Search results for: leadership models
2153 The Effect of Family Controlling Ownership on Financing Policy
Authors: Vera Diyanty, Akhmad Syahroza
Abstract:
This research aims to describe an empirical evidence of the influence of family control on the company’s financing policy. Additionally, this research also shows the effect of leadership from family member and the effectiveness of the board of commissioners on companies’ financing policy. The result of this study found that family control through direct and indirect ownership mechanism have a positive impact on the choice of bank loan compare to public debt. Nevertheless, this research also shows that companies’ founders who become CEO and the effectiveness of board of commissioners do not prove to increase the alignment effect nor decrease the negative impact of entrenchment effect on the bank loan preference.Keywords: family controlling, family CEO, board effectiveness, financing policy
Procedia PDF Downloads 4572152 Predisposition of Small Scale Businesses in Fagge, Kano State, Nigeria, Towards Profit and Loss Sharing Mode of Finance
Authors: Farida, M. Shehu, Shehu U. R. Aliyu
Abstract:
Access to finance has been recognized in the literature as one of the major impediments confronting small scale businesses (SSBs). This largely arises due to high lending rate, religious inclinations, collateral, etc. Islamic mode finance operates under Profit and Loss Sharing (PLS) arrangement between a borrower (business owner) and a lender (Islamic bank). This paper empirically assesses the determinants of predisposition of small scale business operators in Fagge local government area, Kano State, Nigeria, towards the PLS. Cross-sectional data from a sample of 291 small scale business operators was analyzed using logit and probit regression models. Empirical results reveal that while awareness and religion inclination positively drive interest towards the PLS, lending rate and collateral work against it. The paper, therefore, strongly recommends more advocacy campaigns and setting up of more Islamic banks in the country to cater for the financing and religious needs of SSBs in the study area.Keywords: Islamic finance, logit and probit models, profit and loss sharing small scale businesses, finance, commerce
Procedia PDF Downloads 3722151 Loan Repayment Prediction Using Machine Learning: Model Development, Django Web Integration and Cloud Deployment
Authors: Seun Mayowa Sunday
Abstract:
Loan prediction is one of the most significant and recognised fields of research in the banking, insurance, and the financial security industries. Some prediction systems on the market include the construction of static software. However, due to the fact that static software only operates with strictly regulated rules, they cannot aid customers beyond these limitations. Application of many machine learning (ML) techniques are required for loan prediction. Four separate machine learning models, random forest (RF), decision tree (DT), k-nearest neighbour (KNN), and logistic regression, are used to create the loan prediction model. Using the anaconda navigator and the required machine learning (ML) libraries, models are created and evaluated using the appropriate measuring metrics. From the finding, the random forest performs with the highest accuracy of 80.17% which was later implemented into the Django framework. For real-time testing, the web application is deployed on the Alibabacloud which is among the top 4 biggest cloud computing provider. Hence, to the best of our knowledge, this research will serve as the first academic paper which combines the model development and the Django framework, with the deployment into the Alibaba cloud computing application.Keywords: k-nearest neighbor, random forest, logistic regression, decision tree, django, cloud computing, alibaba cloud
Procedia PDF Downloads 1372150 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market
Authors: Cristian Păuna
Abstract:
In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.Keywords: algorithmic trading, automated trading systems, high-frequency trading, DAX Deutscher Aktienindex
Procedia PDF Downloads 1312149 Improved Elastoplastic Bounding Surface Model for the Mathematical Modeling of Geomaterials
Authors: Andres Nieto-Leal, Victor N. Kaliakin, Tania P. Molina
Abstract:
The nature of most engineering materials is quite complex. It is, therefore, difficult to devise a general mathematical model that will cover all possible ranges and types of excitation and behavior of a given material. As a result, the development of mathematical models is based upon simplifying assumptions regarding material behavior. Such simplifications result in some material idealization; for example, one of the simplest material idealization is to assume that the material behavior obeys the elasticity. However, soils are nonhomogeneous, anisotropic, path-dependent materials that exhibit nonlinear stress-strain relationships, changes in volume under shear, dilatancy, as well as time-, rate- and temperature-dependent behavior. Over the years, many constitutive models, possessing different levels of sophistication, have been developed to simulate the behavior geomaterials, particularly cohesive soils. Early in the development of constitutive models, it became evident that elastic or standard elastoplastic formulations, employing purely isotropic hardening and predicated in the existence of a yield surface surrounding a purely elastic domain, were incapable of realistically simulating the behavior of geomaterials. Accordingly, more sophisticated constitutive models have been developed; for example, the bounding surface elastoplasticity. The essence of the bounding surface concept is the hypothesis that plastic deformations can occur for stress states either within or on the bounding surface. Thus, unlike classical yield surface elastoplasticity, the plastic states are not restricted only to those lying on a surface. Elastoplastic bounding surface models have been improved; however, there is still need to improve their capabilities in simulating the response of anisotropically consolidated cohesive soils, especially the response in extension tests. Thus, in this work an improved constitutive model that can more accurately predict diverse stress-strain phenomena exhibited by cohesive soils was developed. Particularly, an improved rotational hardening rule that better simulate the response of cohesive soils in extension. The generalized definition of the bounding surface model provides a convenient and elegant framework for unifying various previous versions of the model for anisotropically consolidated cohesive soils. The Generalized Bounding Surface Model for cohesive soils is a fully three-dimensional, time-dependent model that accounts for both inherent and stress induced anisotropy employing a non-associative flow rule. The model numerical implementation in a computer code followed an adaptive multistep integration scheme in conjunction with local iteration and radial return. The one-step trapezoidal rule was used to get the stiffness matrix that defines the relationship between the stress increment and the strain increment. After testing the model in simulating the response of cohesive soils through extensive comparisons of model simulations to experimental data, it has been shown to give quite good simulations. The new model successfully simulates the response of different cohesive soils; for example, Cardiff Kaolin, Spestone Kaolin, and Lower Cromer Till. The simulated undrained stress paths, stress-strain response, and excess pore pressures are in very good agreement with the experimental values, especially in extension.Keywords: bounding surface elastoplasticity, cohesive soils, constitutive model, modeling of geomaterials
Procedia PDF Downloads 3162148 Development of PCI Prediction Models for Distress Evaluation of Asphalt Pavements
Authors: Hamid Noori
Abstract:
A scientific approach is essential for evaluating pavement surface conditions at the network level. The Pavement Condition Index (PCI) is widely used to assess surface conditions and determine appropriate treatments. This study examines three national highways using a network survey vehicle to collect distress data. The first two corridors were used for evaluation and comparison, while the third corridor validated the predicted PCI values. Multiple linear regression (MLR) initially modeled the relationship between PCI and distress variables but showed poor predictive accuracy. Therefore, K-nearest neighbors (KNN) and artificial neural network (ANN) models were developed, providing better results. A methodology for prioritizing pavement sections was introduced, and the pavement sections were based on PCI, IRI, and rut values through Combined Index Rankings (CIR). In addition, a methodology has been proposed for the selection of appropriate treatment of the ranked candidate pavement section. The proposed treatment selection process considers PCI, IRI, rutting, and FWD test results, aligning with a customized PCI rating scale. A Decision Tree was developed to recommend suitable treatments based on these criteria.Keywords: pavement distresses, pavement condition index, multiple linear regression, artificial neural network, k-nearest neighbors, combined index ranking
Procedia PDF Downloads 02147 Studying the Impact of Soil Characteristics in Displacement of Retaining Walls Using Finite Element
Authors: Mojtaba Ahmadabadi, Akbar Masoudi, Morteza Rezai
Abstract:
In this paper, using the finite element method, the effect of soil and wall characteristics was investigated. Thirty and two different models were studied by different parameters. These studies could calculate displacement at any height of the wall for frictional-cohesive soils. The main purpose of this research is to determine the most effective soil characteristics in reducing the wall displacement. Comparing different models showed that the overall increase in internal friction angle, angle of friction between soil and wall and modulus of elasticity reduce the replacement of the wall. In addition, increase in special weight of soil will increase the wall displacement. Based on results, it can be said that all wall displacements were overturning and in the backfill, soil was bulging. Results show that the highest impact is seen in reducing wall displacement, internal friction angle, and the angle friction between soil and wall. One of the advantages of this study is taking into account all the parameters of the soil and walls replacement distribution in wall and backfill soil. In this paper, using the finite element method and considering all parameters of the soil, we investigated the impact of soil parameter in wall displacement. The aim of this study is to provide the best conditions in reducing the wall displacement and displacement wall and soil distribution.Keywords: retaining wall, fem, soil and wall interaction, angle of internal friction of the soil, wall displacement
Procedia PDF Downloads 3882146 Error Amount in Viscoelasticity Analysis Depending on Time Step Size and Method used in ANSYS
Authors: A. Fettahoglu
Abstract:
Theory of viscoelasticity is used by many researchers to represent behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain like pavements of bridges can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell elements and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Subsequently, a practical problem, which has an analytical solution given in literature, is used to verify the applicability of viscoelasticity tool embedded in ANSYS. Finally, amount of error in the results of ANSYS is compared with the analytical results to indicate the influence of used method and time step size.Keywords: generalized Maxwell model, finite element method, prony series, time step size, viscoelasticity
Procedia PDF Downloads 3702145 Shedding Light on the Black Box: Explaining Deep Neural Network Prediction of Clinical Outcome
Authors: Yijun Shao, Yan Cheng, Rashmee U. Shah, Charlene R. Weir, Bruce E. Bray, Qing Zeng-Treitler
Abstract:
Deep neural network (DNN) models are being explored in the clinical domain, following the recent success in other domains such as image recognition. For clinical adoption, outcome prediction models require explanation, but due to the multiple non-linear inner transformations, DNN models are viewed by many as a black box. In this study, we developed a deep neural network model for predicting 1-year mortality of patients who underwent major cardio vascular procedures (MCVPs), using temporal image representation of past medical history as input. The dataset was obtained from the electronic medical data warehouse administered by Veteran Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans who had their first MCVP in 2014. Features for prediction included demographics, diagnoses, procedures, medication orders, hospitalizations, and frailty measures extracted from clinical notes. Temporal variables were created based on the patient history data in the 2-year window prior to the index MCVP. A temporal image was created based on these variables for each individual patient. To generate the explanation for the DNN model, we defined a new concept called impact score, based on the presence/value of clinical conditions’ impact on the predicted outcome. Like (log) odds ratio reported by the logistic regression (LR) model, impact scores are continuous variables intended to shed light on the black box model. For comparison, a logistic regression model was fitted on the same dataset. In our cohort, about 6.8% of patients died within one year. The prediction of the DNN model achieved an area under the curve (AUC) of 78.5% while the LR model achieved an AUC of 74.6%. A strong but not perfect correlation was found between the aggregated impact scores and the log odds ratios (Spearman’s rho = 0.74), which helped validate our explanation.Keywords: deep neural network, temporal data, prediction, frailty, logistic regression model
Procedia PDF Downloads 1532144 Qsar Studies of Certain Novel Heterocycles Derived From bis-1, 2, 4 Triazoles as Anti-Tumor Agents
Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi
Abstract:
In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.Keywords: 3D QSAR, CoMSIA, triazoles, novel heterocycles
Procedia PDF Downloads 4442143 Development of an Information System Based on the Establishment and Evaluation of Performance Rating by Application Part/Type of Remodeling Element Technologies
Authors: Sungwon Jung
Abstract:
The percentage of 20 years or older apartment houses in South Korea is approximately 20% (1.55 million houses), and the explosive increase of aged houses is expected around the first planned new towns. Accordingly, we should prepare for social issues such as difficulty of housing lease and degradation of housing performance. The improvement of performance of aged houses is essential for achieving the national energy and carbon reduction goals, and we should develop techniques to respond to the changing construction environment. Furthermore, we should develop a performance evaluation system that is appropriate for the demands of residents such as the improvement of remodeling floor plan by performance improvement in line with the residence type of the housing vulnerable groups such as low-income group and elderly people living alone. For this purpose, remodeling techniques and business models optimized for the target complexes must be spread through the development of various business models. In addition, it is necessary to improve the remodeling business by improving the laws and systems related to the improvement of the residential performance and to prepare techniques to respond to the increasing business demands. In other words, performance improvement and evaluation and knowledge systems need to be researched as new issues related to remodeling that has not been addressed in the existing research.Keywords: remodelling, performance evaluation, web-based system, big data
Procedia PDF Downloads 2242142 Evaluating India's Smart Cities against the Sustainable Development Goals
Authors: Suneet Jagdev
Abstract:
17 Sustainable Development Goals were adopted by the world leaders in September 2015 at the United Nations Sustainable Development Summit. These goals were adopted by UN member states to promote prosperity, health and human rights while protecting the planet. Around the same time, the Government of India launched the Smart City Initiative to speed up development of state of the art infrastructure and services in 100 cities with a focus on sustainable and inclusive development. These cities are meant to become role models for other cities in India and promote sustainable regional development. This paper examines goals set under the Smart City Initiative and evaluates them in terms of the Sustainable Development Goals, using case studies of selected Smart Cities in India. The study concludes that most Smart City projects at present actually consist of individual solutions to individual problems identified in a community rather than comprehensive models for complex issues in cities across India. Systematic, logical and comparative analysis of important literature and data has been done, collected from government sources, government papers, research papers by various experts on the topic, and results from some online surveys. Case studies have been used for a graphical analysis highlighting the issues of migration, ecology, economy and social equity in these Smart Cities.Keywords: housing, migration, smart cities, sustainable development goals, urban infrastructure
Procedia PDF Downloads 4102141 Development of Time Series Forecasting Model for Dengue Cases in Nakhon Si Thammarat, Southern Thailand
Authors: Manit Pollar
Abstract:
Identifying the dengue epidemic periods early would be helpful to take necessary actions to prevent the dengue outbreaks. Providing an accurate prediction on dengue epidemic seasons will allow sufficient time to take the necessary decisions and actions to safeguard the situation for local authorities. This study aimed to develop a forecasting model on number of dengue incidences in Nakhon Si Thammarat Province, Southern Thailand using time series analysis. We develop Seasonal Autoregressive Moving Average (SARIMA) models on the monthly data collected between 2003-2011 and validated the models using data collected between January-September 2012. The result of this study revealed that the SARIMA(1,1,0)(1,2,1)12 model closely described the trends and seasons of dengue incidence and confirmed the existence of dengue fever cases in Nakhon Si Thammarat for the years between 2003-2011. The study showed that the one-step approach for predicting dengue incidences provided significantly more accurate predictions than the twelve-step approach. The model, even if based purely on statistical data analysis, can provide a useful basis for allocation of resources for disease prevention.Keywords: SARIMA, time series model, dengue cases, Thailand
Procedia PDF Downloads 3602140 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data
Authors: Ruchika Malhotra, Megha Khanna
Abstract:
The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics
Procedia PDF Downloads 4182139 Estimation of Probabilistic Fatigue Crack Propagation Models of AZ31 Magnesium Alloys under Various Load Ratio Conditions by Using the Interpolation of a Random Variable
Authors: Seon Soon Choi
Abstract:
The essential purpose is to present the good fatigue crack propagation model describing a stochastic fatigue crack growth behavior in a rolled magnesium alloy, AZ31, under various load ratio conditions. Fatigue crack propagation experiments were carried out in laboratory air under four conditions of load ratio, R, using AZ31 to investigate the crack growth behavior. The stochastic fatigue crack growth behavior was analyzed using an interpolation of random variable, Z, introduced to an empirical fatigue crack propagation model. The empirical fatigue models used in this study are Paris-Erdogan model, Walker model, Forman model, and modified Forman model. It was found that the random variable is useful in describing the stochastic fatigue crack growth behaviors under various load ratio conditions. The good probabilistic model describing a stochastic fatigue crack growth behavior under various load ratio conditions was also proposed.Keywords: magnesium alloys, fatigue crack propagation model, load ratio, interpolation of random variable
Procedia PDF Downloads 4112138 A Study on Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation and Artificial Neural Network
Authors: Min-Woo Kim, Ok-Kyun Na, Jun-Ho Byun, Jong-Hwan Park, Seung-Hwa Yang, Joon-Hong Park, Young-Chul Park
Abstract:
This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the Anti-Splash Device located under the P/V Valve and new concept design models using the CFD analysis and Artificial Neural Network. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-Splash Device is fitted to improve and prevent this problem in the shipbuilding industry. But the oil outflow accidents are still reported by ship owners. Thus, four types of new design model are presented by study. Then, comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the Anti-Splash Device. Therefore, the flow and velocity are grasped by transient analysis. And then it decided optimum model and design parameters to develop model. Later, it needs to develop an Anti-Splash Device by Flow Test to get certification and verification using experiment equipment.Keywords: anti-splash device, P/V valve, sloshing, artificial neural network
Procedia PDF Downloads 5902137 Stability Assessment of Chamshir Dam Based on DEM, South West Zagros
Authors: Rezvan Khavari
Abstract:
The Zagros fold-thrust belt in SW Iran is a part of the Alpine-Himalayan system which consists of a variety of structures with different sizes or geometries. The study area is Chamshir Dam, which is located on the Zohreh River, 20 km southeast of Gachsaran City (southwest Iran). The satellite images are valuable means available to geologists for locating geological or geomorphological features expressing regional fault or fracture systems, therefore, the satellite images were used for structural analysis of the Chamshir dam area. As well, using the DEM and geological maps, 3D Models of the area have been constructed. Then, based on these models, all the acquired fracture traces data were integrated in Geographic Information System (GIS) environment by using Arc GIS software. Based on field investigation and DEM model, main structures in the area consist of Cham Shir syncline and two fault sets, the main thrust faults with NW-SE direction and small normal faults in NE-SW direction. There are three joint sets in the study area, both of them (J1 and J3) are the main large fractures around the Chamshir dam. These fractures indeed consist with the normal faults in NE-SW direction. The third joint set in NW-SE is normal to the others. In general, according to topography, geomorphology and structural geology evidences, Chamshir dam has a potential for sliding in some parts of Gachsaran formation.Keywords: DEM, chamshir dam, zohreh river, satellite images
Procedia PDF Downloads 4822136 Fluid Catalytic Cracking: Zeolite Catalyzed Chemical Industry Processes
Authors: Mithil Pandey, Ragunathan Bala Subramanian
Abstract:
One of the major conversion technologies in the oil refinery industry is Fluid catalytic cracking (FCC) which produces the majority of the world’s gasoline. Some useful products are generated from the vacuum gas oil, heavy gas oil and residue feedstocks by the FCC unit in an oil refinery. Moreover, Zeolite catalysts (zeo-catalysts) have found widespread applications and have proved to be substantial and paradigmatic in oil refining and petrochemical processes, such as FCC because of their porous features. Several famous zeo-catalysts have been fabricated and applied in industrial processes as milestones in history, and have brought on huge changes in petrochemicals. So far, more than twenty types of zeolites have been industrially applied, and their versatile porous architectures with their essential features have contributed to affect the catalytic efficiency. This poster depicts the evolution of pore models in zeolite catalysts which are accompanied by an increase in environmental and demands. The crucial roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The development of industrial processes for the FCC process, aromatic conversions and olefin production, makes it obvious that the pore architecture plays a very important role in zeo-catalysis processes. By looking at the different necessities of industrial processes, rational construction of the pore model is critically essential. Besides, the pore structure of the zeolite would have a substantial and direct effect on the utilization efficiency of the zeo-catalyst.Keywords: catalysts, fluid catalytic cracking, industrial processes, zeolite
Procedia PDF Downloads 3562135 Simplified Modelling of Visco-Elastic Fluids for Use in Recoil Damping Systems
Authors: Prasad Pokkunuri
Abstract:
Visco-elastic materials combine the stress response properties of both solids and fluids and have found use in a variety of damping applications – both vibrational and acoustic. Defense and automotive applications, in particular, are subject to high impact and shock loading – for example: aircraft landing gear, firearms, and shock absorbers. Field responsive fluids – a class of smart materials – are the preferred choice of energy absorbents because of their controllability. These fluids’ stress response can be controlled by the application of a magnetic or electric field, in a closed loop. Their rheological properties – elasticity, plasticity, and viscosity – can be varied all the way from that of a liquid such as water to a hard solid. This work presents a simplified model to study the impulse response behavior of such fluids for use in recoil damping systems. The well-known Burger’s equation, in conjunction with various visco-elastic constitutive models, is used to represent fluid behavior. The Kelvin-Voigt, Upper Convected Maxwell (UCM), and Oldroyd-B constitutive models are implemented in this study. Using these models in a one-dimensional framework eliminates additional complexities due to geometry, pressure, body forces, and other source terms. Using a finite difference formulation to numerically solve the governing equation(s), the response to an initial impulse is studied. The disturbance is confined within the problem domain with no-inflow, no-outflow boundary conditions, and its decay characteristics studied. Visco-elastic fluids typically involve a time-dependent stress relaxation which gives rise to interesting behavior when subjected to an impulsive load. For particular values of viscous damping and elastic modulus, the fluid settles into a stable oscillatory state, absorbing and releasing energy without much decay. The simplified formulation enables a comprehensive study of different modes of system response, by varying relevant parameters. Using the insights gained from this study, extension to a more detailed multi-dimensional model is considered.Keywords: Burgers Equation, Impulse Response, Recoil Damping Systems, Visco-elastic Fluids
Procedia PDF Downloads 2922134 Analysis of Operating Speed on Four-Lane Divided Highways under Mixed Traffic Conditions
Authors: Chaitanya Varma, Arpan Mehar
Abstract:
The present study demonstrates the procedure to analyse speed data collected on various four-lane divided sections in India. Field data for the study was collected at different straight and curved sections on rural highways with the help of radar speed gun and video camera. The data collected at the sections were analysed and parameters pertain to speed distributions were estimated. The different statistical distribution was analysed on vehicle type speed data and for mixed traffic speed data. It was found that vehicle type speed data was either follows the normal distribution or Log-normal distribution, whereas the mixed traffic speed data follows more than one type of statistical distribution. The most common fit observed on mixed traffic speed data were Beta distribution and Weibull distribution. The separate operating speed model based on traffic and roadway geometric parameters were proposed in the present study. The operating speed model with traffic parameters and curve geometry parameters were established. Two different operating speed models were proposed with variables 1/R and Ln(R) and were found to be realistic with a different range of curve radius. The models developed in the present study are simple and realistic and can be used for forecasting operating speed on four-lane highways.Keywords: highway, mixed traffic flow, modeling, operating speed
Procedia PDF Downloads 4602133 Forecasting Future Demand for Energy Efficient Vehicles: A Review of Methodological Approaches
Authors: Dimitrios I. Tselentis, Simon P. Washington
Abstract:
Considerable literature has been focused over the last few decades on forecasting the consumer demand of Energy Efficient Vehicles (EEVs). These methodological issues range from how to capture recent purchase decisions in revealed choice studies and how to set up experiments in stated preference (SP) studies, and choice of analysis method for analyzing such data. This paper reviews the plethora of published studies on the field of forecasting demand of EEVs since 1980, and provides a review and annotated bibliography of that literature as it pertains to this particular demand forecasting problem. This detailed review addresses the literature not only to Transportation studies, but specifically to the problem and methodologies around forecasting to the time horizons of planning studies which may represent 10 to 20 year forecasts. The objectives of the paper are to identify where existing gaps in literature exist and to articulate where promising methodologies might guide longer term forecasting. One of the key findings of this review is that there are many common techniques used both in the field of new product demand forecasting and the field of predicting future demand for EEV. Apart from SP and RP methods, some of these new techniques that have emerged in the literature in the last few decades are survey related approaches, product diffusion models, time-series modelling, computational intelligence models and other holistic approaches.Keywords: demand forecasting, Energy Efficient Vehicles (EEVs), forecasting methodologies review, methodological approaches
Procedia PDF Downloads 4892132 Continuous Fixed Bed Reactor Application for Decolourization of Textile Effluent by Adsorption on NaOH Treated Eggshell
Authors: M. Chafi, S. Akazdam, C. Asrir, L. Sebbahi, B. Gourich, N. Barka, M. Essahli
Abstract:
Fixed bed adsorption has become a frequently used industrial application in wastewater treatment processes. Various low cost adsorbents have been studied for their applicability in treatment of different types of effluents. In this work, the intention of the study was to explore the efficacy and feasibility for azo dye, Acid Orange 7 (AO7) adsorption onto fixed bed column of NaOH Treated eggshell (TES). The effect of various parameters like flow rate, initial dye concentration, and bed height were exploited in this study. The studies confirmed that the breakthrough curves were dependent on flow rate, initial dye concentration solution of AO7 and bed depth. The Thomas, Yoon–Nelson, and Adams and Bohart models were analysed to evaluate the column adsorption performance. The adsorption capacity, rate constant and correlation coefficient associated to each model for column adsorption was calculated and mentioned. The column experimental data were fitted well with Thomas model with coefficients of correlation R2 ≥0.93 at different conditions but the Yoon–Nelson, BDST and Bohart–Adams model (R2=0.911), predicted poor performance of fixed-bed column. The (TES) was shown to be suitable adsorbent for adsorption of AO7 using fixed-bed adsorption column.Keywords: adsorption models, acid orange 7, bed depth, breakthrough, dye adsorption, fixed-bed column, treated eggshell
Procedia PDF Downloads 3772131 Causal Estimation for the Left-Truncation Adjusted Time-Varying Covariates under the Semiparametric Transformation Models of a Survival Time
Authors: Yemane Hailu Fissuh, Zhongzhan Zhang
Abstract:
In biomedical researches and randomized clinical trials, the most commonly interested outcomes are time-to-event so-called survival data. The importance of robust models in this context is to compare the effect of randomly controlled experimental groups that have a sense of causality. Causal estimation is the scientific concept of comparing the pragmatic effect of treatments conditional to the given covariates rather than assessing the simple association of response and predictors. Hence, the causal effect based semiparametric transformation model was proposed to estimate the effect of treatment with the presence of possibly time-varying covariates. Due to its high flexibility and robustness, the semiparametric transformation model which shall be applied in this paper has been given much more attention for estimation of a causal effect in modeling left-truncated and right censored survival data. Despite its wide applications and popularity in estimating unknown parameters, the maximum likelihood estimation technique is quite complex and burdensome in estimating unknown parameters and unspecified transformation function in the presence of possibly time-varying covariates. Thus, to ease the complexity we proposed the modified estimating equations. After intuitive estimation procedures, the consistency and asymptotic properties of the estimators were derived and the characteristics of the estimators in the finite sample performance of the proposed model were illustrated via simulation studies and Stanford heart transplant real data example. To sum up the study, the bias of covariates was adjusted via estimating the density function for truncation variable which was also incorporated in the model as a covariate in order to relax the independence assumption of failure time and truncation time. Moreover, the expectation-maximization (EM) algorithm was described for the estimation of iterative unknown parameters and unspecified transformation function. In addition, the causal effect was derived by the ratio of the cumulative hazard function of active and passive experiments after adjusting for bias raised in the model due to the truncation variable.Keywords: causal estimation, EM algorithm, semiparametric transformation models, time-to-event outcomes, time-varying covariate
Procedia PDF Downloads 1272130 Efficient Principal Components Estimation of Large Factor Models
Authors: Rachida Ouysse
Abstract:
This paper proposes a constrained principal components (CnPC) estimator for efficient estimation of large-dimensional factor models when errors are cross sectionally correlated and the number of cross-sections (N) may be larger than the number of observations (T). Although principal components (PC) method is consistent for any path of the panel dimensions, it is inefficient as the errors are treated to be homoskedastic and uncorrelated. The new CnPC exploits the assumption of bounded cross-sectional dependence, which defines Chamberlain and Rothschild’s (1983) approximate factor structure, as an explicit constraint and solves a constrained PC problem. The CnPC method is computationally equivalent to the PC method applied to a regularized form of the data covariance matrix. Unlike maximum likelihood type methods, the CnPC method does not require inverting a large covariance matrix and thus is valid for panels with N ≥ T. The paper derives a convergence rate and an asymptotic normality result for the CnPC estimators of the common factors. We provide feasible estimators and show in a simulation study that they are more accurate than the PC estimator, especially for panels with N larger than T, and the generalized PC type estimators, especially for panels with N almost as large as T.Keywords: high dimensionality, unknown factors, principal components, cross-sectional correlation, shrinkage regression, regularization, pseudo-out-of-sample forecasting
Procedia PDF Downloads 1502129 Kinetics, Equilibrium and Thermodynamic Studies on Adsorption of Reactive Blue 29 from Aqueous Solution Using Activated Tamarind Kernel Powder
Authors: E. D. Paul, A. D. Adams, O. Sunmonu, U. S. Ishiaku
Abstract:
Activated tamarind kernel powder (ATKP) was prepared from tamarind fruit (Tamarindus indica), and utilized for the removal of Reactive Blue 29 (RB29) from its aqueous solution. The powder was activated using 4N nitric acid (HNO₃). The adsorbent was characterised using infrared spectroscopy, bulk density, ash content, pH, moisture content and dry matter content measurements. The effect of various parameters which include; temperature, pH, adsorbent dosage, ion concentration, and contact time were studied. Four different equilibrium isotherm models were tested on the experimental data, but the Temkin isotherm model was best-fitted into the experimental data. The pseudo-first order and pseudo-second-order kinetic models were also fitted into the graphs, but pseudo-second order was best fitted to the experimental data. The thermodynamic parameters showed that the adsorption of Reactive Blue 29 onto activated tamarind kernel powder is a physical process, feasible and spontaneous, exothermic in nature and there is decreased randomness at the solid/solution interphase during the adsorption process. Therefore, activated tamarind kernel powder has proven to be a very good adsorbent for the removal of Reactive Blue 29 dyes from industrial waste water.Keywords: tamarind kernel powder, reactive blue 29, isotherms, kinetics
Procedia PDF Downloads 2492128 Simplified Modeling of Post-Soil Interaction for Roadside Safety Barriers
Authors: Charly Julien Nyobe, Eric Jacquelin, Denis Brizard, Alexy Mercier
Abstract:
The performance of road side safety barriers depends largely on the dynamic interactions between post and soil. These interactions play a key role in the response of barriers to crash testing. In the literature, soil-post interaction is modeled in crash test simulations using three approaches. Many researchers have initially used the finite element approach, in which the post is embedded in a continuum soil modelled by solid finite elements. This method represents a more comprehensive and detailed approach, employing a mesh-based continuum to model the soil’s behavior and its interaction with the post. Although this method takes all soil properties into account, it is nevertheless very costly in terms of simulation time. In the second approach, all the points of the post located at a predefined depth are fixed. Although this approach reduces CPU computing time, it overestimates soil-post stiffness. The third approach involves modeling the post as a beam supported by a set of nonlinear springs in the horizontal directions. For support in the vertical direction, the posts were constrained at a node at ground level. This approach is less costly, but the literature does not provide a simple procedure to determine the constitutive law of the springs The aim of this study is to propose a simple and low-cost procedure to obtain the constitutive law of nonlinear springs that model the soil-post interaction. To achieve this objective, we will first present a procedure to obtain the constitutive law of nonlinear springs thanks to the simulation of a soil compression test. The test consists in compressing the soil contained in the tank by a rigid solid, up to a vertical displacement of 200 mm. The resultant force exerted by the ground on the rigid solid and its vertical displacement are extracted and, a force-displacement curve was determined. The proposed procedure for replacing the soil with springs must be tested against a reference model. The reference model consists of a wooden post embedded into the ground and impacted with an impactor. Two simplified models with springs are studied. In the first model, called Kh-Kv model, the springs are attached to the post in the horizontal and vertical directions. The second Kh model is the one described in the literature. The two simplified models are compared with the reference model according to several criteria: the displacement of a node located at the top of the post in vertical and horizontal directions; displacement of the post's center of rotation and impactor velocity. The results given by both simplified models are very close to the reference model results. It is noticeable that the Kh-Kv model is slightly better than the Kh model. Further, the former model is more interesting than the latter as it involves less arbitrary conditions. The simplified models also reduce the simulation time by a factor 4. The Kh-Kv model can therefore be used as a reliable tool to represent the soil-post interaction in a future research and development of road safety barriers.Keywords: crash tests, nonlinear springs, soil-post interaction modeling, constitutive law
Procedia PDF Downloads 322127 Building Information Models Utilization for Design Improvement of Infrastructure
Authors: Keisuke Fujioka, Yuta Itoh, Masaru Minagawa, Shunji Kusayanagi
Abstract:
In this study, building information models of the underground temporary structures and adjacent embedded pipes were constructed to show the importance of the information on underground pipes adjacent to the structures to enhance the productivity of execution of construction. Next, the bar chart used in actual construction process were employed to make the Gantt chart, and the critical pass analysis was carried out to show that accurate information on the arrangement of underground existing pipes can be used for the enhancement of the productivity of the construction of underground structures. In the analyzed project, significant construction delay was not caused by unforeseeable existence of underground pipes by the management ability of the construction manager. However, in many cases of construction executions in the developing countries, the existence of unforeseeable embedded pipes often causes substantial delay of construction. Design change based on uncertainty on the position information of embedded pipe can be also important risk for contractors in domestic construction. So CPM analyses were performed by a project-management-software to the situation that influence of the tasks causing construction delay was assumed more significant. Through the analyses, the efficiency of information management on underground pipes and BIM analysis in the design stage for workability improvement was indirectly confirmed.Keywords: building-information modelling, construction information modelling, design improvement, infrastructure
Procedia PDF Downloads 3092126 The Study of Applying Models: House, Temple and School for Sufficiency Development to Participate in ASEAN Economic Community: A Case Study of Trimitra Temple (China Town) Bangkok, Thailand
Authors: Saowapa Phaithayawat
Abstract:
The purposes of this study are: 1) to study the impact of the 3-community-core model: House (H), Temple (T), and School (S) with the co-operation of official departments on community development to ASEAN economic community involvement, and 2) to study the procedures and extension of the model. The research which is a qualitative research based on formal and informal interviews. Local people in a community are observed. Group interview is also operated by executors and cooperators in the school in the community. In terms of social and cultural dimension, the 3-community-core model consisting of house, temple and school is the base of Thai cultures bringing about understanding, happiness and unity to the community. The result of this research is that the official departments in accompanied with this model developers cooperatively work together in the community to support such factors as budget, plan, activities. Moreover, the need of community, and the continual result to sustain the community are satisfied by the model implementation. In terms of the procedures of the model implementation, executors and co-operators can work, coordinate, think, and launch their public relation altogether. Concerning the model development, this enables the community to achieve its goal to prepare the community’s readiness for ASEAN Economic Community involvement.Keywords: ASEAN Economic Community, the applying models and sufficiency development, house, temple, school
Procedia PDF Downloads 3142125 3D Printing Perceptual Models of Preference Using a Fuzzy Extreme Learning Machine Approach
Authors: Xinyi Le
Abstract:
In this paper, 3D printing orientations were determined through our perceptual model. Some FDM (Fused Deposition Modeling) 3D printers, which are widely used in universities and industries, often require support structures during the additive manufacturing. After removing the residual material, some surface artifacts remain at the contact points. These artifacts will damage the function and visual effect of the model. To prevent the impact of these artifacts, we present a fuzzy extreme learning machine approach to find printing directions that avoid placing supports in perceptually significant regions. The proposed approach is able to solve the evaluation problem by combing both the subjective knowledge and objective information. Our method combines the advantages of fuzzy theory, auto-encoders, and extreme learning machine. Fuzzy set theory is applied for dealing with subjective preference information, and auto-encoder step is used to extract good features without supervised labels before extreme learning machine. An extreme learning machine method is then developed successfully for training and learning perceptual models. The performance of this perceptual model will be demonstrated on both natural and man-made objects. It is a good human-computer interaction practice which draws from supporting knowledge on both the machine side and the human side.Keywords: 3d printing, perceptual model, fuzzy evaluation, data-driven approach
Procedia PDF Downloads 4392124 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia
Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski
Abstract:
The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils
Procedia PDF Downloads 368