feedback
Authors: Yuxuan Tang
Abstract:
Cognitive diagnostic assessment has received much attention in second language education, and assessment for it can provide pedagogically useful feedback for language learners. However, there is a lack of research on how students interpret and use cognitive diagnostic feedback. Thus the present study aims to adopt a mixed-method approach mainly to explore the relationship between the goal-orientation and students' response to cognitive diagnostic feedback. Almost 200 Chinese undergraduates from two universities in Xi'an, China, will be invited to do a cognitive diagnostic reading test, and each student will receive specialized cognitive diagnostic feedback, comprising of students' reading attributes mastery level generated by applying a well-selected cognitive diagnostic model, students' perceived reading ability assessed by a self-assessing questionnaire and students’ level position in the whole class. And a goal-orientation questionnaire and a self-generated questionnaire on the perception of feedback will be given to students the moment they receive feedback. In addition, interviews of students will be conducted on their future plans to see whether they have awareness of carrying out studying plans. The study aims to find a new perspective towards how students use and interpret cognitive diagnostic feedback in terms of their different goal-orientation (self-based, task-based, and other-based goals) by applying the newest goal orientation model, which is an important construct of motivation in psychology, seldom researched under language learning area. And the study is expected to provide evidence on how diagnostic feedback promotes students' learning under the educational belief of assessment for learning. Practically speaking, according to the personalized diagnostic feedback, students can take remedial self-learning more purposefully, and teachers can target students' weaknesses to adjust teaching methods and carry out tailored teaching.Keywords: assessment for learning, cognitive diagnostic assessment, goal-orientation, personalized feedback
Procedia PDF Downloads 13231412 Task Based Language Learning: A Paradigm Shift in ESL/EFL Teaching and Learning: A Case Study Based Approach
Authors: Zehra Sultan
Abstract:
The study is based on the task-based language teaching approach which is found to be very effective in the EFL/ESL classroom. This approach engages learners to acquire the usage of authentic language skills by interacting with the real world through sequence of pedagogical tasks. The use of technology enhances the effectiveness of this approach. This study throws light on the historical background of TBLT and its efficacy in the EFL/ESL classroom. In addition, this study precisely talks about the implementation of this approach in the General Foundation Programme of Muscat College, Oman. It furnishes the list of the pedagogical tasks embedded in the language curriculum of General Foundation Programme (GFP) which are skillfully allied to the College Graduate Attributes. Moreover, the study also discusses the challenges pertaining to this approach from the point of view of teachers, students, and its classroom application. Additionally, the operational success of this methodology is gauged through formative assessments of the GFP, which is apparent in the students’ progress.Keywords: task-based language teaching, authentic language, communicative approach, real world activities, ESL/EFL activities
Procedia PDF Downloads 12431411 Conceptualizing Personalized Learning: Review of Literature 2007-2017
Authors: Ruthanne Tobin
Abstract:
As our data-driven, cloud-based, knowledge-centric lives become ever more global, mobile, and digital, educational systems everywhere are struggling to keep pace. Schools need to prepare students to become critical-thinking, tech-savvy, life-long learners who are engaged and adaptable enough to find their unique calling in a post-industrial world of work. Recognizing that no nation can afford poor achievement or high dropout rates without jeopardizing its social and economic future, the thirty-two nations of the OECD are launching initiatives to redesign schools, generally under the banner of Personalized Learning or 21st Century Learning. Their intention is to transform education by situating students as co-enquirers and co-contributors with their teachers of what, when, and how learning happens for each individual. In this focused review of the 2007-2017 literature on personalized learning, the author sought answers to two main questions: “What are the theoretical frameworks that guide personalized learning?” and “What is the conceptual understanding of the model?” Ultimately, the review reveals that, although the research area is overly theorized and under-substantiated, it does provide a significant body of knowledge about this potentially transformative educational restructuring. For example, it addresses the following questions: a) What components comprise a PL model? b) How are teachers facilitating agency (voice & choice) in their students? c) What kinds of systems, processes and procedures are being used to guide the innovation? d) How is learning organized, monitored and assessed? e) What role do inquiry based models play? f) How do teachers integrate the three types of knowledge: Content, pedagogical and technological? g) Which kinds of forces enable, and which impede, personalizing learning? h) What is the nature of the collaboration among teachers? i) How do teachers co-regulate differentiated tasks? One finding of the review shows that while technology can dramatically expand access to information, expectations of its impact on teaching and learning are often disappointing unless the technologies are paired with excellent pedagogies in order to address students’ needs, interests and aspirations. This literature review fills a significant gap in this emerging field of research, as it serves to increase conceptual clarity that has hampered both the theorizing and the classroom implementation of a personalized learning model.Keywords: curriculum change, educational innovation, personalized learning, school reform
Procedia PDF Downloads 22331410 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits
Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.
Abstract:
With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme
Procedia PDF Downloads 13431409 Instructional Design Strategy Based on Stories with Interactive Resources for Learning English in Preschool
Authors: Vicario Marina, Ruiz Elena, Peredo Ruben, Bustos Eduardo
Abstract:
the development group of Educational Computing of the National Polytechnic (IPN) in Mexico has been developing interactive resources at preschool level in an effort to improve learning in the Child Development Centers (CENDI). This work describes both a didactic architecture and a strategy for teaching English with digital stories using interactive resources available through a Web repository designed to be used in mobile platforms. It will be accessible initially to 500 children and worldwide by the end of 2015.Keywords: instructional design, interactive resources, digital educational resources, story based English teaching, preschool education
Procedia PDF Downloads 47231408 Recommendation Systems for Cereal Cultivation using Advanced Casual Inference Modeling
Authors: Md Yeasin, Ranjit Kumar Paul
Abstract:
In recent years, recommendation systems have become indispensable tools for agricultural system. The accurate and timely recommendations can significantly impact crop yield and overall productivity. Causal inference modeling aims to establish cause-and-effect relationships by identifying the impact of variables or factors on outcomes, enabling more accurate and reliable recommendations. New advancements in causal inference models have been found in the literature. With the advent of the modern era, deep learning and machine learning models have emerged as efficient tools for modeling. This study proposed an innovative approach to enhance recommendation systems-based machine learning based casual inference model. By considering the causal effect and opportunity cost of covariates, the proposed system can provide more reliable and actionable recommendations for cereal farmers. To validate the effectiveness of the proposed approach, experiments are conducted using cereal cultivation data of eastern India. Comparative evaluations are performed against existing correlation-based recommendation systems, demonstrating the superiority of the advanced causal inference modeling approach in terms of recommendation accuracy and impact on crop yield. Overall, it empowers farmers with personalized recommendations tailored to their specific circumstances, leading to optimized decision-making and increased crop productivity.Keywords: agriculture, casual inference, machine learning, recommendation system
Procedia PDF Downloads 7931407 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection
Authors: Yaojun Wang, Yaoqing Wang
Abstract:
Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.Keywords: case-based reasoning, decision tree, stock selection, machine learning
Procedia PDF Downloads 42031406 Multimodal Deep Learning for Human Activity Recognition
Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja
Abstract:
In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness
Procedia PDF Downloads 10131405 The Challenges of Hyper-Textual Learning Approach for Religious Education
Authors: Elham Shirvani–Ghadikolaei, Seyed Mahdi Sajjadi
Abstract:
State of the art technology has the tremendous impact on our life, in this situation education system have been influenced as well as. In this paper, tried to compare two space of learning text and hypertext with each other, and some challenges of using hypertext in religious education. Regarding the fact that, hypertext is an undeniable part of learning in this world and it has highly beneficial for the education process from class to office and home. In this paper tried to solve this question: the consequences and challenges of applying hypertext in religious education. Also, the consequences of this survey demonstrate the role of curriculum designer and planner of education to solve this problem.Keywords: Hyper-textual, learning, religious education, learning text
Procedia PDF Downloads 31231404 Development of a Mixed-Reality Hands-Free Teleoperated Robotic Arm for Construction Applications
Authors: Damith Tennakoon, Mojgan Jadidi, Seyedreza Razavialavi
Abstract:
With recent advancements of automation in robotics, from self-driving cars to autonomous 4-legged quadrupeds, one industry that has been stagnant is the construction industry. The methodologies used in a modern-day construction site consist of arduous physical labor and the use of heavy machinery, which has not changed over the past few decades. The dangers of a modern-day construction site affect the health and safety of the workers due to performing tasks such as lifting and moving heavy objects and having to maintain unhealthy posture to complete repetitive tasks such as painting, installing drywall, and laying bricks. Further, training for heavy machinery is costly and requires a lot of time due to their complex control inputs. The main focus of this research is using immersive wearable technology and robotic arms to perform the complex and intricate skills of modern-day construction workers while alleviating the physical labor requirements to perform their day-to-day tasks. The methodology consists of mounting a stereo vision camera, the ZED Mini by Stereolabs, onto the end effector of an industrial grade robotic arm, streaming the video feed into the Virtual Reality (VR) Meta Quest 2 (Quest 2) head-mounted display (HMD). Due to the nature of stereo vision, and the similar field-of-views between the stereo camera and the Quest 2, human-vision can be replicated on the HMD. The main advantage this type of camera provides over a traditional monocular camera is it gives the user wearing the HMD a sense of the depth of the camera scene, specifically, a first-person view of the robotic arm’s end effector. Utilizing the built-in cameras of the Quest 2 HMD, open-source hand-tracking libraries from OpenXR can be implemented to track the user’s hands in real-time. A mixed-reality (XR) Unity application can be developed to localize the operator's physical hand motions with the end-effector of the robotic arm. Implementing gesture controls will enable the user to move the robotic arm and control its end-effector by moving the operator’s arm and providing gesture inputs from a distant location. Given that the end effector of the robotic arm is a gripper tool, gripping and opening the operator’s hand will translate to the gripper of the robot arm grabbing or releasing an object. This human-robot interaction approach provides many benefits within the construction industry. First, the operator’s safety will be increased substantially as they can be away from the site-location while still being able perform complex tasks such as moving heavy objects from place to place or performing repetitive tasks such as painting walls and laying bricks. The immersive interface enables precision robotic arm control and requires minimal training and knowledge of robotic arm manipulation, which lowers the cost for operator training. This human-robot interface can be extended to many applications, such as handling nuclear accident/waste cleanup, underwater repairs, deep space missions, and manufacturing and fabrication within factories. Further, the robotic arm can be mounted onto existing mobile robots to provide access to hazardous environments, including power plants, burning buildings, and high-altitude repair sites.Keywords: construction automation, human-robot interaction, hand-tracking, mixed reality
Procedia PDF Downloads 8031403 Individual Differences and Paired Learning in Virtual Environments
Authors: Patricia M. Boechler, Heather M. Gautreau
Abstract:
In this research study, postsecondary students completed an information learning task in an avatar-based 3D virtual learning environment. Three factors were of interest in relation to learning; 1) the influence of collaborative vs. independent conditions, 2) the influence of the spatial arrangement of the virtual environment (linear, random and clustered), and 3) the relationship of individual differences such as spatial skill, general computer experience and video game experience to learning. Students completed pretest measures of prior computer experience and prior spatial skill. Following the premeasure administration, students were given instruction to move through the virtual environment and study all the material within 10 information stations. In the collaborative condition, students proceeded in randomly assigned pairs, while in the independent condition they proceeded alone. After this learning phase, all students individually completed a multiple choice test to determine information retention. The overall results indicated that students in pairs did not perform any better or worse than independent students. As far as individual differences, only spatial ability predicted the performance of students. General computer experience and video game experience did not. Taking a closer look at the pairs and spatial ability, comparisons were made on pairs high/matched spatial ability, pairs low/matched spatial ability and pairs that were mismatched on spatial ability. The results showed that both high/matched pairs and mismatched pairs outperformed low/matched pairs. That is, if a pair had even one individual with strong spatial ability they would perform better than pairs with only low spatial ability individuals. This suggests that, in virtual environments, the specific individuals that are paired together are important for performance outcomes. The paper also includes a discussion of trends within the data that have implications for virtual environment education.Keywords: avatar-based, virtual environment, paired learning, individual differences
Procedia PDF Downloads 11631402 Discourses in Mother Tongue-Based Classes: The Case of Hiligaynon Language
Authors: Kayla Marie Sarte
Abstract:
This study sought to describe mother tongue-based classes in the light of classroom interactional discourse using the Sinclair and Coulthard model. It specifically identified the exchanges, grouped into Teaching and Boundary types; moves, coded as Opening, Answering and Feedback; and the occurrence of the 13 acts (Bid, Cue, Nominate, Reply, React, Acknowledge, Clue, Accept, Evaluate, Loop, Comment, Starter, Conclusion, Aside and Silent Stress) in the classroom, and determined what these reveal about the teaching and learning processes in the MTB classroom. Being a qualitative study, using the Single Collective Case Within-Site (embedded) design, varied data collection procedures such as non-participant observations, audio-recordings and transcription of MTB classes, and semi-structured interviews were utilized. The results revealed the presence of all the codes in the model (except for the silent stress) which also implied that the Hiligaynon mother tongue-based class was eclectic, cultural and communicative, and had a healthy, analytical and focused environment which aligned with the aims of MTB-MLE, and affirmed the purported benefits of mother tongue teaching. Through the study, gaps in the mother tongue teaching and learning were also identified which involved the difficulty of children in memorizing Hiligaynon terms expressed in English in their homes and in the communities.Keywords: discourse analysis, language teaching and learning, mother tongue-based education, multilingualism
Procedia PDF Downloads 26031401 Program Level Learning Outcomes in Music and Technology: Toward Improved Assessment and Better Communication
Authors: Susan Lewis
Abstract:
The assessment of learning outcomes at the program level has attracted much international interest from the perspectives of quality assurance and ongoing curricular redesign and renewal. This paper examines program-level learning outcomes in the field of music and technology, an area of study that has seen an explosion in program development over the past fifteen years. The Audio Engineering Society (AES) maintains an online directory of educational institutions worldwide, yielding the most comprehensive inventory of programs and courses in music and technology. The inventory includes courses, programs, and degrees in music and technology, music and computer science, music production, and the music industry. This paper focuses on published student learning outcomes for undergraduate degrees in music and technology and analyses commonalities at institutions in North America, the United Kingdom, and Europe. The results of a survey of student learning outcomes at twenty institutions indicates a focus on three distinct student learning outcomes: (1) cross-disciplinary knowledge in the fields of music and technology; (2) the practical application of training through the professional industry; and (3) the acquisition of skills in communication and collaboration. The paper then analyses assessment mechanisms for tracking student learning and achievement of learning outcomes at these institutions. The results indicate highly variable assessment practices. Conclusions offer recommendations for enhancing assessment techniques and better communicating learning outcomes to students.Keywords: quality assurance, student learning; learning outcomes, music and technology
Procedia PDF Downloads 185