Search results for: nonlinear octocopter model
16741 Finite Element Analysis of Low-Velocity Impact Damage on Stiffened Composite Panels
Authors: Xuan Sun, Mingbo Tong
Abstract:
To understand the factors which affect impact damage on composite structures, particularly the effects of impact position and ribs. In this paper, a finite element model (FEM) of low-velocity impact damage on the composite structure was established via the nonlinear finite element method, combined with the user-defined materials subroutine (VUMAT) of the ABAQUS software. The structural elements chosen for the investigation comprised a series of stiffened composite panels, representative of real aircraft structure. By impacting the panels at different positions relative to the ribs, the effect of relative position of ribs was found out. Then the simulation results and the experiments data were compared. Finally, the factors which affect impact damage on the structures were discussed. The paper was helpful for the design of stiffened composite structures.Keywords: stiffened, low-velocity impact, Abaqus, impact energy
Procedia PDF Downloads 62116740 SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE
Abstract:
This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device.Keywords: SiC MPS diode, electro-thermal, SPICE model, behavioral macro-model
Procedia PDF Downloads 40716739 Second Order Optimality Conditions in Nonsmooth Analysis on Riemannian Manifolds
Authors: Seyedehsomayeh Hosseini
Abstract:
Much attention has been paid over centuries to understanding and solving the problem of minimization of functions. Compared to linear programming and nonlinear unconstrained optimization problems, nonlinear constrained optimization problems are much more difficult. Since the procedure of finding an optimizer is a search based on the local information of the constraints and the objective function, it is very important to develop techniques using geometric properties of the constraints and the objective function. In fact, differential geometry provides a powerful tool to characterize and analyze these geometric properties. Thus, there is clearly a link between the techniques of optimization on manifolds and standard constrained optimization approaches. Furthermore, there are manifolds that are not defined as constrained sets in R^n an important example is the Grassmann manifolds. Hence, to solve optimization problems on these spaces, intrinsic methods are used. In a nondifferentiable problem, the gradient information of the objective function generally cannot be used to determine the direction in which the function is decreasing. Therefore, techniques of nonsmooth analysis are needed to deal with such a problem. As a manifold, in general, does not have a linear structure, the usual techniques, which are often used in nonsmooth analysis on linear spaces, cannot be applied and new techniques need to be developed. This paper presents necessary and sufficient conditions for a strict local minimum of extended real-valued, nonsmooth functions defined on Riemannian manifolds.Keywords: Riemannian manifolds, nonsmooth optimization, lower semicontinuous functions, subdifferential
Procedia PDF Downloads 36116738 Comparison between Pushover Analysis Techniques and Validation of the Simplified Modal Pushover Analysis
Authors: N. F. Hanna, A. M. Haridy
Abstract:
One of the main drawbacks of the Modal Pushover Analysis (MPA) is the need to perform nonlinear time-history analysis, which complicates the analysis method and time. A simplified version of the MPA has been proposed based on the concept of the inelastic deformation ratio. Furthermore, the effect of the higher modes of vibration is considered by assuming linearly-elastic responses, which enables the use of standard elastic response spectrum analysis. In this thesis, the simplified MPA (SMPA) method is applied to determine the target global drift and the inter-story drifts of steel frame building. The effect of the higher vibration modes is considered within the framework of the SMPA. A comprehensive survey about the inelastic deformation ratio is presented. After that, a suitable expression from literature is selected for the inelastic deformation ratio and then implemented in the SMPA. The estimated seismic demands using the SMPA, such as target drift, base shear, and the inter-story drifts, are compared with the seismic responses determined by applying the standard MPA. The accuracy of the estimated seismic demands is validated by comparing with the results obtained by the nonlinear time-history analysis using real earthquake records.Keywords: modal analysis, pushover analysis, seismic performance, target displacement
Procedia PDF Downloads 36116737 Solar Wind Turbulence and the Role of Circularly Polarized Dispersive Alfvén Wave
Authors: Swati Sharma, R. P. Sharma
Abstract:
We intend to study the nonlinear evolution of the parallel propagating finite frequency Alfvén wave (also called Dispersive Alfvén wave/Hall MHD wave) propagating in the solar wind regime of the solar region when a perpendicularly propagating magnetosonic wave is present in the background. The finite frequency Alfvén wave behaves differently from the usual non-dispersive behavior of the Alfvén wave. To study the nonlinear processes (such as filamentation) taking place in the solar regions such as solar wind, the dynamical equation of both the waves are derived. Numerical simulation involving finite difference method for the time domain and pseudo spectral method for the spatial domain is then performed to analyze the transient evolution of these waves. The power spectra of the Dispersive Alfvén wave is also investigated. The power spectra shows the distribution of the magnetic field intensity of the Dispersive Alfvén wave over different wave numbers. For DAW the spectra shows a steepening for scales larger than the proton inertial length. This means that the wave energy gets transferred to the solar wind particles as the wave reaches higher wave numbers. This steepening of the power spectra can be explained on account of the finite frequency of the Alfvén wave. The obtained results are consistent with the observations made by CLUSTER spacecraft.Keywords: solar wind, turbulence, dispersive alfven wave
Procedia PDF Downloads 60016736 Lee-Carter Mortality Forecasting Method with Dynamic Normal Inverse Gaussian Mortality Index
Authors: Funda Kul, İsmail Gür
Abstract:
Pension scheme providers have to price mortality risk by accurate mortality forecasting method. There are many mortality-forecasting methods constructed and used in literature. The Lee-Carter model is the first model to consider stochastic improvement trends in life expectancy. It is still precisely used. Mortality forecasting is done by mortality index in the Lee-Carter model. It is assumed that mortality index fits ARIMA time series model. In this paper, we propose and use dynamic normal inverse gaussian distribution to modeling mortality indes in the Lee-Carter model. Using population mortality data for Italy, France, and Turkey, the model is forecasting capability is investigated, and a comparative analysis with other models is ensured by some well-known benchmarking criterions.Keywords: mortality, forecasting, lee-carter model, normal inverse gaussian distribution
Procedia PDF Downloads 36016735 Combining the Dynamic Conditional Correlation and Range-GARCH Models to Improve Covariance Forecasts
Authors: Piotr Fiszeder, Marcin Fałdziński, Peter Molnár
Abstract:
The dynamic conditional correlation model of Engle (2002) is one of the most popular multivariate volatility models. However, this model is based solely on closing prices. It has been documented in the literature that the high and low price of the day can be used in an efficient volatility estimation. We, therefore, suggest a model which incorporates high and low prices into the dynamic conditional correlation framework. Empirical evaluation of this model is conducted on three datasets: currencies, stocks, and commodity exchange-traded funds. The utilisation of realized variances and covariances as proxies for true variances and covariances allows us to reach a strong conclusion that our model outperforms not only the standard dynamic conditional correlation model but also a competing range-based dynamic conditional correlation model.Keywords: volatility, DCC model, high and low prices, range-based models, covariance forecasting
Procedia PDF Downloads 18316734 The Establishment of RELAP5/SNAP Model for Kuosheng Nuclear Power Plant
Authors: C. Shih, J. R. Wang, H. C. Chang, S. W. Chen, S. C. Chiang, T. Y. Yu
Abstract:
After the measurement uncertainty recapture (MUR) power uprates, Kuosheng nuclear power plant (NPP) was uprated the power from 2894 MWt to 2943 MWt. For power upgrade, several codes (e.g., TRACE, RELAP5, etc.) were applied to assess the safety of Kuosheng NPP. Hence, the main work of this research is to establish a RELAP5/MOD3.3 model of Kuosheng NPP with SNAP interface. The establishment of RELAP5/SNAP model was referred to the FSAR, training documents, and TRACE model which has been developed and verified before. After completing the model establishment, the startup test scenarios would be applied to the RELAP5/SNAP model. With comparing the startup test data and TRACE analysis results, the applicability of RELAP5/SNAP model would be assessed.Keywords: RELAP5, TRACE, SNAP, BWR
Procedia PDF Downloads 42916733 Modelling the Tensile Behavior of Plasma Sprayed Freestanding Yttria Stabilized Zirconia Coatings
Authors: Supriya Patibanda, Xiaopeng Gong, Krishna N. Jonnalagadda, Ralph Abrahams
Abstract:
Yttria stabilized zirconia (YSZ) is used as a top coat in thermal barrier coatings in high-temperature turbine/jet engine applications. The mechanical behaviour of YSZ depends on the microstructural features like crack density and porosity, which are a result of coating method. However, experimentally ascertaining their individual effect is difficult due to the inherent challenges involved like material synthesis and handling. The current work deals with the development of a phenomenological model to replicate the tensile behavior of air plasma sprayed YSZ obtained from experiments. Initially, uniaxial tensile experiments were performed on freestanding YSZ coatings of ~300 µm thick for different crack densities and porosities. The coatings exhibited a nonlinear behavior and also a huge variation in strength values. With the obtained experimental tensile curve as a base and crack density and porosity as prime variables, a phenomenological model was developed using ABAQUS interface with new user material defined employing VUMAT sub routine. The relation between the tensile stress and the crack density was empirically established. Further, a parametric study was carried out to investigate the effect of the individual features on the non-linearity in these coatings. This work enables to generate new coating designs by varying the key parameters and predicting the mechanical properties with the help of a simulation, thereby minimizing experiments.Keywords: crack density, finite element method, plasma sprayed coatings, VUMAT
Procedia PDF Downloads 14816732 QoS-CBMG: A Model for e-Commerce Customer Behavior
Authors: Hoda Ghavamipoor, S. Alireza Hashemi Golpayegani
Abstract:
An approach to model the customer interaction with e-commerce websites is presented. Considering the service quality level as a predictive feature, we offer an improved method based on the Customer Behavior Model Graph (CBMG), a state-transition graph model. To derive the Quality of Service sensitive-CBMG (QoS-CBMG) model, process-mining techniques is applied to pre-processed website server logs which are categorized as ‘buy’ or ‘visit’. Experimental results on an e-commerce website data confirmed that the proposed method outperforms CBMG based method.Keywords: customer behavior model, electronic commerce, quality of service, customer behavior model graph, process mining
Procedia PDF Downloads 41616731 Model Based Simulation Approach to a 14-Dof Car Model Using Matlab/Simulink
Authors: Ishit Sheth, Chandrasekhar Jinendran, Chinmaya Ranjan Sahu
Abstract:
A fourteen degree of freedom (DOF) ride and handling control mathematical model is developed for a car using generalized boltzmann hamel equation which will create a basis for design of ride and handling controller. Mathematical model developed yield equations of motion for non-holonomic constrained systems in quasi-coordinates. The governing differential equation developed integrates ride and handling control of car. Model-based systems engineering approach is implemented for simulation using matlab/simulink, vehicle’s response in different DOF is examined and later validated using commercial software (ADAMS). This manuscript involves detailed derivation of full car vehicle model which provides response in longitudinal, lateral and yaw motion to demonstrate the advantages of the developed model over the existing dynamic model. The dynamic behaviour of the developed ride and handling model is simulated for different road conditions.Keywords: Full Vehicle Model, MBSE, Non Holonomic Constraints, Boltzmann Hamel Equation
Procedia PDF Downloads 22816730 Comprehensive Risk Assessment Model in Agile Construction Environment
Authors: Jolanta Tamošaitienė
Abstract:
The article focuses on a developed comprehensive model to be used in an agile environment for the risk assessment and selection based on multi-attribute methods. The model is based on a multi-attribute evaluation of risk in construction, and the determination of their optimality criterion values are calculated using complex Multiple Criteria Decision-Making methods. The model may be further applied to risk assessment in an agile construction environment. The attributes of risk in a construction project are selected by applying the risk assessment condition to the construction sector, and the construction process efficiency in the construction industry accounts for the agile environment. The paper presents the comprehensive risk assessment model in an agile construction environment. It provides a background and a description of the proposed model and the developed analysis of the comprehensive risk assessment model in an agile construction environment with the criteria.Keywords: assessment, environment, agile, model, risk
Procedia PDF Downloads 25516729 Formal Verification of Cache System Using a Novel Cache Memory Model
Authors: Guowei Hou, Lixin Yu, Wei Zhuang, Hui Qin, Xue Yang
Abstract:
Formal verification is proposed to ensure the correctness of the design and make functional verification more efficient. As cache plays a vital role in the design of System on Chip (SoC), and cache with Memory Management Unit (MMU) and cache memory unit makes the state space too large for simulation to verify, then a formal verification is presented for such system design. In the paper, a formal model checking verification flow is suggested and a new cache memory model which is called “exhaustive search model” is proposed. Instead of using large size ram to denote the whole cache memory, exhaustive search model employs just two cache blocks. For cache system contains data cache (Dcache) and instruction cache (Icache), Dcache memory model and Icache memory model are established separately using the same mechanism. At last, the novel model is employed to the verification of a cache which is module of a custom-built SoC system that has been applied in practical, and the result shows that the cache system is verified correctly using the exhaustive search model, and it makes the verification much more manageable and flexible.Keywords: cache system, formal verification, novel model, system on chip (SoC)
Procedia PDF Downloads 49616728 Development of Simple-To-Apply Biogas Kinetic Models for the Co-Digestion of Food Waste and Maize Husk
Authors: Owamah Hilary, O. C. Izinyon
Abstract:
Many existing biogas kinetic models are difficult to apply to substrates they were not developed for, as they are substrate specific. Biodegradability kinetic (BIK) model and maximum biogas production potential and stability assessment (MBPPSA) model were therefore developed in this study for the anaerobic co-digestion of food waste and maize husk. Biodegradability constant (k) was estimated as 0.11d-1 using the BIK model. The results of maximum biogas production potential (A) obtained using the MBPPSA model corresponded well with the results obtained using the popular but complex modified Gompertz model for digesters B-1, B-2, B-3, B-4, and B-5. The (If) value of MBPPSA model also showed that digesters B-3, B-4, and B-5 were stable, while B-1 and B-2 were unstable. Similar stability observation was also obtained using the modified Gompertz model. The MBPPSA model can therefore be used as alternative model for anaerobic digestion feasibility studies and plant design.Keywords: biogas, inoculum, model development, stability assessment
Procedia PDF Downloads 42916727 Reflection on Using Bar Model Method in Learning and Teaching Primary Mathematics: A Hong Kong Case Study
Authors: Chui Ka Shing
Abstract:
This case study research attempts to examine the use of the Bar Model Method approach in learning and teaching mathematics in a primary school in Hong Kong. The objectives of the study are to find out to what extent (a) the Bar Model Method approach enhances the construction of students’ mathematics concepts, and (b) the school-based mathematics curriculum development with adopting the Bar Model Method approach. This case study illuminates the effectiveness of using the Bar Model Method to solve mathematics problems from Primary 1 to Primary 6. Some effective pedagogies and assessments were developed to strengthen the use of the Bar Model Method across year levels. Suggestions including school-based curriculum development for using Bar Model Method and further study were discussed.Keywords: bar model method, curriculum development, mathematics education, problem solving
Procedia PDF Downloads 21916726 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation
Procedia PDF Downloads 7016725 A Numerical Study on the Connection of an SC Wall to an RC Foundation
Authors: Siamak Epackachi, Andrew S. Whittaker, Amit H. Varma
Abstract:
There are a large number of methods to connect SC walls to RC foundations. An experimental study of the cyclic nonlinear behavior of SC walls in the NEES laboratory at the University at Buffalo used a connection detail involving the post-tensioning of a steel baseplate to the SC wall to a RC foundation. This type of connection introduces flexibility that influenced substantially the global response of the SC walls. The assumption of a rigid base, which would be commonly made by practitioners, would lead to a substantial overestimation of initial stiffness. This paper presents an analytical approach to characterize the rotational flexibility and to predict the initial stiffness of flexure-critical SC wall piers with baseplate connection. The good agreement between the analytical and test results confirmed the utility of the proposed method for calculating the initial stiffness of an SC wall with baseplate connection.Keywords: steel-plate composite shear wall, flexure-critical wall, cyclic loading, analytical model
Procedia PDF Downloads 34016724 Finite Element Analysis of RC Frames with Retrofitted Infill Walls
Authors: M. Ömer Timurağaoğlu, Adem Doğangün, Ramazan Livaoğlu
Abstract:
The evaluation of performance of infilled reinforced concrete (RC) frames has been a significant challenge for engineers. The strengthening of infill walls has been an important concern to enhance the behavior of RC infilled frames. The aim of this study is to investigate the behaviour of retrofitted infill walls of RC frames using finite element analysis. For this purpose, a one storey, one bay infilled and strengthened infilled RC frame which have the same geometry and material properties with the frames tested in laboratory are modelled using different analytical approaches. A fibrous material is used to strengthen infill walls and frame. As a consequence, the results of the finite element analysis were evaluated of whether these analytical approaches estimate the behavior or not. To model the infilled and strengthened infilled RC frames, a finite element program ABAQUS is used. Finally, data obtained from the nonlinear finite element analysis is compared with the experimental results.Keywords: finite element analysis, infilled RC frames, infill wall, strengthening
Procedia PDF Downloads 52916723 Optimal Tracking Control of a Hydroelectric Power Plant Incorporating Neural Forecasting for Uncertain Input Disturbances
Authors: Marlene Perez Villalpando, Kelly Joel Gurubel Tun
Abstract:
In this paper, we propose an optimal control strategy for a hydroelectric power plant subject to input disturbances like meteorological phenomena. The engineering characteristics of the system are described by a nonlinear model. The random availability of renewable sources is predicted by a high-order neural network trained with an extended Kalman filter, whereas the power generation is regulated by the optimal control law. The main advantage of the system is the stabilization of the amount of power generated in the plant. A control supervisor maintains stability and availability in hydropower reservoirs water levels for power generation. The proposed approach demonstrated a good performance to stabilize the reservoir level and the power generation along their desired trajectories in the presence of disturbances.Keywords: hydropower, high order neural network, Kalman filter, optimal control
Procedia PDF Downloads 29816722 Robust Diagnosis of an Electro-Mechanical Actuators, Bond Graph LFT Approach
Authors: A. Boulanoir, B. Ould Bouamama, A. Debiane, N. Achour
Abstract:
The paper deals with robust Fault Detection and isolation with respect to parameter uncertainties based on linear fractional transformation form (LFT) Bond graph. The innovative interest of the proposed methodology is the use only one representation for systematic generation of robust analytical redundancy relations and adaptive residual thresholds for sensibility analysis. Furthermore, the parameter uncertainties are introduced graphically in the bond graph model. The methodology applied to the nonlinear industrial Electro-Mechanical Actuators (EMA) used in avionic systems, has determined first the structural monitorability analysis (which component can be monitored) with given instrumentation architecture with any need of complex calculation and secondly robust fault indicators for online supervision.Keywords: bond graph (BG), electro mechanical actuators (EMA), fault detection and isolation (FDI), linear fractional transformation (LFT), mechatronic systems, parameter uncertainties, avionic system
Procedia PDF Downloads 35016721 Alternating Current Photovoltaic Module Model
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents modeling of a Alternating Current (AC) Photovoltaic (PV) module using Matlab/Simulink. The proposed AC-PV module model is simple, realistic, and application oriented. The model is derived on module level as compared to cell level directly from the information provided by the manufacturer data sheet. DC-PV module, MPPT control, BC, VSI and LC filter, all were treated as a single unit. The model accounts for changes in variations of both irradiance and temperature. The AC-PV module proposed model is simulated and the results are compared with the datasheet projected numbers to validate model’s accuracy and effectiveness. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.Keywords: PV modeling, AC PV Module, datasheet, VI curves irradiance, temperature, MPPT, Matlab/Simulink
Procedia PDF Downloads 57516720 A Study of Using Multiple Subproblems in Dantzig-Wolfe Decomposition of Linear Programming
Authors: William Chung
Abstract:
This paper is to study the use of multiple subproblems in Dantzig-Wolfe decomposition of linear programming (DW-LP). Traditionally, the decomposed LP consists of one LP master problem and one LP subproblem. The master problem and the subproblem is solved alternatively by exchanging the dual prices of the master problem and the proposals of the subproblem until the LP is solved. It is well known that convergence is slow with a long tail of near-optimal solutions (asymptotic convergence). Hence, the performance of DW-LP highly depends upon the number of decomposition steps. If the decomposition steps can be greatly reduced, the performance of DW-LP can be improved significantly. To reduce the number of decomposition steps, one of the methods is to increase the number of proposals from the subproblem to the master problem. To do so, we propose to add a quadratic approximation function to the LP subproblem in order to develop a set of approximate-LP subproblems (multiple subproblems). Consequently, in each decomposition step, multiple subproblems are solved for providing multiple proposals to the master problem. The number of decomposition steps can be reduced greatly. Note that each approximate-LP subproblem is nonlinear programming, and solving the LP subproblem must faster than solving the nonlinear multiple subproblems. Hence, using multiple subproblems in DW-LP is the tradeoff between the number of approximate-LP subproblems being formed and the decomposition steps. In this paper, we derive the corresponding algorithms and provide some simple computational results. Some properties of the resulting algorithms are also given.Keywords: approximate subproblem, Dantzig-Wolfe decomposition, large-scale models, multiple subproblems
Procedia PDF Downloads 16616719 Model of Optimal Centroids Approach for Multivariate Data Classification
Authors: Pham Van Nha, Le Cam Binh
Abstract:
Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization
Procedia PDF Downloads 20816718 Lean Impact Analysis Assessment Models: Development of a Lean Measurement Structural Model
Authors: Catherine Maware, Olufemi Adetunji
Abstract:
The paper is aimed at developing a model to measure the impact of Lean manufacturing deployment on organizational performance. The model will help industry practitioners to assess the impact of implementing Lean constructs on organizational performance. It will also harmonize the measurement models of Lean performance with the house of Lean that seems to have become the industry standard. The sheer number of measurement models for impact assessment of Lean implementation makes it difficult for new adopters to select an appropriate assessment model or deployment methodology. A literature review is conducted to classify the Lean performance model. Pareto analysis is used to select the Lean constructs for the development of the model. The model is further formalized through the use of Structural Equation Modeling (SEM) in defining the underlying latent structure of a Lean system. An impact assessment measurement model developed can be used to measure Lean performance and can be adopted by different industries.Keywords: impact measurement model, lean bundles, lean manufacturing, organizational performance
Procedia PDF Downloads 48516717 Development of an Analytical Model for a Synchronous Permanent Magnet Generator
Authors: T. Sahbani, M. Bouteraa, R. Wamkeue
Abstract:
Wind Turbine are considered to be one of the more efficient system of energy production nowadays, a reason that leads the main industrial companies in wind turbine construction and researchers in over the world to look for better performance and one of the ways for that is the use of the synchronous permanent magnet generator. In this context, this work is about developing an analytical model that could simulate different situation in which the synchronous generator may go through, and of course this model match perfectly with the numerical and experimental model.Keywords: MATLAB, synchronous permanent magnet generator, wind turbine, analytical model
Procedia PDF Downloads 54916716 Modeling the Cyclic Behavior of High Damping Rubber Bearings
Authors: Donatello Cardone
Abstract:
Bilinear hysteresis models are usually used to describe the cyclic behavior of high damping rubber bearings. However, they neglect a number of phenomena (such as the interaction between axial load and shear force, buckling and post-buckling behavior, cavitation, scragging effects, etc.) that can significantly influence the dynamic behavior of such isolation devices. In this work, an advanced hysteresis model is examined and properly calibrated using consolidated procedures. Results of preliminary numerical analyses, performed in OpenSees, are shown and compared with the results of experimental tests on high damping rubber bearings and simulation analyses using alternative nonlinear models. The findings of this study can provide an useful tool for the accurate evaluation of the seismic response of structures with rubber-based isolation systems.Keywords: seismic isolation, high damping rubber bearings, numerical modeling, axial-shear force interaction
Procedia PDF Downloads 12416715 Forecasting Materials Demand from Multi-Source Ordering
Authors: Hui Hsin Huang
Abstract:
The downstream manufactures will order their materials from different upstream suppliers to maintain a certain level of the demand. This paper proposes a bivariate model to portray this phenomenon of material demand. We use empirical data to estimate the parameters of model and evaluate the RMSD of model calibration. The results show that the model has better fitness.Keywords: recency, ordering time, materials demand quantity, multi-source ordering
Procedia PDF Downloads 53416714 Survival Analysis Based Delivery Time Estimates for Display FAB
Authors: Paul Han, Jun-Geol Baek
Abstract:
In the flat panel display industry, the scheduler and dispatching system to meet production target quantities and the deadline of production are the major production management system which controls each facility production order and distribution of WIP (Work in Process). In dispatching system, delivery time is a key factor for the time when a lot can be supplied to the facility. In this paper, we use survival analysis methods to identify main factors and a forecasting model of delivery time. Of survival analysis techniques to select important explanatory variables, the cox proportional hazard model is used to. To make a prediction model, the Accelerated Failure Time (AFT) model was used. Performance comparisons were conducted with two other models, which are the technical statistics model based on transfer history and the linear regression model using same explanatory variables with AFT model. As a result, the Mean Square Error (MSE) criteria, the AFT model decreased by 33.8% compared to the existing prediction model, decreased by 5.3% compared to the linear regression model. This survival analysis approach is applicable to implementing a delivery time estimator in display manufacturing. And it can contribute to improve the productivity and reliability of production management system.Keywords: delivery time, survival analysis, Cox PH model, accelerated failure time model
Procedia PDF Downloads 54316713 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm
Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho
Abstract:
Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.
Procedia PDF Downloads 25216712 Time-Frequency Modelling and Analysis of Faulty Rotor
Authors: B. X. Tchomeni, A. A. Alugongo, T. B. Tengen
Abstract:
In this paper, de Laval rotor system has been characterized by a hinge model and its transient response numerically treated for a dynamic solution. The effect of the ensuing non-linear disturbances namely rub and breathing crack is numerically simulated. Subsequently, three analysis methods: Orbit Analysis, Fast Fourier Transform (FFT) and Wavelet Transform (WT) are employed to extract features of the vibration signal of the faulty system. An analysis of the system response orbits clearly indicates the perturbations due to the rotor-to-stator contact. The sensitivities of WT to the variation in system speed have been investigated by Continuous Wavelet Transform (CWT). The analysis reveals that features of crack, rubs and unbalance in vibration response can be useful for condition monitoring. WT reveals its ability to detect non-linear signal, and obtained results provide a useful tool method for detecting machinery faults.Keywords: Continuous wavelet, crack, discrete wavelet, high acceleration, low acceleration, nonlinear, rotor-stator, rub
Procedia PDF Downloads 347