Search results for: heuristic algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2152

Search results for: heuristic algorithms

1432 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards

Authors: Golnush Masghati-Amoli, Paul Chin

Abstract:

Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.

Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering

Procedia PDF Downloads 122
1431 Quantum Statistical Machine Learning and Quantum Time Series

Authors: Omar Alzeley, Sergey Utev

Abstract:

Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.

Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series

Procedia PDF Downloads 457
1430 Design and Implementation of Low-code Model-building Methods

Authors: Zhilin Wang, Zhihao Zheng, Linxin Liu

Abstract:

This study proposes a low-code model-building approach that aims to simplify the development and deployment of artificial intelligence (AI) models. With an intuitive way to drag and drop and connect components, users can easily build complex models and integrate multiple algorithms for training. After the training is completed, the system automatically generates a callable model service API. This method not only lowers the technical threshold of AI development and improves development efficiency but also enhances the flexibility of algorithm integration and simplifies the deployment process of models. The core strength of this method lies in its ease of use and efficiency. Users do not need to have a deep programming background and can complete the design and implementation of complex models with a simple drag-and-drop operation. This feature greatly expands the scope of AI technology, allowing more non-technical people to participate in the development of AI models. At the same time, the method performs well in algorithm integration, supporting many different types of algorithms to work together, which further improves the performance and applicability of the model. In the experimental part, we performed several performance tests on the method. The results show that compared with traditional model construction methods, this method can make more efficient use, save computing resources, and greatly shorten the model training time. In addition, the system-generated model service interface has been optimized for high availability and scalability, which can adapt to the needs of different application scenarios.

Keywords: low-code, model building, artificial intelligence, algorithm integration, model deployment

Procedia PDF Downloads 7
1429 Computer Aided Design Solution Based on Genetic Algorithms for FMEA and Control Plan in Automotive Industry

Authors: Nadia Belu, Laurenţiu Mihai Ionescu, Agnieszka Misztal

Abstract:

The automotive industry is one of the most important industries in the world that concerns not only the economy, but also the world culture. In the present financial and economic context, this field faces new challenges posed by the current crisis, companies must maintain product quality, deliver on time and at a competitive price in order to achieve customer satisfaction. Two of the most recommended techniques of quality management by specific standards of the automotive industry, in the product development, are Failure Mode and Effects Analysis (FMEA) and Control Plan. FMEA is a methodology for risk management and quality improvement aimed at identifying potential causes of failure of products and processes, their quantification by risk assessment, ranking of the problems identified according to their importance, to the determination and implementation of corrective actions related. The companies use Control Plans realized using the results from FMEA to evaluate a process or product for strengths and weaknesses and to prevent problems before they occur. The Control Plans represent written descriptions of the systems used to control and minimize product and process variation. In addition Control Plans specify the process monitoring and control methods (for example Special Controls) used to control Special Characteristics. In this paper we propose a computer-aided solution with Genetic Algorithms in order to reduce the drafting of reports: FMEA analysis and Control Plan required in the manufacture of the product launch and improved knowledge development teams for future projects. The solution allows to the design team to introduce data entry required to FMEA. The actual analysis is performed using Genetic Algorithms to find optimum between RPN risk factor and cost of production. A feature of Genetic Algorithms is that they are used as a means of finding solutions for multi criteria optimization problems. In our case, along with three specific FMEA risk factors is considered and reduce production cost. Analysis tool will generate final reports for all FMEA processes. The data obtained in FMEA reports are automatically integrated with other entered parameters in Control Plan. Implementation of the solution is in the form of an application running in an intranet on two servers: one containing analysis and plan generation engine and the other containing the database where the initial parameters and results are stored. The results can then be used as starting solutions in the synthesis of other projects. The solution was applied to welding processes, laser cutting and bending to manufacture chassis for buses. Advantages of the solution are efficient elaboration of documents in the current project by automatically generating reports FMEA and Control Plan using multiple criteria optimization of production and build a solid knowledge base for future projects. The solution which we propose is a cheap alternative to other solutions on the market using Open Source tools in implementation.

Keywords: automotive industry, FMEA, control plan, automotive technology

Procedia PDF Downloads 397
1428 A Novel Solution Methodology for Transit Route Network Design Problem

Authors: Ghada Moussa, Mamoud Owais

Abstract:

Transit Route Network Design Problem (TrNDP) is the most important component in Transit planning, in which the overall cost of the public transportation system highly depends on it. The main purpose of this study is to develop a novel solution methodology for the TrNDP, which goes beyond pervious traditional sophisticated approaches. The novelty of the solution methodology, adopted in this paper, stands on the deterministic operators which are tackled to construct bus routes. The deterministic manner of the TrNDP solution relies on using linear and integer mathematical formulations that can be solved exactly with their standard solvers. The solution methodology has been tested through Mandl’s benchmark network problem. The test results showed that the methodology developed in this research is able to improve the given network solution in terms of number of constructed routes, direct transit service coverage, transfer directness and solution reliability. Although the set of routes resulted from the methodology would stand alone as a final efficient solution for TrNDP, it could be used as an initial solution for meta-heuristic procedures to approach global optimal. Based on the presented methodology, a more robust network optimization tool would be produced for public transportation planning purposes.

Keywords: integer programming, transit route design, transportation, urban planning

Procedia PDF Downloads 252
1427 Development of a Digital Healthcare Intervention to Reduce Digital and Healthcare Inequality in Rural Communities with a Focus on Hypertensive Management

Authors: Festus Adedoyin, Nana Mbeah Otoo, Sofia Meacham

Abstract:

Hypertension is one of the main health issues in Ghana, where prevalence is higher in rural than in urban areas. This is due to the challenges rural areas have in accessing technology and healthcare services for hypertension control. This study's goal is to create a digital healthcare solution to alleviate this inequality. Through an analysis of current technology and problems, using the ring onion methodology, the study determined the needs for the intervention and evaluated healthcare disparities. An online application with teleconsultation capabilities, reminder mechanisms, and clinical decision support is part of the suggested solution. In outlying areas, mobile clinics in containers with the required equipment will be established. Heuristic evaluation and think-aloud sessions were used to assess the prototype's usability and navigational problems. This study highlights the need to develop digital health interventions to help manage hypertension in rural locations and decrease healthcare disparities. To develop and improve digital healthcare solutions for rural areas worldwide and in Ghana, this study might be used as a tool for future research.

Keywords: digital health, health inequalities, hypertension management, rural areas

Procedia PDF Downloads 92
1426 Improving Fault Tolerance and Load Balancing in Heterogeneous Grid Computing Using Fractal Transform

Authors: Saad M. Darwish, Adel A. El-Zoghabi, Moustafa F. Ashry

Abstract:

The popularity of the Internet and the availability of powerful computers and high-speed networks as low-cost commodity components are changing the way we use computers today. These technical opportunities have led to the possibility of using geographically distributed and multi-owner resources to solve large-scale problems in science, engineering, and commerce. Recent research on these topics has led to the emergence of a new paradigm known as Grid computing. To achieve the promising potentials of tremendous distributed resources, effective and efficient load balancing algorithms are fundamentally important. Unfortunately, load balancing algorithms in traditional parallel and distributed systems, which usually run on homogeneous and dedicated resources, cannot work well in the new circumstances. In this paper, the concept of a fast fractal transform in heterogeneous grid computing based on R-tree and the domain-range entropy is proposed to improve fault tolerance and load balancing algorithm by improve connectivity, communication delay, network bandwidth, resource availability, and resource unpredictability. A novel two-dimension figure of merit is suggested to describe the network effects on load balance and fault tolerance estimation. Fault tolerance is enhanced by adaptively decrease replication time and message cost while load balance is enhanced by adaptively decrease mean job response time. Experimental results show that the proposed method yields superior performance over other methods.

Keywords: Grid computing, load balancing, fault tolerance, R-tree, heterogeneous systems

Procedia PDF Downloads 475
1425 Analogical Reasoning on Preschoolers’ Linguistic Performance

Authors: Yenie Norambuena

Abstract:

Analogical reasoning is a cognitive process that consists of structured comparisons of mental representations and scheme construction. Because of its heuristic function, it is ubiquitous in cognition and could play an important role in language development. The use of analogies is expressed early in children and this behavior is also reflected in language, suggesting a possible way to understand the complex links between thought and language. The current research examines factors of verbal and non-verbal reasoning that should be taken into consideration in the study of language development for their relations and predictive value. The study was conducted with 48 Chilean preschoolers (Spanish speakers) from 4 to 6-year-old. We assessed children’s verbal analogical reasoning, non-verbal analogical reasoning and linguistics skills (Listening Comprehension, Phonemic awareness, Alphabetic principle, Syllabification, Lexical repetition and Lexical decision). The results evidenced significant correlations between analogical reasoning factors and linguistic skills and they can predict linguistic performance mainly on oral comprehension, lexical decision and phonological skills. These findings suggest a fundamental interrelationship between analogical reasoning and linguistic performance on children’s and points to the need to consider this cognitive process in comprehensive theories of children's language development.

Keywords: verbal analogical reasoning, non-verbal analogical reasoning, linguistic skills, language development

Procedia PDF Downloads 256
1424 Clubhouse: A Minor Rebellion against the Algorithmic Tyranny of the Majority

Authors: Vahid Asadzadeh, Amin Ataee

Abstract:

Since the advent of social media, there has been a wave of optimism among researchers and civic activists about the influence of virtual networks on the democratization process, which has gradually waned. One of the lesser-known concerns is how to increase the possibility of hearing the voices of different minorities. According to the theory of media logic, the media, using their technological capabilities, act as a structure through which events and ideas are interpreted. Social media, through the use of the learning machine and the use of algorithms, has formed a kind of structure in which the voices of minorities and less popular topics are lost among the commotion of the trends. In fact, the recommended systems and algorithms used in social media are designed to help promote trends and make popular content more popular, and content that belongs to minorities is constantly marginalized. As social networks gradually play a more active role in politics, the possibility of freely participating in the reproduction and reinterpretation of structures in general and political structures in particular (as Laclau‎ and Mouffe had in mind‎) can be considered as criteria to democracy in action. The point is that the media logic of virtual networks is shaped by the rule and even the tyranny of the majority, and this logic does not make it possible to design a self-foundation and self-revolutionary model of democracy. In other words, today's social networks, though seemingly full of variety But they are governed by the logic of homogeneity, and they do not have the possibility of multiplicity as is the case in immanent radical democracies (influenced by Gilles Deleuze). However, with the emergence and increasing popularity of Clubhouse as a new social media, there seems to be a shift in the social media space, and that is the diminishing role of algorithms and systems reconditioners as content delivery interfaces. This has led to the fact that in the Clubhouse, the voices of minorities are better heard, and the diversity of political tendencies manifests itself better. The purpose of this article is to show, first, how social networks serve the elimination of minorities in general, and second, to argue that the media logic of social networks must adapt to new interpretations of democracy that give more space to minorities and human rights. Finally, this article will show how the Clubhouse serves the new interpretations of democracy at least in a minimal way. To achieve the mentioned goals, in this article by a descriptive-analytical method, first, the relation between media logic and postmodern democracy will be inquired. The political economy popularity in social media and its conflict with democracy will be discussed. Finally, it will be explored how the Clubhouse provides a new horizon for the concepts embodied in radical democracy, a horizon that more effectively serves the rights of minorities and human rights in general.

Keywords: algorithmic tyranny, Clubhouse, minority rights, radical democracy, social media

Procedia PDF Downloads 137
1423 Hyperspectral Image Classification Using Tree Search Algorithm

Authors: Shreya Pare, Parvin Akhter

Abstract:

Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.

Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm

Procedia PDF Downloads 160
1422 Harnessing the Power of Artificial Intelligence: Advancements and Ethical Considerations in Psychological and Behavioral Sciences

Authors: Nayer Mofidtabatabaei

Abstract:

Advancements in artificial intelligence (AI) have transformed various fields, including psychology and behavioral sciences. This paper explores the diverse ways in which AI is applied to enhance research, diagnosis, therapy, and understanding of human behavior and mental health. We discuss the potential benefits and challenges associated with AI in these fields, emphasizing the ethical considerations and the need for collaboration between AI researchers and psychological and behavioral science experts. Artificial Intelligence (AI) has gained prominence in recent years, revolutionizing multiple industries, including healthcare, finance, and entertainment. One area where AI holds significant promise is the field of psychology and behavioral sciences. AI applications in this domain range from improving the accuracy of diagnosis and treatment to understanding complex human behavior patterns. This paper aims to provide an overview of the various AI applications in psychological and behavioral sciences, highlighting their potential impact, challenges, and ethical considerations. Mental Health Diagnosis AI-driven tools, such as natural language processing and sentiment analysis, can analyze large datasets of text and speech to detect signs of mental health issues. For example, chatbots and virtual therapists can provide initial assessments and support to individuals suffering from anxiety or depression. Autism Spectrum Disorder (ASD) Diagnosis AI algorithms can assist in early ASD diagnosis by analyzing video and audio recordings of children's behavior. These tools help identify subtle behavioral markers, enabling earlier intervention and treatment. Personalized Therapy AI-based therapy platforms use personalized algorithms to adapt therapeutic interventions based on an individual's progress and needs. These platforms can provide continuous support and resources for patients, making therapy more accessible and effective. Virtual Reality Therapy Virtual reality (VR) combined with AI can create immersive therapeutic environments for treating phobias, PTSD, and social anxiety. AI algorithms can adapt VR scenarios in real-time to suit the patient's progress and comfort level. Data Analysis AI aids researchers in processing vast amounts of data, including survey responses, brain imaging, and genetic information. Privacy Concerns Collecting and analyzing personal data for AI applications in psychology and behavioral sciences raise significant privacy concerns. Researchers must ensure the ethical use and protection of sensitive information. Bias and Fairness AI algorithms can inherit biases present in training data, potentially leading to biased assessments or recommendations. Efforts to mitigate bias and ensure fairness in AI applications are crucial. Transparency and Accountability AI-driven decisions in psychology and behavioral sciences should be transparent and subject to accountability. Patients and practitioners should understand how AI algorithms operate and make decisions. AI applications in psychological and behavioral sciences have the potential to transform the field by enhancing diagnosis, therapy, and research. However, these advancements come with ethical challenges that require careful consideration. Collaboration between AI researchers and psychological and behavioral science experts is essential to harness AI's full potential while upholding ethical standards and privacy protections. The future of AI in psychology and behavioral sciences holds great promise, but it must be navigated with caution and responsibility.

Keywords: artificial intelligence, psychological sciences, behavioral sciences, diagnosis and therapy, ethical considerations

Procedia PDF Downloads 54
1421 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 123
1420 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties

Authors: G. Martino, F. Silva, E. Marchal

Abstract:

The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.

Keywords: clusterization and classification algorithms, integrated planning, mathematical modeling, optimization, penalty minimization

Procedia PDF Downloads 118
1419 Peril´s Environment of Energetic Infrastructure Complex System, Modelling by the Crisis Situation Algorithms

Authors: Jiří F. Urbánek, Alena Oulehlová, Hana Malachová, Jiří J. Urbánek Jr.

Abstract:

Crisis situations investigation and modelling are introduced and made within the complex system of energetic critical infrastructure, operating on peril´s environments. Every crisis situations and perils has an origin in the emergency/ crisis event occurrence and they need critical/ crisis interfaces assessment. Here, the emergency events can be expected - then crisis scenarios can be pre-prepared by pertinent organizational crisis management authorities towards their coping; or it may be unexpected - without pre-prepared scenario of event. But the both need operational coping by means of crisis management as well. The operation, forms, characteristics, behaviour and utilization of crisis management have various qualities, depending on real critical infrastructure organization perils, and prevention training processes. An aim is always - better security and continuity of the organization, which successful obtainment needs to find and investigate critical/ crisis zones and functions in critical infrastructure organization models, operating in pertinent perils environment. Our DYVELOP (Dynamic Vector Logistics of Processes) method is disposables for it. Here, it is necessary to derive and create identification algorithm of critical/ crisis interfaces. The locations of critical/ crisis interfaces are the flags of crisis situation in organization of critical infrastructure models. Then, the model of crisis situation will be displayed at real organization of Czech energetic crisis infrastructure subject in real peril environment. These efficient measures are necessary for the infrastructure protection. They will be derived for peril mitigation, crisis situation coping and for environmentally friendly organization survival, continuity and its sustainable development advanced possibilities.

Keywords: algorithms, energetic infrastructure complex system, modelling, peril´s environment

Procedia PDF Downloads 390
1418 Hybridized Simulated Annealing with Chemical Reaction Optimization for Solving to Sequence Alignment Problem

Authors: Ernesto Linan, Linda Cruz, Lucero Becerra

Abstract:

In this paper, a new hybridized algorithm based on Chemical Reaction Optimization and Simulated Annealing is proposed to solve the alignment sequence Problem. The Chemical Reaction Optimization is a population-based meta-heuristic algorithm based on the principles of a chemical reaction. Simulated Annealing is applied to solve a large number of combinatorial optimization problems of general-purpose. In this paper, we propose hybridization between Chemical Reaction Optimization algorithm and Simulated Annealing in order to solve the Sequence Alignment Problem. An initial population of molecules is defined at beginning of the proposed algorithm, where each molecule represents a sequence alignment problem. In order to simulate inter-molecule collisions, the process of Chemical Reaction is placed inside the Metropolis Cycle at certain values of temperature. Inside this cycle, change of molecules is done due to collisions; some molecules are accepted by applying Boltzmann probability. The results with the hybrid scheme are better than the results obtained separately.

Keywords: chemical reaction optimization, sequence alignment problem, simulated annealing algorithm, metaheuristics

Procedia PDF Downloads 202
1417 Numerical Iteration Method to Find New Formulas for Nonlinear Equations

Authors: Kholod Mohammad Abualnaja

Abstract:

A new algorithm is presented to find some new iterative methods for solving nonlinear equations F(x)=0 by using the variational iteration method. The efficiency of the considered method is illustrated by example. The results show that the proposed iteration technique, without linearization or small perturbation, is very effective and convenient.

Keywords: variational iteration method, nonlinear equations, Lagrange multiplier, algorithms

Procedia PDF Downloads 525
1416 Development of Academic Software for Medial Axis Determination of Porous Media from High-Resolution X-Ray Microtomography Data

Authors: S. Jurado, E. Pazmino

Abstract:

Determination of the medial axis of a porous media sample is a non-trivial problem of interest for several disciplines, e.g., hydrology, fluid dynamics, contaminant transport, filtration, oil extraction, etc. However, the computational tools available for researchers are limited and restricted. The primary aim of this work was to develop a series of algorithms to extract porosity, medial axis structure, and pore-throat size distributions from porous media domains. A complementary objective was to provide the algorithms as free computational software available to the academic community comprising researchers and students interested in 3D data processing. The burn algorithm was tested on porous media data obtained from High-Resolution X-Ray Microtomography (HRXMT) and idealized computer-generated domains. The real data and idealized domains were discretized in voxels domains of 550³ elements and binarized to denote solid and void regions to determine porosity. Subsequently, the algorithm identifies the layer of void voxels next to the solid boundaries. An iterative process removes or 'burns' void voxels in sequence of layer by layer until all the void space is characterized. Multiples strategies were tested to optimize the execution time and use of computer memory, i.e., segmentation of the overall domain in subdomains, vectorization of operations, and extraction of single burn layer data during the iterative process. The medial axis determination was conducted identifying regions where burnt layers collide. The final medial axis structure was refined to avoid concave-grain effects and utilized to determine the pore throat size distribution. A graphic user interface software was developed to encompass all these algorithms, including the generation of idealized porous media domains. The software allows input of HRXMT data to calculate porosity, medial axis, and pore-throat size distribution and provide output in tabular and graphical formats. Preliminary tests of the software developed during this study achieved medial axis, pore-throat size distribution and porosity determination of 100³, 320³ and 550³ voxel porous media domains in 2, 22, and 45 minutes, respectively in a personal computer (Intel i7 processor, 16Gb RAM). These results indicate that the software is a practical and accessible tool in postprocessing HRXMT data for the academic community.

Keywords: medial axis, pore-throat distribution, porosity, porous media

Procedia PDF Downloads 103
1415 A Graph Library Development Based on the Service-‎Oriented Architecture: Used for Representation of the ‎Biological ‎Systems in the Computer Algorithms

Authors: Mehrshad Khosraviani, Sepehr Najjarpour

Abstract:

Considering the usage of graph-based approaches in systems and synthetic biology, and the various types of ‎the graphs employed by them, a comprehensive graph library based ‎on the three-tier architecture (3TA) was previously introduced for full representation of the biological systems. Although proposing a 3TA-based graph library, three following reasons motivated us to redesign the graph ‎library based on the service-oriented architecture (SOA): (1) Maintaining the accuracy of the data related to an input graph (including its edges, its ‎vertices, its topology, etc.) without involving the end user:‎ Since, in the case of using 3TA, the library files are available to the end users, they may ‎be utilized incorrectly, and consequently, the invalid graph data will be provided to the ‎computer algorithms. However, considering the usage of the SOA, the operation of the ‎graph registration is specified as a service by encapsulation of the library files. In other words, overall control operations needed for registration of the valid data will be the ‎responsibility of the services. (2) Partitioning of the library product into some different parts: Considering 3TA, a whole library product was provided in general. While here, the product ‎can be divided into smaller ones, such as an AND/OR graph drawing service, and each ‎one can be provided individually. As a result, the end user will be able to select any ‎parts of the library product, instead of all features, to add it to a project. (3) Reduction of the complexities: While using 3TA, several other libraries must be needed to add for connecting to the ‎database, responsibility of the provision of the needed library resources in the SOA-‎based graph library is entrusted with the services by themselves. Therefore, the end user ‎who wants to use the graph library is not involved with its complexity. In the end, in order to ‎make ‎the library easier to control in the system, and to restrict the end user from accessing the files, ‎it was preferred to use the service-oriented ‎architecture ‎‎(SOA) over the three-tier architecture (3TA) and to redevelop the previously proposed graph library based on it‎.

Keywords: Bio-Design Automation, Biological System, Graph Library, Service-Oriented Architecture, Systems and Synthetic Biology

Procedia PDF Downloads 298
1414 Machine Learning in Patent Law: How Genetic Breeding Algorithms Challenge Modern Patent Law Regimes

Authors: Stefan Papastefanou

Abstract:

Artificial intelligence (AI) is an interdisciplinary field of computer science with the aim of creating intelligent machine behavior. Early approaches to AI have been configured to operate in very constrained environments where the behavior of the AI system was previously determined by formal rules. Knowledge was presented as a set of rules that allowed the AI system to determine the results for specific problems; as a structure of if-else rules that could be traversed to find a solution to a particular problem or question. However, such rule-based systems typically have not been able to generalize beyond the knowledge provided. All over the world and especially in IT-heavy industries such as the United States, the European Union, Singapore, and China, machine learning has developed to be an immense asset, and its applications are becoming more and more significant. It has to be examined how such products of machine learning models can and should be protected by IP law and for the purpose of this paper patent law specifically, since it is the IP law regime closest to technical inventions and computing methods in technical applications. Genetic breeding models are currently less popular than recursive neural network method and deep learning, but this approach can be more easily described by referring to the evolution of natural organisms, and with increasing computational power; the genetic breeding method as a subset of the evolutionary algorithms models is expected to be regaining popularity. The research method focuses on patentability (according to the world’s most significant patent law regimes such as China, Singapore, the European Union, and the United States) of AI inventions and machine learning. Questions of the technical nature of the problem to be solved, the inventive step as such, and the question of the state of the art and the associated obviousness of the solution arise in the current patenting processes. Most importantly, and the key focus of this paper is the problem of patenting inventions that themselves are developed through machine learning. The inventor of a patent application must be a natural person or a group of persons according to the current legal situation in most patent law regimes. In order to be considered an 'inventor', a person must actually have developed part of the inventive concept. The mere application of machine learning or an AI algorithm to a particular problem should not be construed as the algorithm that contributes to a part of the inventive concept. However, when machine learning or the AI algorithm has contributed to a part of the inventive concept, there is currently a lack of clarity regarding the ownership of artificially created inventions. Since not only all European patent law regimes but also the Chinese and Singaporean patent law approaches include identical terms, this paper ultimately offers a comparative analysis of the most relevant patent law regimes.

Keywords: algorithms, inventor, genetic breeding models, machine learning, patentability

Procedia PDF Downloads 100
1413 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning

Authors: Saahith M. S., Sivakami R.

Abstract:

In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.

Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis

Procedia PDF Downloads 26
1412 An Energy-Balanced Clustering Method on Wireless Sensor Networks

Authors: Yu-Ting Tsai, Chiun-Chieh Hsu, Yu-Chun Chu

Abstract:

In recent years, due to the development of wireless network technology, many researchers have devoted to the study of wireless sensor networks. The applications of wireless sensor network mainly use the sensor nodes to collect the required information, and send the information back to the users. Since the sensed area is difficult to reach, there are many restrictions on the design of the sensor nodes, where the most important restriction is the limited energy of sensor nodes. Because of the limited energy, researchers proposed a number of ways to reduce energy consumption and balance the load of sensor nodes in order to increase the network lifetime. In this paper, we proposed the Energy-Balanced Clustering method with Auxiliary Members on Wireless Sensor Networks(EBCAM)based on the cluster routing. The main purpose is to balance the energy consumption on the sensed area and average the distribution of dead nodes in order to avoid excessive energy consumption because of the increasing in transmission distance. In addition, we use the residual energy and average energy consumption of the nodes within the cluster to choose the cluster heads, use the multi hop transmission method to deliver the data, and dynamically adjust the transmission radius according to the load conditions. Finally, we use the auxiliary cluster members to change the delivering path according to the residual energy of the cluster head in order to its load. Finally, we compare the proposed method with the related algorithms via simulated experiments and then analyze the results. It reveals that the proposed method outperforms other algorithms in the numbers of used rounds and the average energy consumption.

Keywords: auxiliary nodes, cluster, load balance, routing algorithm, wireless sensor network

Procedia PDF Downloads 266
1411 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome

Authors: Agada N. Ihuoma, Nagata Yasunori

Abstract:

Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.

Keywords: artificial Intelligence, backward elimination, linear regression, solar energy

Procedia PDF Downloads 151
1410 Multiscale Hub: An Open-Source Framework for Practical Atomistic-To-Continuum Coupling

Authors: Masoud Safdari, Jacob Fish

Abstract:

Despite vast amount of existing theoretical knowledge, the implementation of a universal multiscale modeling, analysis, and simulation software framework remains challenging. Existing multiscale software and solutions are often domain-specific, closed-source and mandate a high-level of experience and skills in both multiscale analysis and programming. Furthermore, tools currently existing for Atomistic-to-Continuum (AtC) multiscaling are developed with the assumptions such as accessibility of high-performance computing facilities to the users. These issues mentioned plus many other challenges have reduced the adoption of multiscale in academia and especially industry. In the current work, we introduce Multiscale Hub (MsHub), an effort towards making AtC more accessible through cloud services. As a joint effort between academia and industry, MsHub provides a universal web-enabled framework for practical multiscaling. Developed on top of universally acclaimed scientific programming language Python, the package currently provides an open-source, comprehensive, easy-to-use framework for AtC coupling. MsHub offers an easy to use interface to prominent molecular dynamics and multiphysics continuum mechanics packages such as LAMMPS and MFEM (a free, lightweight, scalable C++ library for finite element methods). In this work, we first report on the design philosophy of MsHub, challenges identified and issues faced regarding its implementation. MsHub takes the advantage of a comprehensive set of tools and algorithms developed for AtC that can be used for a variety of governing physics. We then briefly report key AtC algorithms implemented in MsHub. Finally, we conclude with a few examples illustrating the capabilities of the package and its future directions.

Keywords: atomistic, continuum, coupling, multiscale

Procedia PDF Downloads 164
1409 Artificial Law: Legal AI Systems and the Need to Satisfy Principles of Justice, Equality and the Protection of Human Rights

Authors: Begum Koru, Isik Aybay, Demet Celik Ulusoy

Abstract:

The discipline of law is quite complex and has its own terminology. Apart from written legal rules, there is also living law, which refers to legal practice. Basic legal rules aim at the happiness of individuals in social life and have different characteristics in different branches such as public or private law. On the other hand, law is a national phenomenon. The law of one nation and the legal system applied on the territory of another nation may be completely different. People who are experts in a particular field of law in one country may have insufficient expertise in the law of another country. Today, in addition to the local nature of law, international and even supranational law rules are applied in order to protect basic human values and ensure the protection of human rights around the world. Systems that offer algorithmic solutions to legal problems using artificial intelligence (AI) tools will perhaps serve to produce very meaningful results in terms of human rights. However, algorithms to be used should not be developed by only computer experts, but also need the contribution of people who are familiar with law, values, judicial decisions, and even the social and political culture of the society to which it will provide solutions. Otherwise, even if the algorithm works perfectly, it may not be compatible with the values of the society in which it is applied. The latest developments involving the use of AI techniques in legal systems indicate that artificial law will emerge as a new field in the discipline of law. More AI systems are already being applied in the field of law, with examples such as predicting judicial decisions, text summarization, decision support systems, and classification of documents. Algorithms for legal systems employing AI tools, especially in the field of prediction of judicial decisions and decision support systems, have the capacity to create automatic decisions instead of judges. When the judge is removed from this equation, artificial intelligence-made law created by an intelligent algorithm on its own emerges, whether the domain is national or international law. In this work, the aim is to make a general analysis of this new topic. Such an analysis needs both a literature survey and a perspective from computer experts' and lawyers' point of view. In some societies, the use of prediction or decision support systems may be useful to integrate international human rights safeguards. In this case, artificial law can serve to produce more comprehensive and human rights-protective results than written or living law. In non-democratic countries, it may even be thought that direct decisions and artificial intelligence-made law would be more protective instead of a decision "support" system. Since the values of law are directed towards "human happiness or well-being", it requires that the AI algorithms should always be capable of serving this purpose and based on the rule of law, the principle of justice and equality, and the protection of human rights.

Keywords: AI and law, artificial law, protection of human rights, AI tools for legal systems

Procedia PDF Downloads 62
1408 Signs, Signals and Syndromes: Algorithmic Surveillance and Global Health Security in the 21st Century

Authors: Stephen L. Roberts

Abstract:

This article offers a critical analysis of the rise of syndromic surveillance systems for the advanced detection of pandemic threats within contemporary global health security frameworks. The article traces the iterative evolution and ascendancy of three such novel syndromic surveillance systems for the strengthening of health security initiatives over the past two decades: 1) The Program for Monitoring Emerging Diseases (ProMED-mail); 2) The Global Public Health Intelligence Network (GPHIN); and 3) HealthMap. This article demonstrates how each newly introduced syndromic surveillance system has become increasingly oriented towards the integration of digital algorithms into core surveillance capacities to continually harness and forecast upon infinitely generating sets of digital, open-source data, potentially indicative of forthcoming pandemic threats. This article argues that the increased centrality of the algorithm within these next-generation syndromic surveillance systems produces a new and distinct form of infectious disease surveillance for the governing of emergent pathogenic contingencies. Conceptually, the article also shows how the rise of this algorithmic mode of infectious disease surveillance produces divergences in the governmental rationalities of global health security, leading to the rise of an algorithmic governmentality within contemporary contexts of Big Data and these surveillance systems. Empirically, this article demonstrates how this new form of algorithmic infectious disease surveillance has been rapidly integrated into diplomatic, legal, and political frameworks to strengthen the practice of global health security – producing subtle, yet distinct shifts in the outbreak notification and reporting transparency of states, increasingly scrutinized by the algorithmic gaze of syndromic surveillance.

Keywords: algorithms, global health, pandemic, surveillance

Procedia PDF Downloads 170
1407 One-Way Electric Vehicle Carsharing in an Urban Area with Vehicle-To-Grid Option

Authors: Cem Isik Dogru, Salih Tekin, Kursad Derinkuyu

Abstract:

Electric vehicle (EV) carsharing is an alternative method to tackle urban transportation problems. This method can be applied by several options. One of the options is the one-way carsharing, which allow an EV to be taken at a designated location and leaving it on another specified location customer desires. Although it may increase users’ satisfaction, the issues, namely, demand dissatisfaction, relocation of EVs and charging schedules, must be dealt with. Also, excessive electricity has to be stored in batteries of EVs. To cope with aforementioned issues, two-step mixed integer programming (MIP) model is proposed. In first step, the integer programming model is used to determine amount of electricity to be sold to the grid in terms of time periods for extra profit. Determined amounts are provided from the batteries of EVs. Also, this step works in day-ahead electricity markets with forecast of periodical electricity prices. In second step, other MIP model optimizes daily operations of one-way carsharing: charging-discharging schedules, relocation of EVs to serve more demand and renting to maximize the profit of EV fleet owner. Due to complexity of the models, heuristic methods are introduced to attain a feasible solution and different price information scenarios are compared.

Keywords: electric vehicles, forecasting, mixed integer programming, one-way carsharing

Procedia PDF Downloads 120
1406 Regret-Regression for Multi-Armed Bandit Problem

Authors: Deyadeen Ali Alshibani

Abstract:

In the literature, the multi-armed bandit problem as a statistical decision model of an agent trying to optimize his decisions while improving his information at the same time. There are several different algorithms models and their applications on this problem. In this paper, we evaluate the Regret-regression through comparing with Q-learning method. A simulation on determination of optimal treatment regime is presented in detail.

Keywords: optimal, bandit problem, optimization, dynamic programming

Procedia PDF Downloads 442
1405 Optimal Operation of Bakhtiari and Roudbar Dam Using Differential Evolution Algorithms

Authors: Ramin Mansouri

Abstract:

Due to the contrast of rivers discharge regime with water demands, one of the best ways to use water resources is to regulate the natural flow of the rivers and supplying water needs to construct dams. Optimal utilization of reservoirs, consideration of multiple important goals together at the same is of very high importance. To study about analyzing this method, statistical data of Bakhtiari and Roudbar dam over 46 years (1955 until 2001) is used. Initially an appropriate objective function was specified and using DE algorithm, the rule curve was developed. In continue, operation policy using rule curves was compared to standard comparative operation policy. The proposed method distributed the lack to the whole year and lowest damage was inflicted to the system. The standard deviation of monthly shortfall of each year with the proposed algorithm was less deviated than the other two methods. The Results show that median values for the coefficients of F and Cr provide the optimum situation and cause DE algorithm not to be trapped in local optimum. The most optimal answer for coefficients are 0.6 and 0.5 for F and Cr coefficients, respectively. After finding the best combination of coefficients values F and CR, algorithms for solving the independent populations were examined. For this purpose, the population of 4, 25, 50, 100, 500 and 1000 members were studied in two generations (G=50 and 100). result indicates that the generation number 200 is suitable for optimizing. The increase in time per the number of population has almost a linear trend, which indicates the effect of population in the runtime algorithm. Hence specifying suitable population to obtain an optimal results is very important. Standard operation policy had better reversibility percentage, but inflicts severe vulnerability to the system. The results obtained in years of low rainfall had very good results compared to other comparative methods.

Keywords: reservoirs, differential evolution, dam, Optimal operation

Procedia PDF Downloads 67
1404 An Extended Basic Period and Power-of-Two Policy for Economic Lot-Size Batch-Shipment Scheduling Problem

Authors: Wen-Tsung Ho, Ku-Kuang Chang, Hsin-Yuan Chang

Abstract:

In this study, we consider an economic lot-size batch-shipment scheduling problem (ELBSP) with extended basic period (EBP) and power-of-two (PoT) policies. In this problem, the supplier using a single facility to manufacture multiple products and equally sized batches are then delivered by the supplier to buyers over an infinite planning horizon. Further, the extended basic period (EBP) and power-of-two (PoT) policy are utilized. Relaxing the production schedule converts the ELBSP to an economic lot-size batch-shipment problem (ELBP) with EBP and PoT policies, and a nonlinear integer programming model of the ELBP is constructed. Using the replenishment cycle division and recursive tightening methods, optimal solutions are then solved separately for each product. The sum of these optimal solutions is the lower bound of the ELBSP. A proposed heuristic method with polynomial complexity is then applied to figure out the near-optimal solutions of the ELBSP. Numerical example is presented to confirm the efficacy of the proposed method.

Keywords: economic lot-size scheduling problem, extended basic period, replenishment cycle division, recursive tightening, power-of-two

Procedia PDF Downloads 331
1403 Recent Advances in Data Warehouse

Authors: Fahad Hanash Alzahrani

Abstract:

This paper describes some recent advances in a quickly developing area of data storing and processing based on Data Warehouses and Data Mining techniques, which are associated with software, hardware, data mining algorithms and visualisation techniques having common features for any specific problems and tasks of their implementation.

Keywords: data warehouse, data mining, knowledge discovery in databases, on-line analytical processing

Procedia PDF Downloads 387