Search results for: 5) genetic algorithm
3961 Damping Function and Dynamic Simulation of GUPFC Using IC-HS Algorithm
Authors: Galu Papy Yuma
Abstract:
This paper presents a new dynamic simulation of a power system consisting of four machines equipped with the Generalized Unified Power Flow Controller (GUPFC) to improve power system stability. The dynamic simulation of the GUPFC consists of one shunt converter and two series converters based on voltage source converter, and DC link capacitor installed in the power system. MATLAB/Simulink is used to arrange the dynamic simulation of the GUPFC, where the power system is simulated in order to investigate the impact of the controller on power system oscillation damping and to show the simulation program reliability. The Improved Chaotic- Harmony Search (IC-HS) Algorithm is used to provide the parameter controller in order to lead-lag compensation design. The results obtained by simulation show that the power system with four machines is suitable for stability analysis. The use of GUPFC and IC-HS Algorithm provides the excellent capability in fast damping of power system oscillations and improve greatly the dynamic stability of the power system.Keywords: GUPFC, IC-HS algorithm, Matlab/Simulink, damping oscillation
Procedia PDF Downloads 4513960 Poster : Incident Signals Estimation Based on a Modified MCA Learning Algorithm
Authors: Rashid Ahmed , John N. Avaritsiotis
Abstract:
Many signal subspace-based approaches have already been proposed for determining the fixed Direction of Arrival (DOA) of plane waves impinging on an array of sensors. Two procedures for DOA estimation based neural networks are presented. First, Principal Component Analysis (PCA) is employed to extract the maximum eigenvalue and eigenvector from signal subspace to estimate DOA. Second, minor component analysis (MCA) is a statistical method of extracting the eigenvector associated with the smallest eigenvalue of the covariance matrix. In this paper, we will modify a Minor Component Analysis (MCA(R)) learning algorithm to enhance the convergence, where a convergence is essential for MCA algorithm towards practical applications. The learning rate parameter is also presented, which ensures fast convergence of the algorithm, because it has direct effect on the convergence of the weight vector and the error level is affected by this value. MCA is performed to determine the estimated DOA. Preliminary results will be furnished to illustrate the convergences results achieved.Keywords: Direction of Arrival, neural networks, Principle Component Analysis, Minor Component Analysis
Procedia PDF Downloads 4553959 Analysis of Airborne Data Using Range Migration Algorithm for the Spotlight Mode of Synthetic Aperture Radar
Authors: Peter Joseph Basil Morris, Chhabi Nigam, S. Ramakrishnan, P. Radhakrishna
Abstract:
This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data using the Range Migration Algorithm (RMA) for the spotlight mode of operation. Unlike in polar format algorithm (PFA), space-variant defocusing and geometric distortion effects are mitigated in RMA since it does not assume that the illuminating wave-fronts are planar. This facilitates the use of RMA for imaging scenarios involving severe differential range curvatures enabling the imaging of larger scenes at fine resolution and at shorter ranges with low center frequencies. The RMA algorithm for the spotlight mode of SAR is analyzed in this paper using the airborne data. Pre-processing operations viz: - range de-skew and motion compensation to a line are performed on the raw data before being fed to the RMA component. Various stages of the RMA viz:- 2D Matched Filtering, Along Track Fourier Transform and Slot Interpolation are analyzed to find the performance limits and the dependence of the imaging geometry on the resolution of the final image. The ability of RMA to compensate for severe differential range curvatures in the two-dimensional spatial frequency domain are also illustrated in this paper.Keywords: range migration algorithm, spotlight SAR, synthetic aperture radar, matched filtering, slot interpolation
Procedia PDF Downloads 2463958 A Set of Microsatellite Markers for Population Genetics of Copper-Winged Bat (Myotis rufoniger) Using Saliva DNA
Authors: Junghwa An, Sungkyoung Choi, Eun Ye, San Hoon Han, Young-Gun Choi, Chul Oun Jung
Abstract:
The copper-winged bat (Myotis rufoniger) is the widely distributed medium body-sized bat in Asia, including Korea. This bat population has been decreasing because of habitat loss. This study reported the isolation and characterization of ten polymorphic microsatellite loci in endangered M. rufoniger. To do genetic studies, we use saliva DNA of bats during winter sleep period. The number of alleles per locus ranged from 2 to 9, and the observed and expected heterozygosities ranged from 0.063 to 0.750 and from 0.063 to 0.865, respectively. The average polymorphic information content (PIC) value of these markers was 0.37. Two loci of M. rufoniger showed departure from Hardy-Weinberg equilibrium(HWE). This demonstrated that the ten microsatellite loci can be used as genetic markers for further investigation of the copper-winged bat.Keywords: copper-winged bat, microsatellite, population genetics, South Korea
Procedia PDF Downloads 3783957 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objetives
Authors: Mingyu Xie, Mietek Brdys
Abstract:
The paper develops a non-linear model predictive control (NMPC) of water quality in drinking water distribution systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives
Procedia PDF Downloads 3213956 Finding Bicluster on Gene Expression Data of Lymphoma Based on Singular Value Decomposition and Hierarchical Clustering
Authors: Alhadi Bustaman, Soeganda Formalidin, Titin Siswantining
Abstract:
DNA microarray technology is used to analyze thousand gene expression data simultaneously and a very important task for drug development and test, function annotation, and cancer diagnosis. Various clustering methods have been used for analyzing gene expression data. However, when analyzing very large and heterogeneous collections of gene expression data, conventional clustering methods often cannot produce a satisfactory solution. Biclustering algorithm has been used as an alternative approach to identifying structures from gene expression data. In this paper, we introduce a transform technique based on singular value decomposition to identify normalized matrix of gene expression data followed by Mixed-Clustering algorithm and the Lift algorithm, inspired in the node-deletion and node-addition phases proposed by Cheng and Church based on Agglomerative Hierarchical Clustering (AHC). Experimental study on standard datasets demonstrated the effectiveness of the algorithm in gene expression data.Keywords: agglomerative hierarchical clustering (AHC), biclustering, gene expression data, lymphoma, singular value decomposition (SVD)
Procedia PDF Downloads 2823955 A Deletion-Cost Based Fast Compression Algorithm for Linear Vector Data
Authors: Qiuxiao Chen, Yan Hou, Ning Wu
Abstract:
As there are deficiencies of the classic Douglas-Peucker Algorithm (DPA), such as high risks of deleting key nodes by mistake, high complexity, time consumption and relatively slow execution speed, a new Deletion-Cost Based Compression Algorithm (DCA) for linear vector data was proposed. For each curve — the basic element of linear vector data, all the deletion costs of its middle nodes were calculated, and the minimum deletion cost was compared with the pre-defined threshold. If the former was greater than or equal to the latter, all remaining nodes were reserved and the curve’s compression process was finished. Otherwise, the node with the minimal deletion cost was deleted, its two neighbors' deletion costs were updated, and the same loop on the compressed curve was repeated till the termination. By several comparative experiments using different types of linear vector data, the comparison between DPA and DCA was performed from the aspects of compression quality and computing efficiency. Experiment results showed that DCA outperformed DPA in compression accuracy and execution efficiency as well.Keywords: Douglas-Peucker algorithm, linear vector data, compression, deletion cost
Procedia PDF Downloads 2543954 Agro-Morphological Traits Based Genetic Diversity Analysis of ‘Ethiopian Dinich’ Plectranthus edulis (Vatke) Agnew Populations Collected from Diverse Agro-Ecologies in Ethiopia
Authors: Fekadu Gadissa, Kassahun Tesfaye, Kifle Dagne, Mulatu Geleta
Abstract:
‘Ethiopian dinich’ also called ‘Ethiopian potato’ is one of the economically important ‘orphan’ edible tuber crops indigenous to Ethiopia. We evaluated the morphological and agronomic traits performances of 174 samples from Ethiopia at multiple locations using 12 qualitative and 16 quantitative traits, recorded at the correct growth stages. We observed several morphotypes and phenotypic variations for qualitative traits along with a wide range of mean performance values for all quantitative traits. Analysis of variance for each quantitative trait showed a highly significant (p<0.001) variation among the collections with eventually non-significant variation for environment-traits interaction for all but flower length. A comparatively high phenotypic and genotypic coefficient of variation was observed for plant height, days to flower initiation, days to 50% flowering and tuber number per hill. Moreover, the variability and coefficients of variation due to genotype-environment interaction was nearly zero for all the traits except flower length. High genotypic coefficients of variation coupled with a high estimate of broad sense heritability and high genetic advance as a percent of collection mean were obtained for tuber weight per hill, number of primary branches per plant, tuber number per hill and number of plants per hill. Association of tuber yield per hectare of land showed a large magnitude of positive phenotypic and genotypic correlation with those traits. Principal components analysis revealed 76% of the total variation for the first six principal axes with high factor loadings again from tuber number per hill, number of primary branches per plant and tuber weight. The collections were grouped into four clusters with the weak region (zone) of origin based pattern. In general, there is high genetic-based variability for ‘Ethiopian dinich’ improvement and conservation. DNA based markers are recommended for further genetic diversity estimation for use in breeding and conservation.Keywords: agro-morphological traits, Ethiopian dinich, genetic diversity, variance components
Procedia PDF Downloads 1933953 Subspace Rotation Algorithm for Implementing Restricted Hopfield Network as an Auto-Associative Memory
Authors: Ci Lin, Tet Yeap, Iluju Kiringa
Abstract:
This paper introduces the subspace rotation algorithm (SRA) to train the Restricted Hopfield Network (RHN) as an auto-associative memory. Subspace rotation algorithm is a gradient-free subspace tracking approach based on the singular value decomposition (SVD). In comparison with Backpropagation Through Time (BPTT) on training RHN, it is observed that SRA could always converge to the optimal solution and BPTT could not achieve the same performance when the model becomes complex, and the number of patterns is large. The AUTS case study showed that the RHN model trained by SRA could achieve a better structure of attraction basin with larger radius(in general) than the Hopfield Network(HNN) model trained by Hebbian learning rule. Through learning 10000 patterns from MNIST dataset with RHN models with different number of hidden nodes, it is observed that an several components could be adjusted to achieve a balance between recovery accuracy and noise resistance.Keywords: hopfield neural network, restricted hopfield network, subspace rotation algorithm, hebbian learning rule
Procedia PDF Downloads 1233952 Sequential Pattern Mining from Data of Medical Record with Sequential Pattern Discovery Using Equivalent Classes (SPADE) Algorithm (A Case Study : Bolo Primary Health Care, Bima)
Authors: Rezky Rifaini, Raden Bagus Fajriya Hakim
Abstract:
This research was conducted at the Bolo primary health Care in Bima Regency. The purpose of the research is to find out the association pattern that is formed of medical record database from Bolo Primary health care’s patient. The data used is secondary data from medical records database PHC. Sequential pattern mining technique is the method that used to analysis. Transaction data generated from Patient_ID, Check_Date and diagnosis. Sequential Pattern Discovery Algorithms Using Equivalent Classes (SPADE) is one of the algorithm in sequential pattern mining, this algorithm find frequent sequences of data transaction, using vertical database and sequence join process. Results of the SPADE algorithm is frequent sequences that then used to form a rule. It technique is used to find the association pattern between items combination. Based on association rules sequential analysis with SPADE algorithm for minimum support 0,03 and minimum confidence 0,75 is gotten 3 association sequential pattern based on the sequence of patient_ID, check_Date and diagnosis data in the Bolo PHC.Keywords: diagnosis, primary health care, medical record, data mining, sequential pattern mining, SPADE algorithm
Procedia PDF Downloads 4063951 RFID Based Indoor Navigation with Obstacle Detection Based on A* Algorithm for the Visually Impaired
Authors: Jayron Sanchez, Analyn Yumang, Felicito Caluyo
Abstract:
The visually impaired individual may use a cane, guide dog or ask for assistance from a person. This study implemented the RFID technology which consists of a low-cost RFID reader and passive RFID tag cards. The passive RFID tag cards served as checkpoints for the visually impaired. The visually impaired was guided through audio output from the system while traversing the path. The study implemented an ultrasonic sensor in detecting static obstacles. The system generated an alternate path based on A* algorithm to avoid the obstacles. Alternate paths were also generated in case the visually impaired traversed outside the intended path to the destination. A* algorithm generated the shortest path to the destination by calculating the total cost of movement. The algorithm then selected the smallest movement cost as a successor to the current tag card. Several trials were conducted to determine the effect of obstacles in the time traversal of the visually impaired. A dependent sample t-test was applied for the statistical analysis of the study. Based on the analysis, the obstacles along the path generated delays while requesting for the alternate path because of the delay in transmission from the laptop to the device via ZigBee modules.Keywords: A* algorithm, RFID technology, ultrasonic sensor, ZigBee module
Procedia PDF Downloads 4113950 Information Sharing with Potential Users of Traditional Knowledge under Provisions of Nagoya Protocol: Issues of Participation of Indigenous People and Local Communities
Authors: Hasrat Arjjumend, Sabiha Alam
Abstract:
The Nagoya Protocol is landmark international legislation governing access to genetic resources and benefit sharing from utilization of genetic resource and traditional knowledge. The field implications of the international law have been assessed by surveying academic/ research institutions, civil society organizations (CSOs) and concerned individuals, who gave their opinions on whether the provider parties (usually developing countries) would ensure effective participation of Indigenous people and local communities (ILCs) in establishing the mechanisms to inform the potential users of traditional knowledge (TK) about their obligations under art. 12.2 of Nagoya Protocol. First of all, involvement and participation of ILCs in suggested clearing-house mechanisms of the Parties are seldom witnessed. Secondly, as respondents expressed, it is doubtful that developing countries would ensure effective participation of ILCs in establishing the mechanisms to inform the potential users of TK about their obligations. Yet, as most of ILCs speak and understand local or indigenous languages, whether the Nagoya Protocol provides or not, it is a felt need that the Parties should disclose information in a language understandable to ILCs. Alternative opinions indicate that if TK held by ILCs is disclosed, the value is gone. Therefore, it should be protected by the domestic law first and should be disclosed then.Keywords: genetic resources, indigenous people, language, Nagoya protocol, participation, traditional knowledge
Procedia PDF Downloads 1553949 A Novel Gateway Location Algorithm for Wireless Mesh Networks
Authors: G. M. Komba
Abstract:
The Internet Gateway (IGW) has extra ability than a simple Mesh Router (MR) and the responsibility to route mostly the all traffic from Mesh Clients (MCs) to the Internet backbone however, IGWs are more expensive. Choosing strategic locations for the Internet Gateways (IGWs) best location in Backbone Wireless Mesh (BWM) precarious to the Wireless Mesh Network (WMN) and the location of IGW can improve a quantity of performance related problem. In this paper, we propose a novel algorithm, namely New Gateway Location Algorithm (NGLA), which aims to achieve four objectives, decreasing the network cost effective, minimizing delay, optimizing the throughput capacity, Different from existing algorithms, the NGLA increasingly recognizes IGWs, allocates mesh routers (MRs) to identify IGWs and promises to find a feasible IGW location and install minimum as possible number of IGWs while regularly conserving the all Quality of Service (QoS) requests. Simulation results showing that the NGLA outperforms other different algorithms by comparing the number of IGWs with a large margin and it placed 40% less IGWs and 80% gain of throughput. Furthermore the NGLA is easy to implement and could be employed for BWM.Keywords: Wireless Mesh Network, Gateway Location Algorithm, Quality of Service, BWM
Procedia PDF Downloads 3733948 Clutter Suppression Based on Singular Value Decomposition and Fast Wavelet Algorithm
Authors: Ruomeng Xiao, Zhulin Zong, Longfa Yang
Abstract:
Aiming at the problem that the target signal is difficult to detect under the strong ground clutter environment, this paper proposes a clutter suppression algorithm based on the combination of singular value decomposition and the Mallat fast wavelet algorithm. The method first carries out singular value decomposition on the radar echo data matrix, realizes the initial separation of target and clutter through the threshold processing of singular value, and then carries out wavelet decomposition on the echo data to find out the target location, and adopts the discard method to select the appropriate decomposition layer to reconstruct the target signal, which ensures the minimum loss of target information while suppressing the clutter. After the verification of the measured data, the method has a significant effect on the target extraction under low SCR, and the target reconstruction can be realized without the prior position information of the target and the method also has a certain enhancement on the output SCR compared with the traditional single wavelet processing method.Keywords: clutter suppression, singular value decomposition, wavelet transform, Mallat algorithm, low SCR
Procedia PDF Downloads 1253947 Poultry as a Carrier of Chlamydia gallinacea
Authors: Monika Szymańska-Czerwińsk, Kinga Zaręba-Marchewka, Krzysztof Niemczuk
Abstract:
Chlamydiaceae are Gram-negative bacteria distributed worldwide in animals and humans. One of them is Chlamydia gallinacea recently discovered. Available data show that C. gallinacea is dominant chlamydial agent found in poultry in European and Asian countries. The aim of the studies was screening of poultry flocks in order to evaluate frequency of C. gallinacea shedding and genetic diversity. Sampling was conducted in different regions of Poland in 2019-2020. Overall, 1466 cloacal/oral swabs were collected in duplicate from 146 apparently healthy poultry flocks including chickens, turkeys, ducks, geese and quails. Dry swabs were used for DNA extraction. DNA extracts were screened using a Chlamydiaceae 23S rRNA real-time PCR assay. To identify Chlamydia species, specific real-time PCR assays were performed. Furthermore, selected samples were used for sequencing based on ompA gene fragments and variable domains (VD1-2, VD3-4). In total, 10.3% of the tested flocks were Chlamydiaceae-positive (15/146 farms). The presence of Chlamydiaceae was confirmed mainly in chickens (13/92 farms) but also in turkey (1/19 farms) and goose (1/26 farms) flocks. Eleven flocks were identified as C. gallinacea-positive while four flocks remained unclassified. Phylogenetic analysis revealed at least 16 genetic variants of C. gallinacea. Research showed that Chlamydiaceae occur in a poultry flock in Poland. The strains of C. gallinacea as dominant species show genetic variability.Keywords: C. gallinacea, emerging agent, poultry, real-time PCR
Procedia PDF Downloads 1083946 Research on Control Strategy of Differential Drive Assisted Steering of Distributed Drive Electric Vehicle
Authors: J. Liu, Z. P. Yu, L. Xiong, Y. Feng, J. He
Abstract:
According to the independence, accuracy and controllability of the driving/braking torque of the distributed drive electric vehicle, a control strategy of differential drive assisted steering was designed. Firstly, the assisted curve under different speed and steering wheel torque was developed and the differential torques were distributed to the right and left front wheels. Then the steering return ability assisted control algorithm was designed. At last, the joint simulation was conducted by CarSim/Simulink. The result indicated: the differential drive assisted steering algorithm could provide enough steering drive-assisted under low speed and improve the steering portability. Along with the increase of the speed, the provided steering drive-assisted decreased. With the control algorithm, the steering stiffness of the steering system increased along with the increase of the speed, which ensures the driver’s road feeling. The control algorithm of differential drive assisted steering could avoid the understeer under low speed effectively.Keywords: differential assisted steering, control strategy, distributed drive electric vehicle, driving/braking torque
Procedia PDF Downloads 4813945 Loss Minimization by Distributed Generation Allocation in Radial Distribution System Using Crow Search Algorithm
Authors: M. Nageswara Rao, V. S. N. K. Chaitanya, K. Amarendranath
Abstract:
This paper presents an optimal allocation and sizing of Distributed Generation (DG) in Radial Distribution Network (RDN) for total power loss minimization and enhances the voltage profile of the system. The two main important part of this study first is to find optimal allocation and second is optimum size of DG. The locations of DGs are identified by Analytical expressions and crow search algorithm has been employed to determine the optimum size of DG. In this study, the DG has been placed on single and multiple allocations.CSA is a meta-heuristic algorithm inspired by the intelligent behavior of the crows. Crows stores their excess food in different locations and memorizes those locations to retrieve it when it is needed. They follow each other to do thievery to obtain better food source. This analysis is tested on IEEE 33 bus and IEEE 69 bus under MATLAB environment and the results are compared with existing methods.Keywords: analytical expression, distributed generation, crow search algorithm, power loss, voltage profile
Procedia PDF Downloads 2433944 Design and Performance Analysis of Resource Management Algorithms in Response to Emergency and Disaster Situations
Authors: Volkan Uygun, H. Birkan Yilmaz, Tuna Tugcu
Abstract:
This study focuses on the development and use of algorithms that address the issue of resource management in response to emergency and disaster situations. The presented system, named Disaster Management Platform (DMP), takes the data from the data sources of service providers and distributes the incoming requests accordingly both to manage load balancing and minimize service time, which results in improved user satisfaction. Three different resource management algorithms, which give different levels of importance to load balancing and service time, are proposed for the study. The first one is the Minimum Distance algorithm, which assigns the request to the closest resource. The second one is the Minimum Load algorithm, which assigns the request to the resource with the minimum load. Finally, the last one is the Hybrid algorithm, which combines the previous two approaches. The performance of the proposed algorithms is evaluated with respect to waiting time, success ratio, and maximum load ratio. The metrics are monitored from simulations, to find the optimal scheme for different loads. Two different simulations are performed in the study, one is time-based and the other is lambda-based. The results indicate that, the Minimum Load algorithm is generally the best in all metrics whereas the Minimum Distance algorithm is the worst in all cases and in all metrics. The leading position in performance is switched between the Minimum Distance and the Hybrid algorithms, as lambda values change.Keywords: emergency and disaster response, resource management algorithm, disaster situations, disaster management platform
Procedia PDF Downloads 3433943 Association Analysis of Putative Loci with Coronary Artery Disease
Authors: Asma Naseer Cheema, Attya Bhatti, Jabar Ali, John Peter
Abstract:
Background: High cholesterol levels, endothelial dysfunction, inefficient coagulation cascade and hyper inflammatory response all are the basis of coronary artery disease (CAD). Several studies are carried out to see the genetic influence of these factors on disease outcome. Objective: The objective of our study was to see the association of 10 putative loci with coronary artery disease in our population. Materials & Methods: We screened our population for 10 putative loci of CAD showing significant association (p < 5x10-8) with candidate genes (regulating the cholesterol metabolism, endothelial function, coagulation cascade and inflammatory response of body). Hardy-Weinberg equilibrium and linkage disequilibrium in cases and controls s were estimated separately. Approximately 5-10 ng of dried DNA in 384 well plate format was used to genotype each sample on the Sequenom iPLEX assay at University of Pittsburgh Genomics and Proteomics Core Laboratories. It was built on single-base primer extension with the MALDI-TOF MS detection possessing high sensitivity and specificity. The SNPs were genotyped through Taqman assay. Hardy Weinberg test was applied. The 10 SNPs were selected as genetic markers for this study (rs579459, rs1561198, rs2954029, rs1122608, rs17114036, rs9515203, rs10947789, rs7173743, rs2895811, rs2075650). Results: Mean age of the patient was 52 ± 11 years. Blood pressure and positive family history was found a significant risk factor for CAD. None of the selected SNPs showed significant association with coronary artery disease in our population (p>0.05). Conclusion: rs579459, rs1561198, rs2954029, rs1122608, rs17114036, rs9515203, rs10947789, rs7173743, rs2895811, rs2075650 are not significant genetic markers for CAD in our population.Keywords: CAD, genetic markers, loci, risk factors
Procedia PDF Downloads 3733942 Modified CUSUM Algorithm for Gradual Change Detection in a Time Series Data
Authors: Victoria Siriaki Jorry, I. S. Mbalawata, Hayong Shin
Abstract:
The main objective in a change detection problem is to develop algorithms for efficient detection of gradual and/or abrupt changes in the parameter distribution of a process or time series data. In this paper, we present a modified cumulative (MCUSUM) algorithm to detect the start and end of a time-varying linear drift in mean value of a time series data based on likelihood ratio test procedure. The design, implementation and performance of the proposed algorithm for a linear drift detection is evaluated and compared to the existing CUSUM algorithm using different performance measures. An approach to accurately approximate the threshold of the MCUSUM is also provided. Performance of the MCUSUM for gradual change-point detection is compared to that of standard cumulative sum (CUSUM) control chart designed for abrupt shift detection using Monte Carlo Simulations. In terms of the expected time for detection, the MCUSUM procedure is found to have a better performance than a standard CUSUM chart for detection of the gradual change in mean. The algorithm is then applied and tested to a randomly generated time series data with a gradual linear trend in mean to demonstrate its usefulness.Keywords: average run length, CUSUM control chart, gradual change detection, likelihood ratio test
Procedia PDF Downloads 3043941 Enhanced Imperialist Competitive Algorithm for the Cell Formation Problem Using Sequence Data
Authors: S. H. Borghei, E. Teymourian, M. Mobin, G. M. Komaki, S. Sheikh
Abstract:
Imperialist competitive algorithm (ICA) is a recent meta-heuristic method that is inspired by the social evolutions for solving NP-Hard problems. The ICA is a population based algorithm which has achieved a great performance in comparison to other meta-heuristics. This study is about developing enhanced ICA approach to solve the cell formation problem (CFP) using sequence data. In addition to the conventional ICA, an enhanced version of ICA, namely EICA, applies local search techniques to add more intensification aptitude and embed the features of exploration and intensification more successfully. Suitable performance measures are used to compare the proposed algorithms with some other powerful solution approaches in the literature. In the same way, for checking the proficiency of algorithms, forty test problems are presented. Five benchmark problems have sequence data, and other ones are based on 0-1 matrices modified to sequence based problems. Computational results elucidate the efficiency of the EICA in solving CFP problems.Keywords: cell formation problem, group technology, imperialist competitive algorithm, sequence data
Procedia PDF Downloads 4573940 Juvenile Paget’s Disease(JPD) of Bone
Authors: Aftab Ahmed, Ghulam Mehboob
Abstract:
The object of presentation is to highlight the importance of condition which is a very rare genetic disorder although Paget’s disease is common but its juvenile type is very rare and a late presentation due to very slow onset and lack of earlier standard management. We present a case of 25 years old male with a chronic history of bone pain and a slow onset of mild swelling, later on diagnosed as juvenile Paget disease of bone. Rarity of this condition with inaccessibility for standard health treatment can lead to a significant delay in presentation and its management. There have been 50 reported cases worldwide according to Genetic Home Reference. There is increased osteoclastic activity along with osteoblastic activity related to gene alteration and osteoprotegrin deficiency. Morbidity of disease is very significant which lead children to become immobilize.Keywords: juvenile, Paget’s disease, bone, Northern Area of Pakistan
Procedia PDF Downloads 3323939 An Experimental Study on Some Conventional and Hybrid Models of Fuzzy Clustering
Authors: Jeugert Kujtila, Kristi Hoxhalli, Ramazan Dalipi, Erjon Cota, Ardit Murati, Erind Bedalli
Abstract:
Clustering is a versatile instrument in the analysis of collections of data providing insights of the underlying structures of the dataset and enhancing the modeling capabilities. The fuzzy approach to the clustering problem increases the flexibility involving the concept of partial memberships (some value in the continuous interval [0, 1]) of the instances in the clusters. Several fuzzy clustering algorithms have been devised like FCM, Gustafson-Kessel, Gath-Geva, kernel-based FCM, PCM etc. Each of these algorithms has its own advantages and drawbacks, so none of these algorithms would be able to perform superiorly in all datasets. In this paper we will experimentally compare FCM, GK, GG algorithm and a hybrid two-stage fuzzy clustering model combining the FCM and Gath-Geva algorithms. Firstly we will theoretically dis-cuss the advantages and drawbacks for each of these algorithms and we will describe the hybrid clustering model exploiting the advantages and diminishing the drawbacks of each algorithm. Secondly we will experimentally compare the accuracy of the hybrid model by applying it on several benchmark and synthetic datasets.Keywords: fuzzy clustering, fuzzy c-means algorithm (FCM), Gustafson-Kessel algorithm, hybrid clustering model
Procedia PDF Downloads 5183938 New Segmentation of Piecewise Moving-Average Model by Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
This paper addresses the problem of the signal segmentation within a Bayesian framework by using reversible jump MCMC algorithm. The signal is modelled by piecewise constant Moving-Average (MA) model where the numbers of segments, the position of change-point, the order and the coefficient of the MA model for each segment are unknown. The reversible jump MCMC algorithm is then used to generate samples distributed according to the joint posterior distribution of the unknown parameters. These samples allow calculating some interesting features of the posterior distribution. The performance of the methodology is illustrated via several simulation results.Keywords: piecewise, moving-average model, reversible jump MCMC, signal segmentation
Procedia PDF Downloads 2313937 Algorithmic Approach to Management of Complications of Permanent Facial Filler: A Saudi Experience
Authors: Luay Alsalmi
Abstract:
Background: Facial filler is the most common type of cosmetic surgery next to botox. Permanent filler is preferred nowadays due to the low cost brought about by non-recurring injection appointments. However, such fillers pose a higher risk for complications, with even greater adverse effects when the procedure is done using unknown dermal filler injections. AIM: This study aimed to establish an algorithm to categorize and manage patients that receive permanent fillers. Materials and Methods: Twelve participants were presented to the service through emergency or as outpatient from November 2015 to May 2021. Demographics such as age, sex, date of injection, time of onset, and types of complications were collected. After examination, all cases were managed based on an algorithm established. FACE-Q was used to measure overall satisfaction and psychological well-being. Results: The algorithm to diagnose and manage these patients effectively with a high satisfaction rate was established in this study. All participants were non-smoker females with no known medical comorbidities. The algorithm presented determined the treatment plan when faced with complications. Results revealed high appearance-related psychosocial distress was observed prior to surgery, while it significantly dropped after surgery. FACE-Q was able to establish evidence of satisfactory ratings among patients prior to and after surgery. Conclusion: This treatment algorithm can guide the surgeon in formulating a suitable plan with fewer complications and a high satisfaction rate.Keywords: facial filler, FACE-Q, psycho-social stress, botox, treatment algorithm
Procedia PDF Downloads 893936 Commissioning of a Flattening Filter Free (FFF) using an Anisotropic Analytical Algorithm (AAA)
Authors: Safiqul Islam, Anamul Haque, Mohammad Amran Hossain
Abstract:
Aim: To compare the dosimetric parameters of the flattened and flattening filter free (FFF) beam and to validate the beam data using anisotropic analytical algorithm (AAA). Materials and Methods: All the dosimetric data’s (i.e. depth dose profiles, profile curves, output factors, penumbra etc.) required for the beam modeling of AAA were acquired using the Blue Phantom RFA for 6 MV, 6 FFF, 10MV & 10FFF. Progressive resolution Optimizer and Dose Volume Optimizer algorithm for VMAT and IMRT were are also configured in the beam model. Beam modeling of the AAA were compared with the measured data sets. Results: Due to the higher and lover energy component in 6FFF and 10 FFF the surface doses are 10 to 15% higher compared to flattened 6 MV and 10 MV beams. FFF beam has a lower mean energy compared to the flattened beam and the beam quality index were 6 MV 0.667, 6FFF 0.629, 10 MV 0.74 and 10 FFF 0.695 respectively. Gamma evaluation with 2% dose and 2 mm distance criteria for the Open Beam, IMRT and VMAT plans were also performed and found a good agreement between the modeled and measured data. Conclusion: We have successfully modeled the AAA algorithm for the flattened and FFF beams and achieved a good agreement with the calculated and measured value.Keywords: commissioning of a Flattening Filter Free (FFF) , using an Anisotropic Analytical Algorithm (AAA), flattened beam, parameters
Procedia PDF Downloads 3043935 Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems
Authors: Ramdan B. A. Koad, Ahmed F. Zobaa
Abstract:
Since the output characteristics of Photovoltaic (PV) system depends on the ambient temperature, solar radiation and load impedance, its maximum Power Point (MPP) is not constant. Under each condition PV module has a point at which it can produce its MPP. Therefore, a Maximum Power Point Tracking (MPPT) method is needed to uphold the PV panel operating at its MPP. This paper presents comparative study between the conventional MPPT methods used in (PV) system: Perturb and Observe (P&O), Incremental Conductance (IncCond), and Particle Swarm Optimization (PSO) algorithm for (MPPT) of (PV) system. To evaluate the study, the proposed PSO MPPT is implemented on a DC-DC converter and has been compared with P&O and INcond methods in terms of their tracking speed, accuracy and performance by using the Matlab tool Simulink. The simulation result shows that the proposed algorithm is simple, and is superior to the P&O and IncCond methods.Keywords: photovoltaic systems, maximum power point tracking, perturb and observe method, incremental conductance, methods and practical swarm optimization algorithm
Procedia PDF Downloads 3633934 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing
Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor
Abstract:
This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.Keywords: intelligent transportation system, object detection, vehicle couting, vehicle classification, video processing
Procedia PDF Downloads 3273933 Algorithm Optimization to Sort in Parallel by Decreasing the Number of the Processors in SIMD (Single Instruction Multiple Data) Systems
Authors: Ali Hosseini
Abstract:
Paralleling is a mechanism to decrease the time necessary to execute the programs. Sorting is one of the important operations to be used in different systems in a way that the proper function of many algorithms and operations depend on sorted data. CRCW_SORT algorithm executes ‘N’ elements sorting in O(1) time on SIMD (Single Instruction Multiple Data) computers with n^2/2-n/2 number of processors. In this article having presented a mechanism by dividing the input string by the hinge element into two less strings the number of the processors to be used in sorting ‘N’ elements in O(1) time has decreased to n^2/8-n/4 in the best state; by this mechanism the best state is when the hinge element is the middle one and the worst state is when it is minimum. The findings from assessing the proposed algorithm by other methods on data collection and number of the processors indicate that the proposed algorithm uses less processors to sort during execution than other methods.Keywords: CRCW, SIMD (Single Instruction Multiple Data) computers, parallel computers, number of the processors
Procedia PDF Downloads 3143932 Efficient Motion Estimation by Fast Three Step Search Algorithm
Authors: S. M. Kulkarni, D. S. Bormane, S. L. Nalbalwar
Abstract:
The rapid development in the technology have dramatic impact on the medical health care field. Medical data base obtained with latest machines like CT Machine, MRI scanner requires large amount of memory storage and also it requires large bandwidth for transmission of data in telemedicine applications. Thus, there is need for video compression. As the database of medical images contain number of frames (slices), hence while coding of these images there is need of motion estimation. Motion estimation finds out movement of objects in an image sequence and gets motion vectors which represents estimated motion of object in the frame. In order to reduce temporal redundancy between successive frames of video sequence, motion compensation is preformed. In this paper three step search (TSS) block matching algorithm is implemented on different types of video sequences. It is shown that three step search algorithm produces better quality performance and less computational time compared with exhaustive full search algorithm.Keywords: block matching, exhaustive search motion estimation, three step search, video compression
Procedia PDF Downloads 495