Search results for: heat mapping
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4082

Search results for: heat mapping

3302 Generation Mechanism of Opto-Acoustic Wave from in vivo Imaging Agent

Authors: Hiroyuki Aoki

Abstract:

The optoacoustic effect is the energy conversion phenomenon from light to sound. In recent years, this optoacoustic effect has been utilized for an imaging agent to visualize a tumor site in a living body. The optoacoustic imaging agent absorbs the light and emits the sound signal. The sound wave can propagate in a living organism with a small energy loss; therefore, the optoacoustic imaging method enables the molecular imaging of the deep inside of the body. In order to improve the imaging quality of the optoacoustic method, the more signal intensity is desired; however, it has been difficult to enhance the signal intensity of the optoacoustic imaging agent because the fundamental mechanism of the signal generation is unclear. This study deals with the mechanism to generate the sound wave signal from the optoacoustic imaging agent following the light absorption by experimental and theoretical approaches. The optoacoustic signal efficiency for the nano-particles consisting of metal and polymer were compared, and it was found that the polymer particle was better. The heat generation and transfer process for optoacoustic agents of metal and polymer were theoretically examined. It was found that heat generated in the metal particle rapidly transferred to the water medium, whereas the heat in the polymer particle was confined in itself. The confined heat in the small particle induces the massive volume expansion, resulting in the large optoacoustic signal for the polymeric particle agent. Thus, we showed that heat confinement is a crucial factor in designing the highly efficient optoacoustic imaging agent.

Keywords: nano-particle, opto-acoustic effect, in vivo imaging, molecular imaging

Procedia PDF Downloads 131
3301 Implementation of Lean Tools (Value Stream Mapping and ECRS) in an Oil Refinery

Authors: Ronita Singh, Yaman Pattanaik, Soham Lalwala

Abstract:

In today’s highly competitive business environment, every organization is striving towards lean manufacturing systems to achieve lower Production Lead Times, lower costs, less inventory and overall improvement in supply chains efficiency. Based on the similar idea, this paper presents the practical application of Value Stream Mapping (VSM) tool and ECRS (Eliminate, Combine, Reduce, and Simplify) technique in the receipt section of the material management center of an oil refinery. A value stream is an assortment of all actions (value added as well as non-value added) that are required to bring a product through the essential flows, starting with raw material and ending with the customer. For drawing current state value stream mapping, all relevant data of the receipt cycle has been collected and analyzed. Then analysis of current state map has been done for determining the type and quantum of waste at every stage which helped in ascertaining as to how far the warehouse is from the concept of lean manufacturing. From the results achieved by current VSM, it was observed that the two processes- Preparation of GRN (Goods Receipt Number) and Preparation of UD (Usage Decision) are both bottle neck operations and have higher cycle time. This root cause analysis of various types of waste helped in designing a strategy for step-wise implementation of lean tools. The future state thus created a lean flow of materials at the warehouse center, reducing the lead time of the receipt cycle from 11 days to 7 days and increasing overall efficiency by 27.27%.

Keywords: current VSM, ECRS, future VSM, receipt cycle, supply chain, VSM

Procedia PDF Downloads 315
3300 Application of Residual Correction Method on Hyperbolic Thermoelastic Response of Hollow Spherical Medium in Rapid Transient Heat Conduction

Authors: Po-Jen Su, Huann-Ming Chou

Abstract:

In this article we uses the residual correction method to deal with transient thermoelastic problems with a hollow spherical region when the continuum medium possesses spherically isotropic thermoelastic properties. Based on linear thermoelastic theory, the equations of hyperbolic heat conduction and thermoelastic motion were combined to establish the thermoelastic dynamic model with consideration of the deformation acceleration effect and non-Fourier effect under the condition of transient thermal shock. The approximate solutions of temperature and displacement distributions are obtained using the residual correction method based on the maximum principle in combination with the finite difference method, making it easier and faster to obtain upper and lower approximations of exact solutions. The proposed method is found to be an effective numerical method with satisfactory accuracy. Moreover, the result shows that the effect of transient thermal shock induced by deformation acceleration is enhanced by non-Fourier heat conduction with increased peak stress. The influence on the stress increases with the thermal relaxation time.

Keywords: maximum principle, non-Fourier heat conduction, residual correction method, thermo-elastic response

Procedia PDF Downloads 425
3299 A Thermo-mechanical Finite Element Model to Predict Thermal Cycles and Residual Stresses in Directed Energy Deposition Technology

Authors: Edison A. Bonifaz

Abstract:

In this work, a numerical procedure is proposed to design dense multi-material structures using the Directed Energy Deposition (DED) process. A thermo-mechanical finite element model to predict thermal cycles and residual stresses is presented. A numerical layer build-up procedure coupled with a moving heat flux was constructed to minimize strains and residual stresses that result in the multi-layer deposition of an AISI 316 austenitic steel on an AISI 304 austenitic steel substrate. To simulate the DED process, the automated interface of the ABAQUS AM module was used to define element activation and heat input event data as a function of time and position. Of this manner, the construction of ABAQUS user-defined subroutines was not necessary. Thermal cycles and thermally induced stresses created during the multi-layer deposition metal AM pool crystallization were predicted and validated. Results were analyzed in three independent metal layers of three different experiments. The one-way heat and material deposition toolpath used in the analysis was created with a MatLab path script. An optimal combination of feedstock and heat input printing parameters suitable for fabricating multi-material dense structures in the directed energy deposition metal AM process was established. At constant power, it can be concluded that the lower the heat input, the lower the peak temperatures and residual stresses. It means that from a design point of view, the one-way heat and material deposition processing toolpath with the higher welding speed should be selected.

Keywords: event series, thermal cycles, residual stresses, multi-pass welding, abaqus am modeler

Procedia PDF Downloads 69
3298 Genetic Dissection of QTLs in Intraspecific Hybrids Derived from Muskmelon (Cucumis Melo L.) and Mangalore Melon (Cucumis Melo Var Acidulus) for Shelflife and Fruit Quality Traits

Authors: Virupakshi Hiremata, Ratnakar M. Shet, Raghavendra Gunnaiah, Prashantha A.

Abstract:

Muskmelon is a health-beneficial and refreshing dessert vegetable with a low shelf life. Mangalore melon, a genetic homeologue of muskmelon, has a shelf life of more than six months and is mostly used for culinary purposes. Understanding the genetics of shelf life, yield and yield-related traits and identification of markers linked to such traits is helpful in transfer of extended shelf life from Mangalore melon to the muskmelon through intra-specific hybridization. For QTL mapping, 276 F2 mapping population derived from the cross Arka Siri × SS-17 was genotyped with 40 polymorphic markers distributed across 12 chromosomes. The same population was also phenotyped for yield, shelf life and fruit quality traits. One major QTL (R2 >10) and fourteen minor QTLs (R2 <10) localized on four linkage groups, governing different traits were mapped in F2 mapping population developed from the intraspecific cross with a LOD > 5.5. The phenotypic varience explained by each locus varied from 3.63 to 10.97 %. One QTL was linked to shelf-life (qSHL-3-1), five QTLs were linked to TSS (qTSS-1-1, qTSS-3-3, qTSS-3-1, qTSS-3-2 and qTSS-1-2), two QTLs for flesh thickness (qFT-3-1, and qFT-3-2) and seven QTLs for fruit yield per vine (qFYV-3-1, qFYV-1-1, qFYV-3-1, qFYV1-1, qFYV-1-3, qFYV2-1 and qFYV6-1). QTL flanking markers may be used for marker assisted introgression of shelf life into muskmelon. Important QTL will be further fine-mapped for identifying candidate genes by QTLseq and RNAseq analysis. Fine-mapping of Important Quantitative Trait Loci (QTL) holds immense promise in elucidating the genetic basis of complex traits. Leveraging advanced techniques like QTLseq and RNA sequencing (RNA seq) is crucial for this endeavor. QTLseq combines next-generation sequencing with traditional QTL mapping, enabling precise identification of genomic regions associated with traits of interest. Through high-throughput sequencing, QTLseq provides a detailed map of genetic variations linked to phenotypic variations, facilitating targeted investigations. Moreover, RNA seq analysis offers a comprehensive view of gene expression patterns in response to specific traits or conditions. By comparing transcriptomes between contrasting phenotypes, RNA seq aids in pinpointing candidate genes underlying QTL regions. Integrating QTLseq with RNA seq allows for a multi-dimensional approach, coupling genetic variation with gene expression dynamics.

Keywords: QTL, shelf life, TSS, muskmelon and Mangalore melon

Procedia PDF Downloads 54
3297 Autonomous Position Control of an Unmanned Aerial Vehicle Based on Accelerometer Response for Indoor Navigation Using Kalman Filtering

Authors: Syed Misbahuddin, Sagufta Kapadia

Abstract:

Autonomous indoor drone navigation has been posed with various challenges, including the inability to use a Global Positioning System (GPS). As of now, Unmanned Aerial Vehicles (UAVs) either rely on 3D mapping systems or utilize external camera arrays to track the UAV in an enclosed environment. The objective of this paper is to develop an algorithm that utilizes Kalman Filtering to reduce noise, allowing the UAV to be navigated indoors using only the flight controller and an onboard companion computer. In this paper, open-source libraries are used to control the UAV, which will only use the onboard accelerometer on the flight controller to estimate the position through double integration. One of the advantages of such a system is that it allows for low-cost and lightweight UAVs to autonomously navigate indoors without advanced mapping of the environment or the use of expensive high-precision-localization sensors.

Keywords: accelerometer, indoor-navigation, Kalman-filtering, position-control

Procedia PDF Downloads 350
3296 Environmental Impact of Cysts of Some Dinoflagellates Species in the Bizerta Lagoon

Authors: M. Bellakhal, M. Bellakhal, L. Aleya

Abstract:

The specific composition and abundance of dinoflagellate resistance cysts in relation to environmental factors were studied from the superficial sediment at 123 stations in the Bizerte lagoon. 48 morphotypes of dinoflagellate cysts were identified, mainly dominated by Brigantidinium simplex, Votadinum spinosum, Alexandrium pacificum, Alexandrium pseudogonyaulax, and Lingulodinum machaerophorum. The density of cysts ranged from 1276 to 20126 cysts g⁻¹ dry sediment. Significant differences in the distribution pattern of the cysts were recorded, which allowed us to distinguish two areas; thus the inner areas of the lagoon have an abundance of cysts greater than the areas with marine influence. Ballast water discharges and shellfish culture may be incriminated as potential sources of introduction of species, particularly potentially toxic ones such as A. pacificum and Polysphaeridium zoharyi, without neglecting the role of currents in cyst distribution. Cyst mapping can be used as an indicator of potential foci of future toxic species blooms in this ecosystem.

Keywords: Bizerta Lagoon, cysts, dinoflagellates, mapping

Procedia PDF Downloads 135
3295 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example

Authors: Wang Yang

Abstract:

Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.

Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map

Procedia PDF Downloads 104
3294 A Comparative Assessment Method For Map Alignment Techniques

Authors: Rema Daher, Theodor Chakhachiro, Daniel Asmar

Abstract:

In the era of autonomous robot mapping, assessing the goodness of the generated maps is important, and is usually performed by aligning them to ground truth. Map alignment is difficult for two reasons: first, the query maps can be significantly distorted from ground truth, and second, establishing what constitutes ground truth for different settings is challenging. Most map alignment techniques to this date have addressed the first problem, while paying too little importance to the second. In this paper, we propose a benchmark dataset, which consists of synthetically transformed maps with their corresponding displacement fields. Furthermore, we propose a new system for comparison, where the displacement field of any map alignment technique can be computed and compared to the ground truth using statistical measures. The local information in displacement fields renders the evaluation system applicable to any alignment technique, whether it is linear or not. In our experiments, the proposed method was applied to different alignment methods from the literature, allowing for a comparative assessment between them all.

Keywords: assessment methods, benchmark, image deformation, map alignment, robot mapping, robot motion

Procedia PDF Downloads 117
3293 Rayleigh-Bénard-Taylor Convection of Newtonian Nanoliquid

Authors: P. G. Siddheshwar, T. N. Sakshath

Abstract:

In the paper we make linear and non-linear stability analyses of Rayleigh-Bénard convection of a Newtonian nanoliquid in a rotating medium (called as Rayleigh-Bénard-Taylor convection). Rigid-rigid isothermal boundaries are considered for investigation. Khanafer-Vafai-Lightstone single phase model is used for studying instabilities in nanoliquids. Various thermophysical properties of nanoliquid are obtained using phenomenological laws and mixture theory. The eigen boundary value problem is solved for the Rayleigh number using an analytical method by considering trigonometric eigen functions. We observe that the critical nanoliquid Rayleigh number is less than that of the base liquid. Thus the onset of convection is advanced due to the addition of nanoparticles. So, increase in volume fraction leads to advanced onset and thereby increase in heat transport. The amplitudes of convective modes required for estimating the heat transport are determined analytically. The tri-modal standard Lorenz model is derived for the steady state assuming small scale convective motions. The effect of rotation on the onset of convection and on heat transport is investigated and depicted graphically. It is observed that the onset of convection is delayed due to rotation and hence leads to decrease in heat transport. Hence, rotation has a stabilizing effect on the system. This is due to the fact that the energy of the system is used to create the component V. We observe that the amount of heat transport is less in the case of rigid-rigid isothermal boundaries compared to free-free isothermal boundaries.

Keywords: nanoliquid, rigid-rigid, rotation, single phase

Procedia PDF Downloads 234
3292 Experimental Investigation of Nano-Enhanced-PCM-Based Heat Sinks for Passive Thermal Management of Small Satellites

Authors: Billy Moore, Izaiah Smith, Dominic Mckinney, Andrew Cisco, Mehdi Kabir

Abstract:

Phase-change materials (PCMs) are considered one of the most promising substances to be engaged passively in thermal management and storage systems for spacecraft, where it is critical to diminish the overall mass of the onboard thermal storage system while minimizing temperature fluctuations upon drastic changes in the environmental temperature within the orbit stage. This makes the development of effective thermal management systems more challenging since there is no atmosphere in outer space to take advantage of natural and forced convective heat transfer. PCM can store or release a tremendous amount of thermal energy within a small volume in the form of latent heat of fusion in the phase-change processes of melting and solidification from solid to liquid or, conversely, during which temperature remains almost constant. However, the existing PCMs pose very low thermal conductivity, leading to an undesirable increase in total thermal resistance and, consequently, a slow thermal response time. This often turns into a system bottleneck from the thermal performance perspective. To address the above-mentioned drawback, the present study aims to design and develop various heat sinks featured by nano-structured graphitic foams (i.e., carbon foam), expanded graphite (EG), and open-cell copper foam (OCCF) infiltrated with a conventional paraffin wax PCM with a melting temperature of around 35 °C. This study focuses on the use of passive thermal management techniques to develop efficient heat sinks to maintain the electronics circuits’ and battery module’s temperature within the thermal safety limit for small spacecraft and satellites such as the Pumpkin and OPTIMUS battery modules designed for CubeSats with a cross-sectional area of approximately 4˝×4˝. Thermal response times for various heat sinks are assessed in a vacuum chamber to simulate space conditions.

Keywords: heat sink, porous foams, phase-change material (PCM), spacecraft thermal management

Procedia PDF Downloads 14
3291 Temperature Distribution in Friction Stir Welding Using Finite Element Method

Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah, Nur’amirah Busu, M. Arif Fadzleen Zainal Abidin, M. Amlie A. Kasim

Abstract:

Temperature distribution in Friction Stir Welding (FSW) of 6061-T6 Aluminum Alloy is modeled using the Finite Element Method (FEM). In order to obtain temperature distribution in the welded aluminum plates during welding operation, transient thermal finite element analyses are performed. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and workpiece is used in the analysis. Three-dimensional model for simulated process is carried out by using Altair HyperWork, a commercially available software. Transient thermal finite element analyses are performed in order to obtain the temperature distribution in the welded Aluminum plates during welding operation. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the workpiece.

Keywords: frictions stir welding, temperature distribution, finite element method, altair hyperwork

Procedia PDF Downloads 543
3290 Topology Optimization of Heat Exchanger Manifolds for Aircraft

Authors: Hanjong Kim, Changwan Han, Seonghun Park

Abstract:

Heat exchanger manifolds in aircraft play an important role in evenly distributing the fluid entering through the inlet to the heat transfer unit. In order to achieve this requirement, the manifold should be designed to have a light weight by withstanding high internal pressure. Therefore, this study aims at minimizing the weight of the heat exchanger manifold through topology optimization. For topology optimization, the initial design space was created with the inner surface extracted from the currently used manifold model and with the outer surface having a dimension of 243.42 mm of X 74.09 mm X 65 mm. This design space solid model was transformed into a finite element model with a maximum tetrahedron mesh size of 2 mm using ANSYS Workbench. Then, topology optimization was performed under the boundary conditions of an internal pressure of 5.5 MPa and the fixed support for rectangular inlet boundaries by SIMULIA TOSCA. This topology optimization produced the minimized finial volume of the manifold (i.e., 7.3% of the initial volume) based on the given constraints (i.e., 6% of the initial volume) and the objective function (i.e., maximizing manifold stiffness). Weight of the optimized model was 6.7% lighter than the currently used manifold, but after smoothing the topology optimized model, this difference would be bigger. The current optimized model has uneven thickness and skeleton-shaped outer surface to reduce stress concentration. We are currently simplifying the optimized model shape with spline interpolations by reflecting the design characteristics in thickness and skeletal structures from the optimized model. This simplified model will be validated again by calculating both stress distributions and weight reduction and then the validated model will be manufactured using 3D printing processes.

Keywords: topology optimization, manifold, heat exchanger, 3D printing

Procedia PDF Downloads 248
3289 Validation of Mapping Historical Linked Data to International Committee for Documentation (CIDOC) Conceptual Reference Model Using Shapes Constraint Language

Authors: Ghazal Faraj, András Micsik

Abstract:

Shapes Constraint Language (SHACL), a World Wide Web Consortium (W3C) language, provides well-defined shapes and RDF graphs, named "shape graphs". These shape graphs validate other resource description framework (RDF) graphs which are called "data graphs". The structural features of SHACL permit generating a variety of conditions to evaluate string matching patterns, value type, and other constraints. Moreover, the framework of SHACL supports high-level validation by expressing more complex conditions in languages such as SPARQL protocol and RDF Query Language (SPARQL). SHACL includes two parts: SHACL Core and SHACL-SPARQL. SHACL Core includes all shapes that cover the most frequent constraint components. While SHACL-SPARQL is an extension that allows SHACL to express more complex customized constraints. Validating the efficacy of dataset mapping is an essential component of reconciled data mechanisms, as the enhancement of different datasets linking is a sustainable process. The conventional validation methods are the semantic reasoner and SPARQL queries. The former checks formalization errors and data type inconsistency, while the latter validates the data contradiction. After executing SPARQL queries, the retrieved information needs to be checked manually by an expert. However, this methodology is time-consuming and inaccurate as it does not test the mapping model comprehensively. Therefore, there is a serious need to expose a new methodology that covers the entire validation aspects for linking and mapping diverse datasets. Our goal is to conduct a new approach to achieve optimal validation outcomes. The first step towards this goal is implementing SHACL to validate the mapping between the International Committee for Documentation (CIDOC) conceptual reference model (CRM) and one of its ontologies. To initiate this project successfully, a thorough understanding of both source and target ontologies was required. Subsequently, the proper environment to run SHACL and its shape graphs were determined. As a case study, we performed SHACL over a CIDOC-CRM dataset after running a Pellet reasoner via the Protégé program. The applied validation falls under multiple categories: a) data type validation which constrains whether the source data is mapped to the correct data type. For instance, checking whether a birthdate is assigned to xsd:datetime and linked to Person entity via crm:P82a_begin_of_the_begin property. b) Data integrity validation which detects inconsistent data. For instance, inspecting whether a person's birthdate occurred before any of the linked event creation dates. The expected results of our work are: 1) highlighting validation techniques and categories, 2) selecting the most suitable techniques for those various categories of validation tasks. The next plan is to establish a comprehensive validation model and generate SHACL shapes automatically.

Keywords: SHACL, CIDOC-CRM, SPARQL, validation of ontology mapping

Procedia PDF Downloads 253
3288 Block N Lvi from the Northern Side of Parthenon Frieze: A Case Study of Augmented Reality for Museum Application

Authors: Donato Maniello, Alessandra Cirafici, Valeria Amoretti

Abstract:

This paper aims to present a new method that consists in the use of video mapping techniques – that is a particular form of augmented reality, which could produce new tools - different from the ones that are actually in use - for an interactive Museum experience. With the words 'augmented reality', we mean the addition of more information than what the visitor would normally perceive; this information is mediated by the use of computer and projector. The proposed application involves the creation of a documentary that depicts and explains the history of the artifact and illustrates its features; this must be projected on the surface of the faithful copy of the freeze (obtained in full-scale with a 3D printer). This mode of operation uses different techniques that allow passing from the creation of the model to the creation of contents through an accurate historical and artistic analysis, and finally to the warping phase, that will permit to overlap real and virtual models. The ultimate step, that is still being studied, includes the creation of interactive contents that would be activated by visitors through appropriate motion sensors.

Keywords: augmented reality, multimedia, parthenon frieze, video mapping

Procedia PDF Downloads 387
3287 Effects of Cattaneo-Christov Heat Flux on 3D Magnetohydrodynamic Viscoelastic Fluid Flow with Variable Thermal Conductivity

Authors: Muhammad Ramzan

Abstract:

A mathematical model has been envisaged to discuss three-dimensional Viscoelastic fluid flow with an effect of Cattaneo-Christov heat flux in attendance of magnetohydrodynamic (MHD). Variable thermal conductivity with the impact of homogeneous-heterogeneous reactions and convective boundary condition is also taken into account. Homotopy analysis method is engaged to obtain series solutions. Graphical illustrations depicting behaviour of sundry parameters on skin friction coefficient and all involved distributions are also given. It is observed that velocity components are decreasing functions of Viscoelastic fluid parameter. Furthermore, strength of homogeneous and heterogeneous reactions have opposite effects on concentration distribution. A comparison with a published paper has also been established and an excellent agreement is obtained; hence reliable results are being presented.

Keywords: Cattaneo Christov heat flux, homogenous-heterogeneous reactions, magnetic field, variable thermal conductivity

Procedia PDF Downloads 197
3286 Effect of Post Hardening on PVD Coated Tools

Authors: Manjinder Bajwa, Mahipal Singh, Ashish Tulli

Abstract:

In the research, the effect of varying cutting parameters, design parameters and heat treatment processes were studied on the cutting performance (Tool life) of a PVD coated tool. Thus, in a quest for these phenomenon comparison, a single coated tool and a multicoated tool were analyzed after suitable heat treatment process. TNMG shaped insert with single coating of TiCN and multi-coating of TiAlN/TiN were developed on tungsten carbide substrate. These coated inserts were then successfully annealed and normalized for a temperature of 350°C for 30 minutes and their cutting performance was evaluated as per the flank wear obtained after turning of mild steel. The results showed that heat treatment had a suitable impact on the tool life of the coated insert and also led to increase in the micro-hardness of the tool coatings and decrease in the wear rate.

Keywords: PVD coatings, flank wear, micro-hardness, annealing, normalizing

Procedia PDF Downloads 356
3285 Data Integration in a GIS Geographic Information System Mapping of Agriculture in Semi-Arid Region of Setif, Algeria

Authors: W. Riahi, M. L. Mansour

Abstract:

Using tools of data processing such as geographic information system (GIS) for the contribution of the space management becomes more and more frequent. It allows collecting and analyzing diverse natural information relative to the same territory. Space technologies play crucial role in agricultural phenomenon analysis. For this, satellite images treatment were used to classify vegetation density and particularly agricultural areas in Setif province by making recourse to the Normalized Difference Vegetation Index (NDVI). This step was completed by mapping agricultural activities of the province by using ArcGIS.10 software in order to display an overall view and to realize spatial analysis of various themes combined between them which are chosen according to their strategic importance in different thematic maps. The synthesis map elaborately showed that geographic information system can contribute significantly to agricultural management by describing potentialities and development opportunities of production systems and agricultural sectors.

Keywords: GIS, satellite image, agriculture, NDVI, thematic map

Procedia PDF Downloads 424
3284 Heat Transfer Phenomena Identification of a Non-Active Floor in a Stack-Ventilated Building in Summertime: Empirical Study

Authors: Miguel Chen Austin, Denis Bruneau, Alain Sempey, Laurent Mora, Alain Sommier

Abstract:

An experimental study in a Plus Energy House (PEH) prototype was conducted in August 2016. It aimed to highlight the energy charge and discharge of a concrete-slab floor submitted to the day-night-cycles heat exchanges in the southwestern part of France and to identify the heat transfer phenomena that take place in both processes: charge and discharge. The main features of this PEH, significant to this study, are the following: (i) a non-active slab covering the major part of the entire floor surface of the house, which include a concrete layer 68 mm thick as upper layer; (ii) solar window shades located on the north and south facades along with a large eave facing south, (iii) large double-glazed windows covering the majority of the south facade, (iv) a natural ventilation system (NVS) composed by ten automatized openings with different dimensions: four are located on the south facade, four on the north facade and two on the shed roof (north-oriented). To highlight the energy charge and discharge processes of the non-active slab, heat flux and temperature measurement techniques were implemented, along with airspeed measurements. Ten “measurement-poles” (MP) were distributed all over the concrete-floor surface. Each MP represented a zone of measurement, where air and surface temperatures, and convection and radiation heat fluxes, were intended to be measured. The airspeed was measured only at two points over the slab surface, near the south facade. To identify the heat transfer phenomena that take part in the charge and discharge process, some relevant dimensionless parameters were used, along with statistical analysis; heat transfer phenomena were identified based on this analysis. Experimental data, after processing, had shown that two periods could be identified at a glance: charge (heat gain, positive values) and discharge (heat losses, negative values). During the charge period, on the floor surface, radiation heat exchanges were significantly higher compared with convection. On the other hand, convection heat exchanges were significantly higher than radiation, in the discharge period. Spatially, both, convection and radiation heat exchanges are higher near the natural ventilation openings and smaller far from them, as expected. Experimental correlations have been determined using a linear regression model, showing the relation between the Nusselt number with relevant parameters: Peclet, Rayleigh, and Richardson numbers. This has led to the determination of the convective heat transfer coefficient and its comparison with the convective heat coefficient resulting from measurements. Results have shown that forced and natural convection coexists during the discharge period; more accurate correlations with the Peclet number than with the Rayleigh number, have been found. This may suggest that forced convection is stronger than natural convection. Yet, airspeed levels encountered suggest that it is natural convection that should take place rather than forced convection. Despite this, Richardson number values encountered indicate otherwise. During the charge period, air-velocity levels might indicate that none air motion occurs, which might lead to heat transfer by diffusion instead of convection.

Keywords: heat flux measurement, natural ventilation, non-active concrete slab, plus energy house

Procedia PDF Downloads 416
3283 Numerical Study of Entropy Generation Due to Hybrid Nano-Fluid Flow through Coaxial Porous Disks

Authors: Muhammad Bilal Ameen, M. Zubair Akbar Qureshi

Abstract:

The current investigation of two-dimensional hybrid nanofluid flows with two coaxial parallel disks has been presented. Consider the hybrid nanofluid has been taken as steady-state. Consider the coaxial disks that have been porous. Consider the heat equation to examine joule heating and viscous dissipation effects. Nonlinear partial differential equations have been solved numerically. For shear stress and heat transfer, results are tabulated. Hybrid nanoparticles and Eckert numbers are increasing for heat transfer. Entropy generation is expanded with radiation parameters Eckert, Reynold, Prandtl, and Peclet numbers. A set of ordinary differential equations is obtained to utilize the capable transformation variables. The numerical solution of the continuity, momentum, energy, and entropy generation equations is obtaining using the command bvp4c of Matlab as a solver. To explore the impact of main parameters like suction/infusion, Prandtl, Reynold, Eckert, Peclet number, and volume fraction parameters, various graphs have been plotted and examined. It is concluded that a convectional nanofluid is highly compared by entropy generation with the boundary layer of hybrid nanofluid.

Keywords: entropy generation, hybrid nano fluid, heat transfer, porous disks

Procedia PDF Downloads 150
3282 Using Mind Map Technique to Enhance Medical Vocabulary Retention for the First Year Nursing Students at a Higher Education Institution

Authors: Nguyen Quynh Trang, Nguyễn Thị Hông Nhung

Abstract:

The study aimed to identify the effectiveness of using the mind map technique to enhance students’ medical vocabulary retention among a group of students at a higher education institution - Thai Nguyen University of Medicine and Pharmacy during the first semester of the school year 2022-2023. The research employed a quasi-experimental method, exploring primary sources such as questionnaires and the analyzed results of pre-and-post tests. Almost teachers and students showed high preferences for the implementation of the mind map technique in language teaching and learning. Furthermore, results from the pre-and-post tests between the experimental group and control one pointed out that this technique brought back positive academic performance in teaching and learning English. The research findings revealed that there should be more supportive policies to evoke the use of the mind map technique in a pedagogical context. Aim of the Study: The purpose of this research was to investigate whether using mind mapping can help students to enhance nursing students’ medical vocabulary retention and to assess the students’ attitudes toward using mind mapping as a tool to improve their vocabulary. The methodology of the study: The research employed a quasi-experimental method, exploring primary sources such as questionnaires and the analyzed results of pre-and-post tests. The contribution of the study: The research contributed to the innovation of teaching vocabulary methods for English teachers at a higher education institution. Moreover, the research helped the English teachers and the administrators at a university evoke and maintain the motivation of students not only in English classes but also in other subjects. The findings of this research were beneficial to teachers, students, and researchers interested in using mind mapping to teach and learn English vocabulary. The research explored and proved the effectiveness of applying mind mapping in teaching and learning English vocabulary. Therefore, teaching and learning activities were conducted more and more effectively and helped students overcome challenges in remembering vocabulary and creating motivation to learn English vocabulary.

Keywords: medical vocabulary retention, mind map technique, nursing students, medical vocabulary

Procedia PDF Downloads 75
3281 Austenite Transformation in Duplex Stainless Steels under Fast Cooling Rates

Authors: L. O. Luengas, E. V. Morales, L. F. G. De Souza, I. S. Bott

Abstract:

Duplex Stainless Steels are well known for its good mechanical properties, and corrosion resistance. However, when submitted to heating, these features can be lost since the good properties are strongly dependent on the austenite-ferrite phase ratio which has to be approximately 1:1 to keep the phase balance. In a welded joint, the transformation kinetics at the heat affected zone (HAZ) is a function of the cooling rates applied which in turn are dependent on the heat input. The HAZ is usually ferritized at these temperatures, and it has been argued that small variations of the chemical composition can play a role in the solid state transformation sequence of ferrite to austenite during cooling. The δ → γ transformation has been reported to be massive and diffusionless due to the fast cooling rate, but it is also considered a diffusion controlled transformation. The aim of this work is to evaluate the effect of different heat inputs on the HAZ of two duplex stainless steels UNS S32304 and S32750, obtained by physical simulation.

Keywords: duplex stainless steels, HAZ, microstructural characterization, physical simulation

Procedia PDF Downloads 277
3280 The Sensitivity of Electrical Geophysical Methods for Mapping Salt Stores within the Soil Profile

Authors: Fathi Ali Swaid

Abstract:

Soil salinization is one of the most hazardous phenomenons accelerating the land degradation processes. It either occurs naturally or is human-induced. High levels of soil salinity negatively affect crop growth and productivity leading land degradation ultimately. Thus, it is important to monitor and map soil salinity at an early stage to enact effective soil reclamation program that helps lessen or prevent future increase in soil salinity. Geophysical method has outperformed the traditional method for assessing soil salinity offering more informative and professional rapid assessment techniques for monitoring and mapping soil salinity. Soil sampling, EM38 and 2D conductivity imaging have been evaluated for their ability to delineate and map the level of salinity variations at Second Ponds Creek. The three methods have shown that the subsoil in the study area is saline. Salt variations were successfully observed under either method. However, EM38 reading and 2D inversion data show a clear spatial structure comparing to EC1:5 of soil samples in spite of that all soil samples, EM38 and 2D imaging were collected from the same location. Because EM38 readings and 2D imaging data are a weighted average of electrical soil conductance, it is more representative of soil properties than the soil samples method. The mapping of subsurface soil at the study area has been successful and the resistivity imaging has proven to be an advantage. The soil salinity analysis (EC1:5) correspond well to the true resistivity bringing together a good result of soil salinity. Soil salinity clearly indicated by previous investigation EM38 have been confirmed by the interpretation of the true resistivity at study area.

Keywords: 2D conductivity imaging, EM38 readings, soil salinization, true resistivity, urban salinity

Procedia PDF Downloads 376
3279 A Non-Parametric Based Mapping Algorithm for Use in Audio Fingerprinting

Authors: Analise Borg, Paul Micallef

Abstract:

Over the past few years, the online multimedia collection has grown at a fast pace. Several companies showed interest to study the different ways to organize the amount of audio information without the need of human intervention to generate metadata. In the past few years, many applications have emerged on the market which are capable of identifying a piece of music in a short time. Different audio effects and degradation make it much harder to identify the unknown piece. In this paper, an audio fingerprinting system which makes use of a non-parametric based algorithm is presented. Parametric analysis is also performed using Gaussian Mixture Models (GMMs). The feature extraction methods employed are the Mel Spectrum Coefficients and the MPEG-7 basic descriptors. Bin numbers replaced the extracted feature coefficients during the non-parametric modelling. The results show that non-parametric analysis offer potential results as the ones mentioned in the literature.

Keywords: audio fingerprinting, mapping algorithm, Gaussian Mixture Models, MFCC, MPEG-7

Procedia PDF Downloads 421
3278 Effects of G-jitter Combined with Heat and Mass Transfer by Mixed Convection MHD Flow of Maxwell Fluid in a Porous Space

Authors: Faisal Salah, Z. A. Aziz, K. K. Viswanathan

Abstract:

In this article, the effects of g-jitter induced and combined with heat and mass transfer by mixed convection of MHD Maxwell fluid in microgravity situation is investigated for a simple system. This system consists of two heated vertical parallel infinite flat plates held at constant but different temperatures and concentrations. By using modified Darcy’s law, the equations governing the flow are modelled. These equations are solved analytically for the induced velocity, temperature and concentration distributions. Many interesting available results in the relevant literature (i.e. Newtonian fluid) is obtained as the special case of the present general analysis. Finally, the graphical results for the velocity profile of the oscillating flow in the channel are presented and discussed for different values of the material constants.

Keywords: g-jitter, heat and mass transfer, mixed convection, Maxwell fluid, porous medium

Procedia PDF Downloads 492
3277 Mapping of Geological Structures Using Aerial Photography

Authors: Ankit Sharma, Mudit Sachan, Anurag Prakash

Abstract:

Rapid growth in data acquisition technologies through drones, have led to advances and interests in collecting high-resolution images of geological fields. Being advantageous in capturing high volume of data in short flights, a number of challenges have to overcome for efficient analysis of this data, especially while data acquisition, image interpretation and processing. We introduce a method that allows effective mapping of geological fields using photogrammetric data of surfaces, drainage area, water bodies etc, which will be captured by airborne vehicles like UAVs, we are not taking satellite images because of problems in adequate resolution, time when it is captured may be 1 yr back, availability problem, difficult to capture exact image, then night vision etc. This method includes advanced automated image interpretation technology and human data interaction to model structures and. First Geological structures will be detected from the primary photographic dataset and the equivalent three dimensional structures would then be identified by digital elevation model. We can calculate dip and its direction by using the above information. The structural map will be generated by adopting a specified methodology starting from choosing the appropriate camera, camera’s mounting system, UAVs design ( based on the area and application), Challenge in air borne systems like Errors in image orientation, payload problem, mosaicing and geo referencing and registering of different images to applying DEM. The paper shows the potential of using our method for accurate and efficient modeling of geological structures, capture particularly from remote, of inaccessible and hazardous sites.

Keywords: digital elevation model, mapping, photogrammetric data analysis, geological structures

Procedia PDF Downloads 686
3276 Numerical Studies on Bypass Thrust Augmentation Using Convective Heat Transfer in Turbofan Engine

Authors: R. Adwaith, J. Gopinath, Vasantha Kohila B., R. Chandru, Arul Prakash R.

Abstract:

The turbofan engine is a type of air breathing engine that is widely used in aircraft propulsion produces thrust mainly from the mass-flow of air bypassing the engine core. The present research has developed an effective method numerically by increasing the thrust generated from the bypass air. This thrust increase is brought about by heating the walls of the bypass valve from the combustion chamber using convective heat transfer method. It is achieved computationally by the use external heat to enhance the velocity of bypass air of turbofan engines. The bypass valves are either heated externally using multicell tube resistor which convert electricity generated by dynamos into heat or heat is transferred from the combustion chamber. This increases the temperature of the flow in the valves and thereby increase the velocity of the flow that enters the nozzle of the engine. As a result, mass-flow of air passing the core engine for producing more thrust can be significantly reduced thereby saving considerable amount of Jet fuel. Numerical analysis has been carried out on a scaled down version of a typical turbofan bypass valve, where the valve wall temperature has been increased to 700 Kelvin. It is observed from the analysis that, the exit velocity contributing to thrust has significantly increased by 10 % due to the heating of by-pass valve. The degree of optimum increase in the temperature, and the corresponding effect in the increase of jet velocity is calculated to determine the operating temperature range for efficient increase in velocity. The technique used in the research increases the thrust by using heated by-pass air without extracting much work from the fuel and thus improve the efficiency of existing turbofan engines. Dimensional analysis has been carried to prove the accuracy of the results obtained numerically.

Keywords: turbofan engine, bypass valve, multi-cell tube, convective heat transfer, thrust

Procedia PDF Downloads 358
3275 Occupational Heat Stress Condition According to Wet Bulb Globe Temperature Index in Textile Processing Unit: A Case Study of Surat, Gujarat, India

Authors: Dharmendra Jariwala, Robin Christian

Abstract:

Thermal exposure is a common problem in every manufacturing industry where heat is used in the manufacturing process. In developing countries like India, a lack of awareness regarding the proper work environmental condition is observed among workers. Improper planning of factory building, arrangement of machineries, ventilation system, etc. play a vital role in the rise of temperature within the manufacturing areas. Due to the uncontrolled thermal stress, workers may be subjected to various heat illnesses from mild disorder to heat stroke. Heat stress is responsible for the health risk and reduction in production. Wet Bulb Globe Temperature (WBGT) index and relative humidity are used to evaluate heat stress conditions. WBGT index is a weighted average of natural wet bulb temperature, globe temperature, dry bulb temperature, which are measured with standard instrument QuestTemp 36 area stress monitor. In this study textile processing units have been selected in the industrial estate in the Surat city. Based on the manufacturing process six locations were identified within the plant at which process was undertaken at 120°C to 180°C. These locations were jet dying machine area, stenter machine area, printing machine, looping machine area, washing area which generate process heat. Office area was also selected for comparision purpose as a sixth location. Present Study was conducted in the winter season and summer season for day and night shift. The results shows that average WBGT index was found above Threshold Limiting Value (TLV) during summer season for day and night shift in all three industries except office area. During summer season highest WBGT index of 32.8°C was found during day shift and 31.5°C was found during night shift at printing machine area. Also during winter season highest WBGT index of 30°C and 29.5°C was found at printing machine area during day shift and night shift respectively.

Keywords: relative humidity, textile industry, thermal stress, WBGT

Procedia PDF Downloads 173
3274 Critical Analysis of Heat Exchanger Cycle for its Maintainability Using Failure Modes and Effect Analysis and Pareto Analysis

Authors: Sayali Vyas, Atharva Desai, Shreyas Badave, Apurv Kulkarni, B. Rajiv

Abstract:

The Failure Modes and Effect Analysis (FMEA) is an efficient evaluation technique to identify potential failures in products, processes, and services. FMEA is designed to identify and prioritize failure modes. It proves to be a useful method for identifying and correcting possible failures at its earliest possible level so that one can avoid consequences of poor performance. In this paper, FMEA tool is used in detection of failures of various components of heat exchanger cycle and to identify critical failures of the components which may hamper the system’s performance. Further, a detailed Pareto analysis is done to find out the most critical components of the cycle, the causes of its failures, and possible recommended actions. This paper can be used as a checklist which will help in maintainability of the system.

Keywords: FMEA, heat exchanger cycle, Ishikawa diagram, pareto analysis, RPN (Risk Priority Number)

Procedia PDF Downloads 402
3273 D-Wave Quantum Computing Ising Model: A Case Study for Forecasting of Heat Waves

Authors: Dmytro Zubov, Francesco Volponi

Abstract:

In this paper, D-Wave quantum computing Ising model is used for the forecasting of positive extremes of daily mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 4-, and 5-day historical data respectively. Ising model’s real-valued weights and dimensionless coefficients are calculated using daily mean air temperatures from 119 places around the world, as well as sea level (Aburatsu, Japan). In comparison with current methods, this approach is better suited to predict heat wave values because it does not require the estimation of a probability distribution from scarce observations. Proposed forecast quantum computing algorithm is simulated based on traditional computer architecture and combinatorial optimization of Ising model parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on learning sample (1975-2010 yr). Analysis of the forecast accuracy (ratio of successful predictions to total number of predictions) on the validation sample (2011-2014 yr) shows that Ising model with three qubits has 100 % accuracy, which is quite significant as compared to other methods. However, number of identified heat waves is small (only one out of nineteen in this case). Other models with 2, 4, and 5 qubits have 20 %, 3.8 %, and 3.8 % accuracy respectively. Presented three-qubit forecast model is applied for prediction of heat waves at other five locations: Aurel Vlaicu, Romania – accuracy is 28.6 %; Bratislava, Slovakia – accuracy is 21.7 %; Brussels, Belgium – accuracy is 33.3 %; Sofia, Bulgaria – accuracy is 50 %; Akhisar, Turkey – accuracy is 21.4 %. These predictions are not ideal, but not zeros. They can be used independently or together with other predictions generated by different method(s). The loss of human life, as well as environmental, economic, and material damage, from extreme air temperatures could be reduced if some of heat waves are predicted. Even a small success rate implies a large socio-economic benefit.

Keywords: heat wave, D-wave, forecast, Ising model, quantum computing

Procedia PDF Downloads 499