Search results for: bending steel frame structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10052

Search results for: bending steel frame structure

9272 Noise Reduction by Energising the Boundary Layer

Authors: Kiran P. Kumar, H. M. Nayana, R. Rakshitha, S. Sushmitha

Abstract:

Aircraft noise is a highly concerned problem in the field of the aviation industry. It is necessary to reduce the noise in order to be environment-friendly. Air-frame noise is caused because of the quick separation of the boundary layer over an aircraft body. So, we have to delay the boundary layer separation of an air-frame and engine nacelle. By following a certain procedure boundary layer separation can be reduced by converting laminar into turbulent and hence early separation can be prevented that leads to the noise reduction. This method has a tendency to reduce the noise of the aircraft hence it can prove efficient and environment-friendly than the present Aircraft.

Keywords: airframe, boundary layer, noise, reduction

Procedia PDF Downloads 473
9271 Development of Zero-Cement Binder Activated by Carbonation

Authors: Young Cheol Choi, Eun-Jin Moon, Sung-Won Yoo, Sang-Hwa Jung, In-Hwan Yang

Abstract:

Stainless steel slag (STS) is a by-product generated from the stainless steel refining process. The recycling of STS produced in Korea for construction applications is limited due to its poor hydraulic properties. On the other hand, STS has high carbonation reactivity to CO2 as it contains gamma-C2S content. This material is ideal for mineral carbonation which is one of the techniques proposed for carbon emission reduction. The objective of this study is to investigate the feasibility of developing a zero-cement STS binder activated by carbonation as alternative cementitious material. The quantitative analyses for CO2 uptake of STS powder and STS blended cement were investigated using thermogravimetric analysis (TGA), X-ray diffraction (XRD). In addition, the compressive strength and microstructure of STS pastes after CO2 curing were evaluated. Test results showed that STS can be activated by carbonation to gain a sufficient strength as alternative cementitious material.

Keywords: gamma-C2S, CO2 uptake, carbonation, stainless steel slag

Procedia PDF Downloads 460
9270 Community Structure Detection in Networks Based on Bee Colony

Authors: Bilal Saoud

Abstract:

In this paper, we propose a new method to find the community structure in networks. Our method is based on bee colony and the maximization of modularity to find the community structure. We use a bee colony algorithm to find the first community structure that has a good value of modularity. To improve the community structure, that was found, we merge communities until we get a community structure that has a high value of modularity. We provide a general framework for implementing our approach. We tested our method on computer-generated and real-world networks with a comparison to very known community detection methods. The obtained results show the effectiveness of our proposition.

Keywords: bee colony, networks, modularity, normalized mutual information

Procedia PDF Downloads 401
9269 Impact of Welding Wire Nickel Plating Process Parameters on Ni Layer Thickness

Authors: Sylwia Wiewiorowska, Zbigniew Muskalski

Abstract:

The article presents part of research on the development of nickel plated welding wire production technology, whose application will enable the elimination of the flaws of currently manufactured welding wires. The nickel plated welding wire will be distinguished by high quality, because the Ni layer which is deposited electrochemically onto it from acid baths is characterized by very good adhesion to the steel wire surface, while the ductile nickel well deforms plastically in the drawing process and the adhesion of the Ni layer increases in the drawing process due to the occurring process of diffusion between the Ni and the steel. The Ni layer obtained in the proposed technology, despite a smaller thickness than when the wire is coated with copper, is continuous and tight, thus ensuring high corrosion resistance, as well as unsusceptible to scaling, which should provide a product that meets requirements imposed by the market. The product will also reduce, to some extent, the amount of copper brought in to steel through recycling, while the wire coating nickel introduced to the weld in the welding process is expected, to a degree, to favorably influence its mechanical properties. The paper describes the tests of the process of nickel plating of f1.96 mm-diameter wires using various nickel plating baths with different process parameters.

Keywords: steel wire, properties, welding process, Ni layer

Procedia PDF Downloads 143
9268 Formulating Model of Green Supply Chain Impact on Chain Operational Performance, Case Study: Rahbaran Foolad Aria, Steel Industry

Authors: Seyedeh Mersedeh Banijamali, Ali Rajabzadeh

Abstract:

Industrial development in recent centuries has been replaced by a sustainable development. The industry executives, particularly in the development countries are looking for procedures to protect the environment, improve their organization's performance. One of these approaches is the green supply chain management. Green supply chain management approach as a comprehensive approach to environmental management that contains all flows from suppliers to producers and ultimately to consumers, in many industries, particularly in the Steel industry, which has a strategic role in the country's industrial and economic development, has been receiving significant attention. The purpose of this study is examining the impact of green supply chain on chain operational performance in the Steel industry and formulating model for it. In this way, first the components of green supply chain (in 5 dimensions, planning, sourcing, making, delivery and return) have been prioritized through TOPSIS decision technique and then impact of these components on operational performance has been modeled with model dynamic systems and Vensim software. This research shows that green supply chain has a positive impact on operational performance and improve it.

Keywords: green supply chain, the dimensions of the green supply chain, operational performance, steel industry, dynamical systems

Procedia PDF Downloads 567
9267 Corporate Water Footprint Assessment: The Case of Tata Steel

Authors: Sujata Mukherjee, Arunavo Mukherjee

Abstract:

Water covers 70 per cent of our planet; however, freshwater is incredibly rare, and scarce has been listed as the highest impact global risk. The problems related to freshwater scarcity multiplies with the human population having more than doubled coupled with climate change, changing water cycles leading to droughts and floods and a rise in water pollution. Businesses, governments, and local communities are constrained by water scarcity and are facing growing challenges to their growth and sustainability. Water foot printing as an indicator for water use was introduced in 2002. Business water footprint measures the total water consumed to produce the goods and services it provides. It is a combination of the water that goes into the production and manufacturing of a product or service and the water used throughout the supply chain, as well as during the use of the product. A case study approach was applied describing the efforts of Tata Steel. It is based on a series of semi-structured in-depth interviews with top executives of the company as well as observation and content analysis of internal and external documents about the company’s efforts in sustainable water management. Tata Steel draws water required for industrial use from surface water sources, primarily perennial rivers and streams, internal reservoirs and water from municipal sources. The focus of the present study was to explore Tata Steel’s engagement in sustainable water management focusing on water foot printing accounting as a tool to account for water use in the steel supply chain at its Jamshedpur plant. The findings enabled the researchers to conclude that no sources of water are adversely affected by the company’s production of steel at Jamshedpur.

Keywords: sustainability, corporate responsibility water management, risk management, business engagement

Procedia PDF Downloads 270
9266 Influence of Existing Foundations on Soil-Structure Interaction of New Foundations in a Reconstruction Project

Authors: Kanagarajah Ravishankar

Abstract:

This paper describes a study performed for a project featuring an elevated steel bridge structure supported by various types of foundation systems. This project focused on rehabilitation or redesign of a portion of the bridge substructures founded on caisson foundations. The study that this paper focuses on is the evaluation of foundation and soil stiffnesses and interactions between the existing caissons and proposed foundations. The caisson foundations were founded on top of rock, where the depth to the top of rock varies from approximately 50 to 140 feet below ground surface. Based on a comprehensive investigation of the existing piers and caissons, the presence of ASR was suspected from observed whitish deposits on cracked surfaces as well as internal damages sustained through the entire depth of foundation structures. Reuse of existing piers and caissons was precluded and deemed unsuitable under the earthquake condition because of these defects on the structures. The proposed design of new foundations and substructures which was selected ultimately neglected the contribution from the existing caisson and pier columns. Due to the complicated configuration between the existing caisson and the proposed foundation system, three-dimensional finite element method (FEM) was employed to evaluate soil-structure interaction (SSI), to evaluate the effect of the existing caissons on the proposed foundations, and to compare the results with conventional group analysis. The FEM models include separate models for existing caissons, proposed foundations, and combining both.

Keywords: soil-structure interaction, foundation stiffness, finite element, seismic design

Procedia PDF Downloads 132
9265 Corrosion of Concrete Reinforcing Steel Bars Tested and Compared Between Various Protection Methods

Authors: P. van Tonder, U. Bagdadi, B. M. D. Lario, Z. Masina, T. R. Motshwari

Abstract:

This paper analyses how concrete reinforcing steel bars corrode and how it can be minimised through the use of various protection methods against corrosion, such as metal-based paint, alloying, cathodic protection and electroplating. Samples of carbon steel bars were protected, using these four methods. Tests performed on the samples included durability, electrical resistivity and bond strength. Durability results indicated relatively low corrosion rates for alloying, cathodic protection, electroplating and metal-based paint. The resistivity results indicate all samples experienced a downward trend, despite erratic fluctuations in the data, indicating an inverse relationship between electrical resistivity and corrosion rate. The results indicated lowered bond strengths when the reinforced concrete was cured in seawater compared to being cured in normal water. It also showed that higher design compressive strengths lead to higher bond strengths which can be used to compensate for the loss of bond strength due to corrosion in a real-world application. In terms of implications, all protection methods have the potential to be effective at resisting corrosion in real-world applications, especially the alloying, cathodic protection and electroplating methods. The metal-based paint underperformed by comparison, most likely due to the nature of paint in general which can fade and chip away, revealing the steel samples and exposing them to corrosion. For alloying, stainless steel is the suggested material of choice, where Y-bars are highly recommended as smooth bars have a much-lowered bond strength. Cathodic protection performed the best of all in protecting the sample from corrosion, however, its real-world application would require significant evaluation into the feasibility of such a method.

Keywords: protection methods, corrosion, concrete, reinforcing steel bars

Procedia PDF Downloads 170
9264 Analysis of Some Produced Inhibitors for Corrosion of J55 Steel in NaCl Solution Saturated with CO₂

Authors: Ambrish Singh

Abstract:

The corrosion inhibition performance of pyran (AP) and benzimidazole (BI) derivatives on J55 steel in 3.5% NaCl solution saturated with CO₂ was investigated by electrochemical, weight loss, surface characterization, and theoretical studies. The electrochemical studies included electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM), and electrochemical frequency modulation trend (EFMT). Surface characterization was done using contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. DFT and molecular dynamics (MD) studies were done using Gaussian and Materials Studio softwares. All the studies suggested the good inhibition by the synthesized inhibitors on J55 steel in 3.5% NaCl solution saturated with CO₂ due to the formation of a protective film on the surface. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface.

Keywords: corrosion, inhibitor, EFM, AFM, DFT, MD

Procedia PDF Downloads 100
9263 A Study of Algebraic Structure Involving Banach Space through Q-Analogue

Authors: Abdul Hakim Khan

Abstract:

The aim of the present paper is to study the Banach Space and Combinatorial Algebraic Structure of R. It is further aimed to study algebraic structure of set of all q-extension of classical formula and function for 0 < q < 1.

Keywords: integral functions, q-extensions, q numbers of metric space, algebraic structure of r and banach space

Procedia PDF Downloads 576
9262 The Influence of Shear Wall Position on Seismic Performance in Buildings

Authors: Akram Khelaifia, Nesreddine Djafar Henni

Abstract:

Reinforced concrete shear walls are essential components in protecting buildings from seismic forces by providing both strength and stiffness. This study focuses on optimizing the placement of shear walls in a high seismic zone. Through nonlinear analyses conducted on an eight-story building, various scenarios of shear wall positions are investigated to evaluate their impact on seismic performance. Employing a performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria related to inter-story drift ratio and damage levels. The findings emphasize the importance of concentrating shear walls in the central area of the building during the design phase. This strategic placement proves more effective compared to peripheral distributions, resulting in reduced inter-story drift and mitigated potential damage during seismic events. Additionally, the research explores the use of shear walls that completely infill the frame, forming compound shapes like Box configurations. It is discovered that incorporating such complete shear walls significantly enhances the structure's reliability concerning inter-story drift. Conversely, the absence of complete shear walls within the frame leads to reduced stiffness and the potential deterioration of short beams.

Keywords: performance level, pushover analysis, shear wall, plastic hinge, nonlinear analyses

Procedia PDF Downloads 48
9261 Characteristics of Cement Pastes Incorporating Different Amounts of Waste Cellular Concrete Powder

Authors: Mohammed Abed, Rita Nemes

Abstract:

In this study different amounts of waste cellular concrete powder (WCCP) as replacement of cement have been investigated as an attempt to produce green binder, which is useful for sustainable construction applications. From zero to up to 60% of WCCP by mass replacement amounts of cement has been conducted. Consistency, compressive strength, bending strength and the activity index of WCCP through seven to ninety days old specimens have been examined, where the optimum WCCP replacement was up to 30%, depending on which the activity index still increased to the end of test period (90 days) and this could be an evidence for its continuity to increase for longer age. Also up to 30% of WCCP increased the bending strength to be higher than the control one. The main point in the present study that there is a possibility of replacing cement by 30% of WCCP, however, it is preferable to be less than this amount.

Keywords: cellular concrete powder, waste cellular concrete powder (WCCP), supplementary cementatious material, SCM, activity index, mechanical properties

Procedia PDF Downloads 212
9260 High-Temperature Behavior of Boiler Steel by Friction Stir Processing

Authors: Supreet Singh, Manpreet Kaur, Manoj Kumar

Abstract:

High temperature corrosion is an imperative material degradation method experienced in thermal power plants and other energy generation sectors. Metallic materials such as ferritic steels have special properties such as easy fabrication and machinibilty, low cost, but a serious drawback of these materials is the worsening in properties initiating from the interaction with the environments. The metallic materials do not endure higher temperatures for extensive period of time because of their poor corrosion resistance. Friction Stir Processing (FSP), has emerged as the potent surface modification means and control of microstructure in thermo mechanically heat affecting zones of various metal alloys. In the current research work, FSP was done on the boiler tube of SA 210 Grade A1 material which is regularly used by thermal power plants. The strengthening of SA210 Grade A1 boiler steel through microstructural refinement by Friction Stir Processing (FSP) and analyze the effect of the same on high temperature corrosion behavior. The high temperature corrosion performance of the unprocessed and the FSPed specimens were evaluated in the laboratory using molten salt environment of Na₂SO₄-82%Fe₂(SO₄). The unprocessed and FSPed low carbon steel Gr A1 evaluation was done in terms of microstructure, corrosion resistance, mechanical properties like hardness- tensile. The in-depth characterization was done by EBSD, SEM/EDS and X-ray mapping analyses with an aim to propose the mechanism behind high temperature corrosion behavior of the FSPed steel.

Keywords: boiler steel, characterization, corrosion, EBSD/SEM/EDS/XRD, friction stir processing

Procedia PDF Downloads 234
9259 Effect of Friction Pressure on the Properties of Friction Welded Aluminum–Ceramic Dissimilar Joints

Authors: Fares Khalfallah, Zakaria Boumerzoug, Selvarajan Rajakumar, Elhadj Raouache

Abstract:

The ceramic-aluminum bond is strongly present in industrial tools, due to the need to combine the properties of metals, such as ductility, thermal and electrical conductivity, with ceramic properties like high hardness, corrosion and wear resistance. In recent years, some joining techniques have been developed to achieve a good bonding between these materials such as brazing, diffusion bonding, ultrasonic joining and friction welding. In this work, AA1100 aluminum alloy rods were welded with Alumina 99.9 wt% ceramic rods, by friction welding. The effect of friction pressure on mechanical and structural properties of welded joints was studied. The welding was performed by direct friction welding machine. The welding samples were rotated at a constant rotational speed of 900 rpm, friction time of 4 sec, forging strength of 18 MPa, and forging time of 3 sec. Three different friction pressures were applied to 20, 34 and 45 MPa. The three-point bending test and Vickers microhardness measurements were used to evaluate the strength of the joints and investigate the mechanical properties of the welding area. The microstructure of joints was examined by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that bending strength increased, and then decreased after reaching a maximum value, with increasing friction pressure. The SEM observation shows that the increase in friction pressure led to the appearance of cracks in the microstructure of the interface area, which is decreasing the bending strength of joints.

Keywords: welding of ceramic to aluminum, friction welding, alumina, AA1100 aluminum alloy

Procedia PDF Downloads 126
9258 Subjective Quality Assessment for Impaired Videos with Varying Spatial and Temporal Information

Authors: Muhammad Rehan Usman, Muhammad Arslan Usman, Soo Young Shin

Abstract:

The new era of digital communication has brought up many challenges that network operators need to overcome. The high demand of mobile data rates require improved networks, which is a challenge for the operators in terms of maintaining the quality of experience (QoE) for their consumers. In live video transmission, there is a sheer need for live surveillance of the videos in order to maintain the quality of the network. For this purpose objective algorithms are employed to monitor the quality of the videos that are transmitted over a network. In order to test these objective algorithms, subjective quality assessment of the streamed videos is required, as the human eye is the best source of perceptual assessment. In this paper we have conducted subjective evaluation of videos with varying spatial and temporal impairments. These videos were impaired with frame freezing distortions so that the impact of frame freezing on the quality of experience could be studied. We present subjective Mean Opinion Score (MOS) for these videos that can be used for fine tuning the objective algorithms for video quality assessment.

Keywords: frame freezing, mean opinion score, objective assessment, subjective evaluation

Procedia PDF Downloads 483
9257 Shear Strength of Reinforced Web Openings in Steel Beams

Authors: K. S. Sivakumaran, Bo Chen

Abstract:

The floor beams of steel buildings, cold-formed steel floor joists, in particular, often require large web openings, which may affect their shear capacities. A cost effective way to mitigate the detrimental effects of such openings is to weld/fasten reinforcements. A difficulty associated with an experimental investigation to establish suitable reinforcement schemes for openings in shear zone is that moment always coexists with the shear, and thus, it is impossible to create pure shear state in experiments, resulting in moment influenced results. However, finite element analysis can be conveniently used to investigate the pure shear behaviour of webs including webs with reinforced opening. This paper presents that the details associated with the finite element analysis of thick/thin-plates (representing the web of hot-rolled steel beam, and the web of a cold-formed steel member) having a large reinforced openings. The study considered thin simply supported rectangular plates subjected to inplane shear loadings until failure (including post-buckling behaviour). The plate was modelled using geometrically non-linear quadrilateral shell elements, and non-linear stress-strain relationship based on experiments. Total Lagrangian (TL) with large displacement/small strain formulation was used for such analysis. The model also considered the initial geometric imperfections. This study considered three reinforcement schemes, namely, flat, lip, and angle reinforcements. This paper discusses the modelling considerations and presents the results associated with the various reinforcement schemes under consideration. The paper briefly compares the analysis results with the experimental results.

Keywords: cold-formed steel, finite element analysis, opening, reinforcement, shear resistance

Procedia PDF Downloads 282
9256 Experimental and Analytical Study of Various Types of Shear Connector Used for Cold-Formed Steel-Ferrocement Composite Beam

Authors: Talal Alhajri, Mahmood M. Tahir, Khaled Alenezi, Mohamad Ragaee

Abstract:

This work presents the experimental tests carried out to evaluate the behaviour of different types of shear connectors proposed for cold formed steel (CFS) section integrated with ferrocement slab as potential used for composite beam. Ten push-out test specimens of cold-formed steel lipped channel sections connected with ferrocement slab were tested. Three types of shear connectors were studied comprised of bolts, self-drilling-screw and bar angle. The connection behavior is analysed in terms of its load-slip relationship and the failure mode. The parametric studies were performed to investigate the effect on the shear connector’s capacity by varying the number of layers of wire mesh used in ferrocement slab and types of shear connector used. An analytical analysis using ANSYS program and theoretical analysis (Eurocode 4) were carried out to verify the experiment results. The results show that the experimental, theoretical, and numerical values proved to have good agreement with each other.

Keywords: cold-formed steel, composite beam, ferrocement, finite element method, push-out test, shear connector

Procedia PDF Downloads 358
9255 Analysis of Determinate and Indeterminate Structures: Applications of Non-Economic Structure

Authors: Toral Khalpada, Kanhai Joshi

Abstract:

Generally, constructions of structures built in India are indeterminate structures. The purpose of this study is to investigate the application of a structure that is proved to be non-economical. The testing practice involves the application of different types of loads on both, determinate and indeterminate structure by computing it on a software system named Staad and also inspecting them practically on the construction site, analyzing the most efficient structure and diagnosing the utilization of the structure which is not so beneficial as compared to other. Redundant structures (indeterminate structure) are found to be more reasonable. All types of loads were applied on the beams of both determinate and indeterminate structures parallelly on the software and the same was done on the site practically which proved that maximum stresses in statically indeterminate structures are generally lower than those in comparable determinate structures. These structures are found to have higher stiffness resulting in lesser deformations so indeterminate structures are economical and are better than determinate structures to use for construction. On the other hand, statically determinate structures have the benefit of not producing stresses because of temperature changes. Therefore, our study tells that indeterminate structure is more beneficial but determinate structure also has used as it can be used in many areas; it can be used for the construction of two hinged arch bridges where two supports are sufficient and where there is no need for expensive indeterminate structure. Further investigation is needed to contrive more implementation of the determinate structure.

Keywords: construction, determinate structure, indeterminate structure, stress

Procedia PDF Downloads 223
9254 Experimental Behavior of Composite Shear Walls Having L Shape Steel Sections in Boundary Regions

Authors: S. Bahadır Yüksel, Alptuğ Ünal

Abstract:

The composite shear walls (CSW) with steel encased profiles can be used as lateral-load resisting systems for buildings that require considerable large lateral-load capacity. The aim of this work is to propose the experimental work conducted on CSW having L section folded plate (L shape steel made-up sections) as longitudinal reinforcement in boundary regions. The study in this paper present the experimental test conducted on CSW having L section folded plate as longitudinal reinforcement in boundary regions. The tested 1/3 geometric scaled CSW has aspect ratio of 3.2. L-shape structural steel materials with 2L-19x57x7mm dimensions were placed in shear wall boundary zones. The seismic behavior of CSW test specimen was investigated by evaluating and interpreting the hysteresis curves, envelope curves, rigidity and consumed energy graphs of this tested element. In addition to this, the experimental results, deformation and cracking patterns were evaluated, interpreted and suggestions of the design recommendations were proposed.

Keywords: shear wall, composite shear wall, boundary reinforcement, earthquake resistant structural design, L section

Procedia PDF Downloads 327
9253 The Evolving Customer Experience Management Landscape: A Case Study on the Paper Machine Companies

Authors: Babak Mohajeri, Sen Bao, Timo Nyberg

Abstract:

Customer experience is increasingly the differentiator between successful companies and those who struggle. Currently, customer experiences become more dynamic; and they advance with each interaction between the company and a customer. Every customer conversation and any effort to evolve these conversations would be beneficial and should ultimately result in a positive customer experience. The aim of this paper is to analyze the evolving customer experience management landscape and the relevant challenges and opportunities. A case study on the “paper machine” companies is chosen. Hence, this paper analyzes the challenges and opportunities in customer experience management of paper machine companies for the case of “road to steel”. Road to steel shows the journey of steel from raw material to end product (i.e. paper machine in this paper). ALPHA (Steel company) and BETA (paper machine company), are chosen and their efforts to evolve the customer experiences are investigated. Semi-structured interviews are conducted with experts in those companies to identify the challenges and opportunities of the evolving customer experience management from their point of view. The findings of this paper contribute to the theory and business practices in the realm of the evolving customer experience management landscape.

Keywords: Customer Experience Management, Paper Machine , Value Chain Management, Risk Analysis

Procedia PDF Downloads 359
9252 Prediction of Springback in U-bending of W-Temper AA6082 Aluminum Alloy

Authors: Jemal Ebrahim Dessie, Lukács Zsolt

Abstract:

High-strength aluminum alloys have drawn a lot of attention because of the expanding demand for lightweight vehicle design in the automotive sector. Due to poor formability at room temperature, warm and hot forming have been advised. However, warm and hot forming methods need more steps in the production process and an advanced tooling system. In contrast, since ordinary tools can be used, forming sheets at room temperature in the W temper condition is advantageous. However, springback of supersaturated sheets and their thinning are critical challenges and must be resolved during the use of this technique. In this study, AA6082-T6 aluminum alloy was solution heat treated at different oven temperatures and times using a specially designed and developed furnace in order to optimize the W-temper heat treatment temperature. A U-shaped bending test was carried out at different time periods between W-temper heat treatment and forming operation. Finite element analysis (FEA) of U-bending was conducted using AutoForm aiming to validate the experimental result. The uniaxial tensile and unload test was performed in order to determine the kinematic hardening behavior of the material and has been optimized in the Finite element code using systematic process improvement (SPI). In the simulation, the effect of friction coefficient & blank holder force was considered. Springback parameters were evaluated by the geometry adopted from the NUMISHEET ’93 benchmark problem. It is noted that the change of shape was higher at the more extended time periods between W-temper heat treatment and forming operation. Die radius was the most influential parameter at the flange springback. However, the change of shape shows an overall increasing tendency on the sidewall as the increase of radius of the punch than the radius of the die. The springback angles on the flange and sidewall seem to be highly influenced by the coefficient of friction than blank holding force, and the effect becomes increases as increasing the blank holding force.

Keywords: aluminum alloy, FEA, springback, SPI, U-bending, W-temper

Procedia PDF Downloads 95
9251 Modeling of Nitrogen Solubility in Stainless Steel

Authors: Saeed Ghali, Hoda El-Faramawy, Mamdouh Eissa, Michael Mishreky

Abstract:

Scale-resistant austenitic stainless steel, X45CrNiW 18-9, has been developed, and modified steels produced through partial and total nickel replacement by nitrogen. These modified steels were produced in a 10 kg induction furnace under different nitrogen pressures and were cast into ingots. The produced modified stainless steels were forged, followed by air cooling. The phases of modified stainless steels have been investigated using the Schaeffler diagram, dilatometer, and microstructure observations. Both partial and total replacement of nickel using 0.33-0.50% nitrogen are effective in producing fully austenitic stainless steels. The nitrogen contents were determined and compared with those calculated using the Institute of Metal Science (IMS) equation. The results showed great deviations between the actual nitrogen contents and predicted values through IMS equation. So, an equation has been derived based on chemical composition, pressure, and temperature at 1600oC. [N%] = 0.0078 + 0.0406*X, where X is a function of chemical composition and nitrogen pressure. The derived equation has been used to calculate the nitrogen content of different steels using published data. The results reveal the difficulty of deriving a general equation for the prediction of nitrogen content covering different steel compositions. So, it is necessary to use a narrow composition range.

Keywords: solubility, nitrogen, stainless steel, Schaeffler

Procedia PDF Downloads 235
9250 Total Life Cycle Cost and Life Cycle Assessment of Mass Timber Buildings in the US

Authors: Hongmei Gu, Shaobo Liang, Richard Bergman

Abstract:

With current worldwide trend in designs to have net-zero emission buildings to mitigate climate change, widespread use of mass timber products, such as Cross Laminated Timber (CLT), or Nail Laminated Timber (NLT) or Dowel Laminated Timber (DLT) in buildings have been proposed as one approach in reducing Greenhouse Gas (GHG) emissions. Consequentially, mass timber building designs are being adopted more and more by architectures in North America, especially for mid- to high-rise buildings where concrete and steel buildings are currently prevalent, but traditional light-frame wood buildings are not. Wood buildings and their associated wood products have tended to have lower environmental impacts than competing energy-intensive materials. It is common practice to conduct life cycle assessments (LCAs) and life cycle cost analyses on buildings with traditional structural materials like concrete and steel in the building design process. Mass timber buildings with lower environmental impacts, especially GHG emissions, can contribute to the Net Zero-emission goal for the world-building sector. However, the economic impacts from CLT mass timber buildings still vary from the life-cycle cost perspective and environmental trade-offs associated with GHG emissions. This paper quantified the Total Life Cycle Cost and cradle-to-grave GHG emissions of a pre-designed CLT mass timber building and compared it to a functionally-equivalent concrete building. The Total life cycle Eco-cost-efficiency is defined in this study and calculated to discuss the trade-offs for the net-zero emission buildings in a holistic view for both environmental and economic impacts. Mass timber used in buildings for the United States is targeted to the materials from the nation’s sustainable managed forest in order to benefit both national and global environments and economies.

Keywords: GHG, economic impact, eco-cost-efficiency, total life-cycle costs

Procedia PDF Downloads 132
9249 Performance of Stiffened Slender Built up Steel I-Columns

Authors: M. E. Abou-Hashem El Dib, M. K. Swailem, M. M. Metwally, A. I. El Awady

Abstract:

The present work illustrates a parametric study for the effect of stiffeners on the performance of slender built up steel I-columns. To achieve the desired analysis, finite element technique is used to develop nonlinear three-dimensional models representing the investigated columns. The finite element program (ANSYS 13.0) is used as a calculation tool for the necessary nonlinear analysis. A validation of the obtained numerical results is achieved. The considered parameters in the study are the column slenderness ratio and the horizontal stiffener's dimensions as well as the number of stiffeners. The dimensions of the stiffeners considered in the analysis are the stiffener width and the stiffener thickness. Numerical results signify a considerable effect of stiffeners on the performance and failure load of slender built up steel I-columns.

Keywords: columns, local buckling, slender, stiffener, thin walled section

Procedia PDF Downloads 310
9248 Experimental Studies of Sigma Thin-Walled Beams Strengthen by CFRP Tapes

Authors: Katarzyna Rzeszut, Ilona Szewczak

Abstract:

The review of selected methods of strengthening of steel structures with carbon fiber reinforced polymer (CFRP) tapes and the analysis of influence of composite materials on the steel thin-walled elements are performed in this paper. The study is also focused to the problem of applying fast and effective strengthening methods of the steel structures made of thin-walled profiles. It is worth noting that the issue of strengthening the thin-walled structures is a very complex, due to inability to perform welded joints in this type of elements and the limited ability to applying mechanical fasteners. Moreover, structures made of thin-walled cross-section demonstrate a high sensitivity to imperfections and tendency to interactive buckling, which may substantially contribute to the reduction of critical load capacity. Due to the lack of commonly used and recognized modern methods of strengthening of thin-walled steel structures, authors performed the experimental studies of thin-walled sigma profiles strengthened with CFRP tapes. The paper presents the experimental stand and the preliminary results of laboratory test concerning the analysis of the effectiveness of the strengthening steel beams made of thin-walled sigma profiles with CFRP tapes. The study includes six beams made of the cold-rolled sigma profiles with height of 140 mm, wall thickness of 2.5 mm, and a length of 3 m, subjected to the uniformly distributed load. Four beams have been strengthened with carbon fiber tape Sika CarboDur S, while the other two were tested without strengthening to obtain reference results. Based on the obtained results, the evaluation of the accuracy of applied composite materials for strengthening of thin-walled structures was performed.

Keywords: CFRP tapes, sigma profiles, steel thin-walled structures, strengthening

Procedia PDF Downloads 298
9247 Modern Seismic Design Approach for Buildings with Hysteretic Dampers

Authors: Vanessa A. Segovia, Sonia E. Ruiz

Abstract:

The use of energy dissipation systems for seismic applications has increased worldwide, thus it is necessary to develop practical and modern criteria for their optimal design. Here, a direct displacement-based seismic design approach for frame buildings with hysteretic energy dissipation systems (HEDS) is applied. The building is constituted by two individual structural systems consisting of: 1) A main elastic structural frame designed for service loads and 2) A secondary system, corresponding to the HEDS, that controls the effects of lateral loads. The procedure implies to control two design parameters: A) The stiffness ratio (α=K_frame/K_(total system)), and B) The strength ratio (γ= V_damper / V_(total system)). The proposed damage-controlled approach contributes to the design of a more sustainable and resilient building because the structural damage is concentrated on the HEDS. The reduction of the design displacement spectrum is done by means of a damping factor (recently published) for elastic structural systems with HEDS, located in Mexico City. Two limit states are verified: Serviceability and near collapse. Instead of the traditional trial-error approach, a procedure that allows the designer to establish the preliminary sizes of the structural elements of both systems is proposed. The design methodology is applied to an 8-story steel building with buckling restrained braces, located in soft soil of Mexico City. With the aim of choosing the optimal design parameters, a parametric study is developed considering different values of α and γ. The simplified methodology is for preliminary sizing, design, and evaluation of the effectiveness of HEDS, and it constitutes a modern and practical tool that enables the structural designer to select the best design parameters.

Keywords: damage-controlled buildings, direct displacement-based seismic design, optimal hysteretic energy dissipation systems, hysteretic dampers

Procedia PDF Downloads 480
9246 Development of Ferrous-Aluminum Alloys from Recyclable Material by High Energy Milling

Authors: Arnold S. Freitas Neto, Rodrigo E. Coelho, Erick S. Mendonça

Abstract:

This study aimed to obtain an alloy of Iron and Aluminum in the proportion of 50% of atomicity for each constituent. Alloys were obtained by processing recycled aluminum and chips of 1200 series carbon steel in a high-energy mill. For the experiment, raw materials were processed thorough high energy milling before mixing the substances. Subsequently, the mixture of 1200 series carbon steel and Aluminum powder was carried out a milling process. Thereafter, hot compression was performed in a closed die in order to obtain the samples. The pieces underwent heat treatments, sintering and aging. Lastly, the composition and the mechanical properties of their hardness were analyzed. In this paper, results are compared with previous studies, which used iron powder of high purity instead of Carbon steel in the composition.

Keywords: Fe-Al alloys, high energy milling, metallography characterization, powder metallurgy

Procedia PDF Downloads 306
9245 X-Bracing Configuration and Seismic Response

Authors: Saeed Rahjoo, Babak H. Mamaqani

Abstract:

Concentric bracing systems have been in practice for many years because of their effectiveness in reducing seismic response. Depending on concept, seismic design codes provide various response modification factors (R), which itself consists of different terms, for different types of lateral load bearing systems but configuration of these systems are often ignored in the proposed values. This study aims at considering the effect of different x-bracing diagonal configuration on values of ductility dependent term in R computation. 51 models were created and nonlinear push over analysis has been performed. The main variables of this study were the suitable location of X–bracing diagonal configurations, which establishes better nonlinear behavior in concentric braced steel frames. Results show that some x-bracing diagonal configurations improve the seismic performance of CBF significantly and explicit consideration of lateral load bearing systems seems necessary.

Keywords: bracing configuration, concentrically braced frame (CBF), push over analyses, response reduction factor

Procedia PDF Downloads 347
9244 Three-Dimensional, Non-Linear Finite Element Analysis of Bullet Penetration through Thin AISI 4340 Steel Target Plate

Authors: Abhishek Soni, A. Kumaraswamy, M. S. Mahesh

Abstract:

Bullet penetration in steel plate is investigated with the help of three-dimensional, non-linear, transient, dynamic, finite elements analysis using explicit time integration code LSDYNA. The effect of large strain, strain-rate and temperature at very high velocity regime was studied from number of simulations of semi-spherical nose shape bullet penetration through single layered circular plate with 2 mm thickness at impact velocities of 500, 1000, and 1500 m/s with the help of Johnson Cook material model. Mie-Gruneisen equation of state is used in conjunction with Johnson Cook material model to determine pressure-volume relationship at various points of interests. Two material models viz. Plastic-Kinematic and Johnson- Cook resulted in different deformation patterns in steel plate. It is observed from the simulation results that the velocity drop and loss of kinetic energy occurred very quickly up to perforation of plate, after that the change in velocity and changes in kinetic energy are negligibly small. The physics behind this kind of behaviour is presented in the paper.

Keywords: AISI 4340 steel, ballistic impact simulation, bullet penetration, non-linear FEM

Procedia PDF Downloads 205
9243 Finite Element Modeling for Clamping Stresses Developed in Hot-Driven Steel Structural Riveted Connections

Authors: Jackeline Kafie-Martinez, Peter B. Keating

Abstract:

A three-dimensional finite element model is developed to capture the stress field generated in connected plates during the installation of hot-driven rivets. Clamping stress is generated when a steel rivet heated to approximately 1000 °C comes in contact with the material to be fastened at ambient temperature. As the rivet cools, thermal contraction subjects the rivet into tensile stress, while the material being fastened is subjected to compressive stress. Model characteristics and assumptions, as well as steel properties variation with respect to temperature are discussed. The thermal stresses developed around the rivet hole are assessed and reported. Results from the analysis are utilized to detect possible regions for fatigue crack propagation under cyclic loads.

Keywords: clamping stress, fatigue, finite elements, rivet, riveted railroad bridges

Procedia PDF Downloads 275