Search results for: simulation modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8108

Search results for: simulation modeling

698 Bimetallic MOFs Based Membrane for the Removal of Heavy Metal Ions from the Industrial Wastewater

Authors: Muhammad Umar Mushtaq, Muhammad Bilal Khan Niazi, Nouman Ahmad, Dooa Arif

Abstract:

Apart from organic dyes, heavy metals such as Pb, Ni, Cr, and Cu are present in textile effluent and pose a threat to humans and the environment. Many studies on removing heavy metallic ions from textile wastewater have been conducted in recent decades using metal-organic frameworks (MOFs). In this study new polyether sulfone ultrafiltration membrane, modified with Cu/Co and Cu/Zn-based bimetal-organic frameworks (MOFs), was produced. Phase inversion was used to produce the membrane, and atomic force microscopy (AFM), scanning electron microscopy (SEM) were used to characterize it. The bimetallic MOFs-based membrane structure is complex and can be comprehended using characterization techniques. The bimetallic MOF-based filtration membranes are designed to selectively adsorb specific contaminants while allowing the passage of water molecules, improving the ultrafiltration efficiency. MOFs' adsorption capacity and selectivity are enhanced by functionalizing them with particular chemical groups or incorporating them into composite membranes with other materials, such as polymers. The morphology and performance of the bimetallic MOF-based membrane were investigated regarding pure water flux and metal ion rejection. The advantages of developed bimetallic MOFs based membranes for wastewater treatment include enhanced adsorption capacity because of the presence of two metals in their structure, which provides additional binding sites for contaminants, leading to a higher adsorption capacity and more efficient removal of pollutants from wastewater. Based on the experimental findings, bimetallic MOF-based membranes are more capable of rejecting metal ions from industrial wastewater than conventional membranes that have already been developed. Furthermore, the difficulties associated with operational parameters, including pressure gradients and velocity profiles, are simulated using Ansys Fluent software. The simulation results obtained for the operating parameters are in complete agreement with the experimental results.

Keywords: bimetallic MOFs, heavy metal ions, industrial wastewater treatment, ultrafiltration.

Procedia PDF Downloads 90
697 PLO-AIM: Potential-Based Lane Organization in Autonomous Intersection Management

Authors: Berk Ecer, Ebru Akcapinar Sezer

Abstract:

Traditional management models of intersections, such as no-light intersections or signalized intersection, are not the most effective way of passing the intersections if the vehicles are intelligent. To this end, Dresner and Stone proposed a new intersection control model called Autonomous Intersection Management (AIM). In the AIM simulation, they were examining the problem from a multi-agent perspective, demonstrating that intelligent intersection control can be made more efficient than existing control mechanisms. In this study, autonomous intersection management has been investigated. We extended their works and added a potential-based lane organization layer. In order to distribute vehicles evenly to each lane, this layer triggers vehicles to analyze near lanes, and they change their lane if other lanes have an advantage. We can observe this behavior in real life, such as drivers, change their lane by considering their intuitions. Basic intuition on selecting the correct lane for traffic is selecting a less crowded lane in order to reduce delay. We model that behavior without any change in the AIM workflow. Experiment results show us that intersection performance is directly connected with the vehicle distribution in lanes of roads of intersections. We see the advantage of handling lane management with a potential approach in performance metrics such as average delay of intersection and average travel time. Therefore, lane management and intersection management are problems that need to be handled together. This study shows us that the lane through which vehicles enter the intersection is an effective parameter for intersection management. Our study draws attention to this parameter and suggested a solution for it. We observed that the regulation of AIM inputs, which are vehicles in lanes, was as effective as contributing to aim intersection management. PLO-AIM model outperforms AIM in evaluation metrics such as average delay of intersection and average travel time for reasonable traffic rates, which is in between 600 vehicle/hour per lane to 1300 vehicle/hour per lane. The proposed model reduced the average travel time reduced in between %0.2 - %17.3 and reduced the average delay of intersection in between %1.6 - %17.1 for 4-lane and 6-lane scenarios.

Keywords: AIM project, autonomous intersection management, lane organization, potential-based approach

Procedia PDF Downloads 139
696 Spatial Mapping of Variations in Groundwater of Taluka Islamkot Thar Using GIS and Field Data

Authors: Imran Aziz Tunio

Abstract:

Islamkot is an underdeveloped sub-district (Taluka) in the Tharparkar district Sindh province of Pakistan located between latitude 24°25'19.79"N to 24°47'59.92"N and longitude 70° 1'13.95"E to 70°32'15.11"E. The Islamkot has an arid desert climate and the region is generally devoid of perennial rivers, canals, and streams. It is highly dependent on rainfall which is not considered a reliable surface water source and groundwater is the only key source of water for many centuries. To assess groundwater’s potential, an electrical resistivity survey (ERS) was conducted in Islamkot Taluka. Groundwater investigations for 128 Vertical Electrical Sounding (VES) were collected to determine the groundwater potential and obtain qualitatively and quantitatively layered resistivity parameters. The PASI Model 16 GL-N Resistivity Meter was used by employing a Schlumberger electrode configuration, with half current electrode spacing (AB/2) ranging from 1.5 to 100 m and the potential electrode spacing (MN/2) from 0.5 to 10 m. The data was acquired with a maximum current electrode spacing of 200 m. The data processing for the delineation of dune sand aquifers involved the technique of data inversion, and the interpretation of the inversion results was aided by the use of forward modeling. The measured geo-electrical parameters were examined by Interpex IX1D software, and apparent resistivity curves and synthetic model layered parameters were mapped in the ArcGIS environment using the inverse Distance Weighting (IDW) interpolation technique. Qualitative interpretation of vertical electrical sounding (VES) data shows the number of geo-electrical layers in the area varies from three to four with different resistivity values detected. Out of 128 VES model curves, 42 nos. are 3 layered, and 86 nos. are 4 layered. The resistivity of the first subsurface layers (Loose surface sand) varied from 16.13 Ωm to 3353.3 Ωm and thickness varied from 0.046 m to 17.52m. The resistivity of the second subsurface layer (Semi-consolidated sand) varied from 1.10 Ωm to 7442.8 Ωm and thickness varied from 0.30 m to 56.27 m. The resistivity of the third subsurface layer (Consolidated sand) varied from 0.00001 Ωm to 3190.8 Ωm and thickness varied from 3.26 m to 86.66 m. The resistivity of the fourth subsurface layer (Silt and Clay) varied from 0.0013 Ωm to 16264 Ωm and thickness varied from 13.50 m to 87.68 m. The Dar Zarrouk parameters, i.e. longitudinal unit conductance S is from 0.00024 to 19.91 mho; transverse unit resistance T from 7.34 to 40080.63 Ωm2; longitudinal resistance RS is from 1.22 to 3137.10 Ωm and transverse resistivity RT from 5.84 to 3138.54 Ωm. ERS data and Dar Zarrouk parameters were mapped which revealed that the study area has groundwater potential in the subsurface.

Keywords: electrical resistivity survey, GIS & RS, groundwater potential, environmental assessment, VES

Procedia PDF Downloads 110
695 Modelling Volatility Spillovers and Cross Hedging among Major Agricultural Commodity Futures

Authors: Roengchai Tansuchat, Woraphon Yamaka, Paravee Maneejuk

Abstract:

From the past recent, the global financial crisis, economic instability, and large fluctuation in agricultural commodity price have led to increased concerns about the volatility transmission among them. The problem is further exacerbated by commodities volatility caused by other commodity price fluctuations, hence the decision on hedging strategy has become both costly and useless. Thus, this paper is conducted to analysis the volatility spillover effect among major agriculture including corn, soybeans, wheat and rice, to help the commodity suppliers hedge their portfolios, and manage the risk and co-volatility of them. We provide a switching regime approach to analyzing the issue of volatility spillovers in different economic conditions, namely upturn and downturn economic. In particular, we investigate relationships and volatility transmissions between these commodities in different economic conditions. We purposed a Copula-based multivariate Markov Switching GARCH model with two regimes that depend on an economic conditions and perform simulation study to check the accuracy of our proposed model. In this study, the correlation term in the cross-hedge ratio is obtained from six copula families – two elliptical copulas (Gaussian and Student-t) and four Archimedean copulas (Clayton, Gumbel, Frank, and Joe). We use one-step maximum likelihood estimation techniques to estimate our models and compare the performance of these copula using Akaike information criterion (AIC) and Bayesian information criteria (BIC). In the application study of agriculture commodities, the weekly data used are conducted from 4 January 2005 to 1 September 2016, covering 612 observations. The empirical results indicate that the volatility spillover effects among cereal futures are different, as response of different economic condition. In addition, the results of hedge effectiveness will also suggest the optimal cross hedge strategies in different economic condition especially upturn and downturn economic.

Keywords: agricultural commodity futures, cereal, cross-hedge, spillover effect, switching regime approach

Procedia PDF Downloads 202
694 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho

Abstract:

Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.

Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem

Procedia PDF Downloads 294
693 Field Environment Sensing and Modeling for Pears towards Precision Agriculture

Authors: Tatsuya Yamazaki, Kazuya Miyakawa, Tomohiko Sugiyama, Toshitaka Iwatani

Abstract:

The introduction of sensor technologies into agriculture is a necessary step to realize Precision Agriculture. Although sensing methodologies themselves have been prevailing owing to miniaturization and reduction in costs of sensors, there are some difficulties to analyze and understand the sensing data. Targeting at pears ’Le Lectier’, which is particular to Niigata in Japan, cultivation environmental data have been collected at pear fields by eight sorts of sensors: field temperature, field humidity, rain gauge, soil water potential, soil temperature, soil moisture, inner-bag temperature, and inner-bag humidity sensors. With regard to the inner-bag temperature and humidity sensors, they are used to measure the environment inside the fruit bag used for pre-harvest bagging of pears. In this experiment, three kinds of fruit bags were used for the pre-harvest bagging. After over 100 days continuous measurement, volumes of sensing data have been collected. Firstly, correlation analysis among sensing data measured by respective sensors reveals that one sensor can replace another sensor so that more efficient and cost-saving sensing systems can be proposed to pear farmers. Secondly, differences in characteristic and performance of the three kinds of fruit bags are clarified by the measurement results by the inner-bag environmental sensing. It is found that characteristic and performance of the inner-bags significantly differ from each other by statistical analysis. Lastly, a relational model between the sensing data and the pear outlook quality is established by use of Structural Equation Model (SEM). Here, the pear outlook quality is related with existence of stain, blob, scratch, and so on caused by physiological impair or diseases. Conceptually SEM is a combination of exploratory factor analysis and multiple regression. By using SEM, a model is constructed to connect independent and dependent variables. The proposed SEM model relates the measured sensing data and the pear outlook quality determined on the basis of farmer judgement. In particularly, it is found that the inner-bag humidity variable relatively affects the pear outlook quality. Therefore, inner-bag humidity sensing might help the farmers to control the pear outlook quality. These results are supported by a large quantity of inner-bag humidity data measured over the years 2014, 2015, and 2016. The experimental and analytical results in this research contribute to spreading Precision Agriculture technologies among the farmers growing ’Le Lectier’.

Keywords: precision agriculture, pre-harvest bagging, sensor fusion, structural equation model

Procedia PDF Downloads 314
692 The Quantum Theory of Music and Human Languages

Authors: Mballa Abanda Luc Aurelien Serge, Henda Gnakate Biba, Kuate Guemo Romaric, Akono Rufine Nicole, Zabotom Yaya Fadel Biba, Petfiang Sidonie, Bella Suzane Jenifer

Abstract:

The main hypotheses proposed around the definition of the syllable and of music, of the common origin of music and language, should lead the reader to reflect on the cross-cutting questions raised by the debate on the notion of universals in linguistics and musicology. These are objects of controversy, and there lies its interest: the debate raises questions that are at the heart of theories on language. It is an inventive, original, and innovative research thesis. A contribution to the theoretical, musicological, ethno musicological, and linguistic conceptualization of languages, giving rise to the practice of interlocution between the social and cognitive sciences, the activities of artistic creation, and the question of modeling in the human sciences: mathematics, computer science, translation automation, and artificial intelligence. When you apply this theory to any text of a folksong of a world-tone language, you do not only piece together the exact melody, rhythm, and harmonies of that song as if you knew it in advance but also the exact speaking of this language. The author believes that the issue of the disappearance of tonal languages and their preservation has been structurally resolved, as well as one of the greatest cultural equations related to the composition and creation of tonal, polytonal, and random music. The experimentation confirming the theorization, I designed a semi-digital, semi-analog application that translates the tonal languages of Africa (about 2,100 languages) into blues, jazz, world music, polyphonic music, tonal and anatonal music, and deterministic and random music). To test this application, I use music reading and writing software that allows me to collect the data extracted from my mother tongue, which is already modeled in the musical staves saved in the ethnographic (semiotic) dictionary for automatic translation ( volume 2 of the book). The translation is done (from writing to writing, from writing to speech, and from writing to music). Mode of operation: you type a text on your computer, a structured song (chorus-verse), and you command the machine a melody of blues, jazz, and world music or variety, etc. The software runs, giving you the option to choose harmonies, and then you select your melody.

Keywords: language, music, sciences, quantum entenglement

Procedia PDF Downloads 77
691 Exploratory Factor Analysis of Natural Disaster Preparedness Awareness of Thai Citizens

Authors: Chaiyaset Promsri

Abstract:

Based on the synthesis of related literatures, this research found thirteen related dimensions that involved the development of natural disaster preparedness awareness including hazard knowledge, hazard attitude, training for disaster preparedness, rehearsal and practice for disaster preparedness, cultural development for preparedness, public relations and communication, storytelling, disaster awareness game, simulation, past experience to natural disaster, information sharing with family members, and commitment to the community (time of living).  The 40-item of natural disaster preparedness awareness questionnaire was developed based on these thirteen dimensions. Data were collected from 595 participants in Bangkok metropolitan and vicinity. Cronbach's alpha was used to examine the internal consistency for this instrument. Reliability coefficient was 97, which was highly acceptable.  Exploratory Factor Analysis where principal axis factor analysis was employed. The Kaiser-Meyer-Olkin index of sampling adequacy was .973, indicating that the data represented a homogeneous collection of variables suitable for factor analysis. Bartlett's test of Sphericity was significant for the sample as Chi-Square = 23168.657, df = 780, and p-value < .0001, which indicated that the set of correlations in the correlation matrix was significantly different and acceptable for utilizing EFA. Factor extraction was done to determine the number of factors by using principal component analysis and varimax.  The result revealed that four factors had Eigen value greater than 1 with more than 60% cumulative of variance. Factor #1 had Eigen value of 22.270, and factor loadings ranged from 0.626-0.760. This factor was named as "Knowledge and Attitude of Natural Disaster Preparedness".  Factor #2 had Eigen value of 2.491, and factor loadings ranged from 0.596-0.696. This factor was named as "Training and Development". Factor #3 had Eigen value of 1.821, and factor loadings ranged from 0.643-0.777. This factor was named as "Building Experiences about Disaster Preparedness".  Factor #4 had Eigen value of 1.365, and factor loadings ranged from 0.657-0.760. This was named as "Family and Community". The results of this study provided support for the reliability and construct validity of natural disaster preparedness awareness for utilizing with populations similar to sample employed.

Keywords: natural disaster, disaster preparedness, disaster awareness, Thai citizens

Procedia PDF Downloads 378
690 Long-Term Exposure, Health Risk, and Loss of Quality-Adjusted Life Expectancy Assessments for Vinyl Chloride Monomer Workers

Authors: Tzu-Ting Hu, Jung-Der Wang, Ming-Yeng Lin, Jin-Luh Chen, Perng-Jy Tsai

Abstract:

The vinyl chloride monomer (VCM) has been classified as group 1 (human) carcinogen by the IARC. Workers exposed to VCM are known associated with the development of the liver cancer and hence might cause economical and health losses. Particularly, for those work for the petrochemical industry have been seriously concerned in the environmental and occupational health field. Considering assessing workers’ health risks and their resultant economical and health losses requires the establishment of long-term VCM exposure data for any similar exposure group (SEG) of interest, the development of suitable technologies has become an urgent and important issue. In the present study, VCM exposures for petrochemical industry workers were determined firstly based on the database of the 'Workplace Environmental Monitoring Information Systems (WEMIS)' provided by Taiwan OSHA. Considering the existence of miss data, the reconstruction of historical exposure techniques were then used for completing the long-term exposure data for SEGs with routine operations. For SEGs with non-routine operations, exposure modeling techniques, together with their time/activity records, were adopted for determining their long-term exposure concentrations. The Bayesian decision analysis (BDA) was adopted for conducting exposure and health risk assessments for any given SEG in the petrochemical industry. The resultant excessive cancer risk was then used to determine the corresponding loss of quality-adjusted life expectancy (QALE). Results show that low average concentrations can be found for SEGs with routine operations (e.g., VCM rectification 0.0973 ppm, polymerization 0.306 ppm, reaction tank 0.33 ppm, VCM recovery 1.4 ppm, control room 0.14 ppm, VCM storage tanks 0.095 ppm and wastewater treatment 0.390 ppm), and the above values were much lower than that of the permissible exposure limit (PEL; 3 ppm) of VCM promulgated in Taiwan. For non-routine workers, though their high exposure concentrations, their low exposure time and frequencies result in low corresponding health risks. Through the consideration of exposure assessment results, health risk assessment results, and QALE results simultaneously, it is concluded that the proposed method was useful for prioritizing SEGs for conducting exposure abatement measurements. Particularly, the obtained QALE results further indicate the importance of reducing workers’ VCM exposures, though their exposures were low as in comparison with the PEL and the acceptable health risk.

Keywords: exposure assessment, health risk assessment, petrochemical industry, quality-adjusted life years, vinyl chloride monomer

Procedia PDF Downloads 195
689 A Review of Critical Framework Assessment Matrices for Data Analysis on Overheating in Buildings Impact

Authors: Martin Adlington, Boris Ceranic, Sally Shazhad

Abstract:

In an effort to reduce carbon emissions, changes in UK regulations, such as Part L Conservation of heat and power, dictates improved thermal insulation and enhanced air tightness. These changes were a direct response to the UK Government being fully committed to achieving its carbon targets under the Climate Change Act 2008. The goal is to reduce emissions by at least 80% by 2050. Factors such as climate change are likely to exacerbate the problem of overheating, as this phenomenon expects to increase the frequency of extreme heat events exemplified by stagnant air masses and successive high minimum overnight temperatures. However, climate change is not the only concern relevant to overheating, as research signifies, location, design, and occupation; construction type and layout can also play a part. Because of this growing problem, research shows the possibility of health effects on occupants of buildings could be an issue. Increases in temperature can perhaps have a direct impact on the human body’s ability to retain thermoregulation and therefore the effects of heat-related illnesses such as heat stroke, heat exhaustion, heat syncope and even death can be imminent. This review paper presents a comprehensive evaluation of the current literature on the causes and health effects of overheating in buildings and has examined the differing applied assessment approaches used to measure the concept. Firstly, an overview of the topic was presented followed by an examination of overheating research work from the last decade. These papers form the body of the article and are grouped into a framework matrix summarizing the source material identifying the differing methods of analysis of overheating. Cross case evaluation has identified systematic relationships between different variables within the matrix. Key areas focused on include, building types and country, occupants behavior, health effects, simulation tools, computational methods.

Keywords: overheating, climate change, thermal comfort, health

Procedia PDF Downloads 351
688 In silico Designing of Imidazo [4,5-b] Pyridine as a Probable Lead for Potent Decaprenyl Phosphoryl-β-D-Ribose 2′-Epimerase (DprE1) Inhibitors as Antitubercular Agents

Authors: Jineetkumar Gawad, Chandrakant Bonde

Abstract:

Tuberculosis (TB) is a major worldwide concern whose control has been exacerbated by HIV, the rise of multidrug-resistance (MDR-TB) and extensively drug resistance (XDR-TB) strains of Mycobacterium tuberculosis. The interest for newer and faster acting antitubercular drugs are more remarkable than any time. To search potent compounds is need and challenge for researchers. Here, we tried to design lead for inhibition of Decaprenyl phosphoryl-β-D-ribose 2′-epimerase (DprE1) enzyme. Arabinose is an essential constituent of mycobacterial cell wall. DprE1 is a flavoenzyme that converts decaprenylphosphoryl-D-ribose into decaprenylphosphoryl-2-keto-ribose, which is intermediate in biosynthetic pathway of arabinose. Latter, DprE2 converts keto-ribose into decaprenylphosphoryl-D-arabinose. We had a selection of 23 compounds from azaindole series for computational study, and they were drawn using marvisketch. Ligands were prepared using Maestro molecular modeling interface, Schrodinger, v10.5. Common pharmacophore hypotheses were developed by applying dataset thresholds to yield active and inactive set of compounds. There were 326 hypotheses were developed. On the basis of survival score, ADRRR (Survival Score: 5.453) was selected. Selected pharmacophore hypotheses were subjected to virtual screening results into 1000 hits. Hits were prepared and docked with protein 4KW5 (oxydoreductase inhibitor) was downloaded in .pdb format from RCSB Protein Data Bank. Protein was prepared using protein preparation wizard. Protein was preprocessed, the workspace was analyzed using force field OPLS 2005. Glide grid was generated by picking single atom in molecule. Prepared ligands were docked with prepared protein 4KW5 using Glide docking. After docking, on the basis of glide score top-five compounds were selected, (5223, 5812, 0661, 0662, and 2945) and the glide docking score (-8.928, -8.534, -8.412, -8.411, -8.351) respectively. There were interactions of ligand and protein, specifically HIS 132, LYS 418, TRY 230, ASN 385. Pi-pi stacking was observed in few compounds with basic Imidazo [4,5-b] pyridine ring. We had basic azaindole ring in parent compounds, but after glide docking, we received compounds with Imidazo [4,5-b] pyridine as a basic ring. That might be the new lead in the process of drug discovery.

Keywords: DprE1 inhibitors, in silico drug designing, imidazo [4, 5-b] pyridine, lead, tuberculosis

Procedia PDF Downloads 154
687 Photovoltaic Solar Energy in Public Buildings: A Showcase for Society

Authors: Eliane Ferreira da Silva

Abstract:

This paper aims to mobilize and sensitize public administration leaders to good practices and encourage investment in the PV system in Brazil. It presents a case study methodology for dimensioning the PV system in the roofs of the public buildings of the Esplanade of the Ministries, Brasilia, capital of the country, with predefined resources, starting with the Sustainable Esplanade Project (SEP), of the exponential growth of photovoltaic solar energy in the world and making a comparison with the solar power plant of the Ministry of Mines and Energy (MME), active since: 6/10/2016. In order to do so, it was necessary to evaluate the energy efficiency of the buildings in the period from January 2016 to April 2017, (16 months) identifying the opportunities to reduce electric energy expenses, through the adjustment of contracted demand, the tariff framework and correction of existing active energy. The instrument used to collect data on electric bills was the e-SIC citizen information system. The study considered in addition to the technical and operational aspects, the historical, cultural, architectural and climatic aspects, involved by several actors. Identifying the reductions of expenses, the study directed to the following aspects: Case 1) economic feasibility for exchanges of common lamps, for LED lamps, and, Case 2) economic feasibility for the implementation of photovoltaic solar system connected to the grid. For the case 2, PV*SOL Premium Software was used to simulate several possibilities of photovoltaic panels, analyzing the best performance, according to local characteristics, such as solar orientation, latitude, annual average solar radiation. A simulation of an ideal photovoltaic solar system was made, with due calculations of its yield, to provide a compensation of the energy expenditure of the building - or part of it - through the use of the alternative source in question. The study develops a methodology for public administration, as a major consumer of electricity, to act in a responsible, fiscalizing and incentive way in reducing energy waste, and consequently reducing greenhouse gases.

Keywords: energy efficiency, esplanade of ministries, photovoltaic solar energy, public buildings, sustainable building

Procedia PDF Downloads 132
686 Modeling of the Fermentation Process of Enzymatically Extracted Annona muricata L. Juice

Authors: Calister Wingang Makebe, Wilson Agwanande Ambindei, Zangue Steve Carly Desobgo, Abraham Billu, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1, as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 68
685 Measurement and Simulation of Axial Neutron Flux Distribution in Dry Tube of KAMINI Reactor

Authors: Manish Chand, Subhrojit Bagchi, R. Kumar

Abstract:

A new dry tube (DT) has been installed in the tank of KAMINI research reactor, Kalpakkam India. This tube will be used for neutron activation analysis of small to large samples and testing of neutron detectors. DT tube is 375 cm height and 7.5 cm in diameter, located 35 cm away from the core centre. The experimental thermal flux at various axial positions inside the tube has been measured by irradiating the flux monitor (¹⁹⁷Au) at 20kW reactor power. The measured activity of ¹⁹⁸Au and the thermal cross section of ¹⁹⁷Au (n,γ) ¹⁹⁸Au reaction were used for experimental thermal flux measurement. The flux inside the tube varies from 10⁹ to 10¹⁰ and maximum flux was (1.02 ± 0.023) x10¹⁰ n cm⁻²s⁻¹ at 36 cm from the bottom of the tube. The Au and Zr foils without and with cadmium cover of 1-mm thickness were irradiated at the maximum flux position in the DT to find out the irradiation specific input parameters like sub-cadmium to epithermal neutron flux ratio (f) and the epithermal neutron flux shape factor (α). The f value was 143 ± 5, indicates about 99.3% thermal neutron component and α value was -0.2886 ± 0.0125, indicates hard epithermal neutron spectrum due to insufficient moderation. The measured flux profile has been validated using theoretical model of KAMINI reactor through Monte Carlo N-Particle Code (MCNP). In MCNP, the complex geometry of the entire reactor is modelled in 3D, ensuring minimum approximations for all the components. Continuous energy cross-section data from ENDF-B/VII.1 as well as S (α, β) thermal neutron scattering functions are considered. The neutron flux has been estimated at the corresponding axial locations of the DT using mesh tally. The thermal flux obtained from the experiment shows good agreement with the theoretically predicted values by MCNP, it was within ± 10%. It can be concluded that this MCNP model can be utilized for calculating other important parameters like neutron spectra, dose rate, etc. and multi elemental analysis can be carried out by irradiating the sample at maximum flux position using measured f and α parameters by k₀-NAA standardization.

Keywords: neutron flux, neutron activation analysis, neutron flux shape factor, MCNP, Monte Carlo N-Particle Code

Procedia PDF Downloads 164
684 Predicting Personality and Psychological Distress Using Natural Language Processing

Authors: Jihee Jang, Seowon Yoon, Gaeun Son, Minjung Kang, Joon Yeon Choeh, Kee-Hong Choi

Abstract:

Background: Self-report multiple choice questionnaires have been widely utilized to quantitatively measure one’s personality and psychological constructs. Despite several strengths (e.g., brevity and utility), self-report multiple-choice questionnaires have considerable limitations in nature. With the rise of machine learning (ML) and Natural language processing (NLP), researchers in the field of psychology are widely adopting NLP to assess psychological constructs to predict human behaviors. However, there is a lack of connections between the work being performed in computer science and that psychology due to small data sets and unvalidated modeling practices. Aims: The current article introduces the study method and procedure of phase II, which includes the interview questions for the five-factor model (FFM) of personality developed in phase I. This study aims to develop the interview (semi-structured) and open-ended questions for the FFM-based personality assessments, specifically designed with experts in the field of clinical and personality psychology (phase 1), and to collect the personality-related text data using the interview questions and self-report measures on personality and psychological distress (phase 2). The purpose of the study includes examining the relationship between natural language data obtained from the interview questions, measuring the FFM personality constructs, and psychological distress to demonstrate the validity of the natural language-based personality prediction. Methods: The phase I (pilot) study was conducted on fifty-nine native Korean adults to acquire the personality-related text data from the interview (semi-structured) and open-ended questions based on the FFM of personality. The interview questions were revised and finalized with the feedback from the external expert committee, consisting of personality and clinical psychologists. Based on the established interview questions, a total of 425 Korean adults were recruited using a convenience sampling method via an online survey. The text data collected from interviews were analyzed using natural language processing. The results of the online survey, including demographic data, depression, anxiety, and personality inventories, were analyzed together in the model to predict individuals’ FFM of personality and the level of psychological distress (phase 2).

Keywords: personality prediction, psychological distress prediction, natural language processing, machine learning, the five-factor model of personality

Procedia PDF Downloads 79
683 Computational Modelling of Epoxy-Graphene Composite Adhesive towards the Development of Cryosorption Pump

Authors: Ravi Verma

Abstract:

Cryosorption pump is the best solution to achieve clean, vibration free ultra-high vacuum. Furthermore, the operation of cryosorption pump is free from the influence of electric and magnetic fields. Due to these attributes, this pump is used in the space simulation chamber to create the ultra-high vacuum. The cryosorption pump comprises of three parts (a) panel which is cooled with the help of cryogen or cryocooler, (b) an adsorbent which is used to adsorb the gas molecules, (c) an epoxy which holds the adsorbent and the panel together thereby aiding in heat transfer from adsorbent to the panel. The performance of cryosorption pump depends on the temperature of the adsorbent and hence, on the thermal conductivity of the epoxy. Therefore we have made an attempt to increase the thermal conductivity of epoxy adhesive by mixing nano-sized graphene filler particles. The thermal conductivity of epoxy-graphene composite adhesive is measured with the help of indigenously developed experimental setup in the temperature range from 4.5 K to 7 K, which is generally the operating temperature range of cryosorption pump for efficiently pumping of hydrogen and helium gas. In this article, we have presented the experimental results of epoxy-graphene composite adhesive in the temperature range from 4.5 K to 7 K. We have also proposed an analytical heat conduction model to find the thermal conductivity of the composite. In this case, the filler particles, such as graphene, are randomly distributed in a base matrix of epoxy. The developed model considers the complete spatial random distribution of filler particles and this distribution is explained by Binomial distribution. The results obtained by the model have been compared with the experimental results as well as with the other established models. The developed model is able to predict the thermal conductivity in both isotropic regions as well as in anisotropic region over the required temperature range from 4.5 K to 7 K. Due to the non-empirical nature of the proposed model, it will be useful for the prediction of other properties of composite materials involving the filler in a base matrix. The present studies will aid in the understanding of low temperature heat transfer which in turn will be useful towards the development of high performance cryosorption pump.

Keywords: composite adhesive, computational modelling, cryosorption pump, thermal conductivity

Procedia PDF Downloads 89
682 An Experimental Investigation on Explosive Phase Change of Liquefied Propane During a Bleve Event

Authors: Frederic Heymes, Michael Albrecht Birk, Roland Eyssette

Abstract:

Boiling Liquid Expanding Vapor Explosion (BLEVE) has been a well know industrial accident for over 6 decades now, and yet it is still poorly predicted and avoided. BLEVE is created when a vessel containing a pressure liquefied gas (PLG) is engulfed in a fire until the tank rupture. At this time, the pressure drops suddenly, leading the liquid to be in a superheated state. The vapor expansion and the violent boiling of the liquid produce several shock waves. This works aimed at understanding the contribution of vapor ad liquid phases in the overpressure generation in the near field. An experimental work was undertaken at a small scale to reproduce realistic BLEVE explosions. Key parameters were controlled through the experiments, such as failure pressure, fluid mass in the vessel, and weakened length of the vessel. Thirty-four propane BLEVEs were then performed to collect data on scenarios similar to common industrial cases. The aerial overpressure was recorded all around the vessel, and also the internal pressure changed during the explosion and ground loading under the vessel. Several high-speed cameras were used to see the vessel explosion and the blast creation by shadowgraph. Results highlight how the pressure field is anisotropic around the cylindrical vessel and highlights a strong dependency between vapor content and maximum overpressure from the lead shock. The time chronology of events reveals that the vapor phase is the main contributor to the aerial overpressure peak. A prediction model is built upon this assumption. Secondary flow patterns are observed after the lead. A theory on how the second shock observed in experiments forms is exposed thanks to an analogy with numerical simulation. The phase change dynamics are also discussed thanks to a window in the vessel. Ground loading measurements are finally presented and discussed to give insight into the order of magnitude of the force.

Keywords: phase change, superheated state, explosion, vapor expansion, blast, shock wave, pressure liquefied gas

Procedia PDF Downloads 77
681 Effect of the Orifice Plate Specifications on Coefficient of Discharge

Authors: Abulbasit G. Abdulsayid, Zinab F. Abdulla, Asma A. Omer

Abstract:

On the ground that the orifice plate is relatively inexpensive, requires very little maintenance and only calibrated during the occasion of plant turnaround, the orifice plate has turned to be in a real prevalent use in gas industry. Inaccuracy of measurement in the fiscal metering stations may highly be accounted to be the most vital factor for mischarges in the natural gas industry in Libya. A very trivial error in measurement can add up a fast escalating financial burden to the custodian transactions. The unaccounted gas quantity transferred annually via orifice plates in Libya, could be estimated in an extent of multi-million dollars. As the oil and gas wealth is the solely source of income to Libya, every effort is now being exerted to improve the accuracy of existing orifice metering facilities. Discharge coefficient has become pivotal in current researches undertaken in this regard. Hence, increasing the knowledge of the flow field in a typical orifice meter is indispensable. Recently and in a drastic pace, the CFD has become the most time and cost efficient versatile tool for in-depth analysis of fluid mechanics, heat and mass transfer of various industrial applications. Getting deeper into the physical phenomena lied beneath and predicting all relevant parameters and variables with high spatial and temporal resolution have been the greatest weighing pros counting for CFD. In this paper, flow phenomena for air passing through an orifice meter were numerically analyzed with CFD code based modeling, giving important information about the effect of orifice plate specifications on the discharge coefficient for three different tappings locations, i.e., flange tappings, D and D/2 tappings compared with vena contracta tappings. Discharge coefficients were paralleled with discharge coefficients estimated by ISO 5167. The influences of orifice plate bore thickness, orifice plate thickness, beveled angle, perpendicularity and buckling of the orifice plate, were all duly investigated. A case of an orifice meter whose pipe diameter of 2 in, beta ratio of 0.5 and Reynolds number of 91100, was taken as a model. The results highlighted that the discharge coefficients were highly responsive to the variation of plate specifications and under all cases, the discharge coefficients for D and D/2 tappings were very close to that of vena contracta tappings which were believed as an ideal arrangement. Also, in general sense, it was appreciated that the standard equation in ISO 5167, by which the discharge coefficient was calculated, cannot capture the variation of the plate specifications and thus further thorough considerations would be still needed.

Keywords: CFD, discharge coefficients, orifice meter, orifice plate specifications

Procedia PDF Downloads 119
680 Documenting the 15th Century Prints with RTI

Authors: Peter Fornaro, Lothar Schmitt

Abstract:

The Digital Humanities Lab and the Institute of Art History at the University of Basel are collaborating in the SNSF research project ‘Digital Materiality’. Its goal is to develop and enhance existing methods for the digital reproduction of cultural heritage objects in order to support art historical research. One part of the project focuses on the visualization of a small eye-catching group of early prints that are noteworthy for their subtle reliefs and glossy surfaces. Additionally, this group of objects – known as ‘paste prints’ – is characterized by its fragile state of preservation. Because of the brittle substances that were used for their production, most paste prints are heavily damaged and thus very hard to examine. These specific material properties make a photographic reproduction extremely difficult. To obtain better results we are working with Reflectance Transformation Imaging (RTI), a computational photographic method that is already used in archaeological and cultural heritage research. This technique allows documenting how three-dimensional surfaces respond to changing lighting situations. Our first results show that RTI can capture the material properties of paste prints and their current state of preservation more accurately than conventional photographs, although there are limitations with glossy surfaces because the mathematical models that are included in RTI are kept simple in order to keep the software robust and easy to use. To improve the method, we are currently developing tools for a more detailed analysis and simulation of the reflectance behavior. An enhanced analytical model for the representation and visualization of gloss will increase the significance of digital representations of cultural heritage objects. For collaborative efforts, we are working on a web-based viewer application for RTI images based on WebGL in order to make acquired data accessible to a broader international research community. At the ICDH Conference, we would like to present unpublished results of our work and discuss the implications of our concept for art history, computational photography and heritage science.

Keywords: art history, computational photography, paste prints, reflectance transformation imaging

Procedia PDF Downloads 276
679 Comparison Analysis of Fuzzy Logic Controler Based PV-Pumped Hydro and PV-Battery Storage Systems

Authors: Seada Hussen, Frie Ayalew

Abstract:

Integrating different energy resources, like solar PV and hydro, is used to ensure reliable power to rural communities like Hara village in Ethiopia. Hybrid power system offers power supply for rural villages by providing an alternative supply for the intermittent nature of renewable energy resources. The intermittent nature of renewable energy resources is a challenge to electrifying rural communities in a sustainable manner with solar resources. Major rural villages in Ethiopia are suffering from a lack of electrification, that cause our people to suffer deforestation, travel for long distance to fetch water, and lack good services like clinic and school sufficiently. The main objective of this project is to provide a balanced, stable, reliable supply for Hara village, Ethiopia using solar power with a pumped hydro energy storage system. The design of this project starts by collecting data from villages and taking solar irradiance data from NASA. In addition to this, geographical arrangement and location are also taken into consideration. After collecting this, all data analysis and cost estimation or optimal sizing of the system and comparison of solar with pumped hydro and solar with battery storage system is done using Homer Software. And since solar power only works in the daytime and pumped hydro works at night time and also at night and morning, both load will share to cover the load demand; this need controller designed to control multiple switch and scheduling in this project fuzzy logic controller is used to control this scenario. The result of the simulation shows that solar with pumped hydro energy storage system achieves good results than with a battery storage system since the comparison is done considering storage reliability, cost, storage capacity, life span, and efficiency.

Keywords: pumped hydro storage, solar energy, solar PV, battery energy storage, fuzzy logic controller

Procedia PDF Downloads 78
678 Applying Computer Simulation Methods to a Molecular Understanding of Flaviviruses Proteins towards Differential Serological Diagnostics and Therapeutic Intervention

Authors: Sergio Alejandro Cuevas, Catherine Etchebest, Fernando Luis Barroso Da Silva

Abstract:

The flavivirus genus has several organisms responsible for generating various diseases in humans. Special in Brazil, Zika (ZIKV), Dengue (DENV) and Yellow Fever (YFV) viruses have raised great health concerns due to the high number of cases affecting the area during the last years. Diagnostic is still a difficult issue since the clinical symptoms are highly similar. The understanding of their common structural/dynamical and biomolecular interactions features and differences might suggest alternative strategies towards differential serological diagnostics and therapeutic intervention. Due to their immunogenicity, the primary focus of this study was on the ZIKV, DENV and YFV non-structural proteins 1 (NS1) protein. By means of computational studies, we calculated the main physical chemical properties of this protein from different strains that are directly responsible for the biomolecular interactions and, therefore, can be related to the differential infectivity of the strains. We also mapped the electrostatic differences at both the sequence and structural levels for the strains from Uganda to Brazil that could suggest possible molecular mechanisms for the increase of the virulence of ZIKV. It is interesting to note that despite the small changes in the protein sequence due to the high sequence identity among the studied strains, the electrostatic properties are strongly impacted by the pH which also impact on their biomolecular interactions with partners and, consequently, the molecular viral biology. African and Asian strains are distinguishable. Exploring the interfaces used by NS1 to self-associate in different oligomeric states, and to interact with membranes and the antibody, we could map the strategy used by the ZIKV during its evolutionary process. This indicates possible molecular mechanisms that can explain the different immunological response. By the comparison with the known antibody structure available for the West Nile virus, we demonstrated that the antibody would have difficulties to neutralize the NS1 from the Brazilian strain. The present study also opens up perspectives to computationally design high specificity antibodies.

Keywords: zika, biomolecular interactions, electrostatic interactions, molecular mechanisms

Procedia PDF Downloads 132
677 Effectiveness of Control Measures for Ambient Fine Particulate Matters Concentration Improvement in Taiwan

Authors: Jiun-Horng Tsai, Shi-Jie, Nieh

Abstract:

Fine particulate matter (PM₂.₅) has become an important issue all over the world over the last decade. Annual mean PM₂.₅ concentration has been over the ambient air quality standard of PM₂.₅ (annual average concentration as 15μg/m³) which adapted by Taiwan Environmental Protection Administration (TEPA). TEPA, therefore, has developed a number of air pollution control measures to improve the ambient concentration by reducing the emissions of primary fine particulate matter and the precursors of secondary PM₂.₅. This study investigated the potential improvement of ambient PM₂.₅ concentration by the TEPA program and the other scenario for further emission reduction on various sources. Four scenarios had been evaluated in this study, including a basic case and three reduction scenarios (A to C). The ambient PM₂.₅ concentration was evaluated by Community Multi-scale Air Quality modelling system (CMAQ) ver. 4.7.1 along with the Weather Research and Forecasting Model (WRF) ver. 3.4.1. The grid resolutions in the modelling work are 81 km × 81 km for domain 1 (covers East Asia), 27 km × 27 km for domain 2 (covers Southeast China and Taiwan), and 9 km × 9 km for domain 3 (covers Taiwan). The result of PM₂.₅ concentration simulation in different regions of Taiwan shows that the annual average concentration of basic case is 24.9 μg/m³, and are 22.6, 18.8, and 11.3 μg/m³, respectively, for scenarios A to C. The annual average concentration of PM₂.₅ would be reduced by 9-55 % for those control scenarios. The result of scenario C (the emissions of precursors reduce to allowance levels) could improve effectively the airborne PM₂.₅ concentration to attain the air quality standard. According to the results of unit precursor reduction contribution, the allowance emissions of PM₂.₅, SOₓ, and NOₓ are 16.8, 39, and 62 thousand tons per year, respectively. In the Kao-Ping air basin, the priority for reducing precursor emissions is PM₂.₅ > NOₓ > SOₓ, whereas the priority for reducing precursor emissions is PM₂.₅ > SOₓ > NOₓ in others area. The result indicates that the target pollutants that need to be reduced in different air basin are different, and the control measures need to be adapted to local conditions.

Keywords: airborne PM₂.₅, community multi-scale air quality modelling system, control measures, weather research and forecasting model

Procedia PDF Downloads 139
676 Numerical Reproduction of Hemodynamic Change Induced by Acupuncture to ST-36

Authors: Takuya Suzuki, Atsushi Shirai, Takashi Seki

Abstract:

Acupuncture therapy is one of the treatments in traditional Chinese medicine. Recently, some reports have shown the effectiveness of acupuncture. However, its full acceptance has been hindered by the lack of understanding on mechanism of the therapy. Acupuncture applied to Zusanli (ST-36) enhances blood flow volume in superior mesenteric artery (SMA), yielding peripheral vascular resistance – regulated blood flow of SMA dominated by the parasympathetic system and inhibition of sympathetic system. In this study, a lumped-parameter approximation model of blood flow in the systemic arteries was developed. This model was extremely simple, consisting of the aorta, carotid arteries, arteries of the four limbs and SMA, and their peripheral vascular resistances. Here, the individual artery was simplified to a tapered tube and the resistances were modelled by a linear resistance. We numerically investigated contribution of the peripheral vascular resistance of SMA to the systemic blood distribution using this model. In addition to the upstream end of the model, which correlates with the left ventricle, two types of boundary condition were applied; mean left ventricular pressure which correlates with blood pressure (BP) and mean cardiac output which corresponds to cardiac index (CI). We examined it to reproduce the experimentally obtained hemodynamic change, in terms of the ratio of the aforementioned hemodynamic parameters from their initial values before the acupuncture, by regulating the peripheral vascular resistances and the upstream boundary condition. First, only the peripheral vascular resistance of SMA was changed to show contribution of the resistance to the change in blood flow volume in SMA, expecting reproduction of the experimentally obtained change. It was found, however, this was not enough to reproduce the experimental result. Then, we also changed the resistances of the other arteries together with the value given at upstream boundary. Here, the resistances of the other arteries were changed simultaneously in the same amount. Consequently, we successfully reproduced the hemodynamic change to find that regulation of the upstream boundary condition to the value experimentally obtained after the stimulation is necessary for the reproduction, though statistically significant changes in BP and CI were not observed in the experiment. It is generally known that sympathetic and parasympathetic tones take part in regulation of whole the systemic circulation including the cardiac function. The present result indicates that stimulation to ST-36 could induce vasodilation of peripheral circulation of SMA and vasoconstriction of that of other arteries. In addition, it implies that experimentally obtained small changes in BP and CI induced by the acupuncture may be involved in the therapeutic response.

Keywords: acupuncture, hemodynamics, lumped-parameter approximation, modeling, systemic vascular resistance

Procedia PDF Downloads 224
675 Method for Controlling the Groundwater Polluted by the Surface Waters through Injection Wells

Authors: Victorita Radulescu

Abstract:

Introduction: The optimum exploitation of agricultural land in the presence of an aquifer polluted by the surface sources requires close monitoring of groundwater level in both periods of intense irrigation and in absence of the irrigations, in times of drought. Currently in Romania, in the south part of the country, the Baragan area, many agricultural lands are confronted with the risk of groundwater pollution in the absence of systematic irrigation, correlated with the climate changes. Basic Methods: The non-steady flow of the groundwater from an aquifer can be described by the Bousinesq’s partial differential equation. The finite element method was used, applied to the porous media needed for the water mass balance equation. By the proper structure of the initial and boundary conditions may be modeled the flow in drainage or injection systems of wells, according to the period of irrigation or prolonged drought. The boundary conditions consist of the groundwater levels required at margins of the analyzed area, in conformity to the reality of the pollutant emissaries, following the method of the double steps. Major Findings/Results: The drainage condition is equivalent to operating regimes on the two or three rows of wells, negative, as to assure the pollutant transport, modeled with the variable flow in groups of two adjacent nodes. In order to obtain the level of the water table, in accordance with the real constraints, are needed, for example, to be restricted its top level below of an imposed value, required in each node. The objective function consists of a sum of the absolute values of differences of the infiltration flow rates, increased by a large penalty factor when there are positive values of pollutant. In these conditions, a balanced structure of the pollutant concentration is maintained in the groundwater. The spatial coordinates represent the modified parameters during the process of optimization and the drainage flows through wells. Conclusions: The presented calculation scheme was applied to an area having a cross-section of 50 km between two emissaries with various levels of altitude and different values of pollution. The input data were correlated with the measurements made in-situ, such as the level of the bedrock, the grain size of the field, the slope, etc. This method of calculation can also be extended to determine the variation of the groundwater in the aquifer following the flood wave propagation in envoys.

Keywords: environmental protection, infiltrations, numerical modeling, pollutant transport through soils

Procedia PDF Downloads 155
674 Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms

Authors: Dhruvit S. Berawala, Jann R. Ursin, Obrad Slijepcevic

Abstract:

Shale gas is one of the most rapidly growing forms of natural gas. Unconventional natural gas deposits are difficult to characterize overall, but in general are often lower in resource concentration and dispersed over large areas. Moreover, gas is densely packed into the matrix through adsorption which accounts for large volume of gas reserves. Gas production from tight shale deposits are made possible by extensive and deep well fracturing which contacts large fractions of the formation. The conventional reservoir modelling and production forecasting methods, which rely on fluid-flow processes dominated by viscous forces, have proved to be very pessimistic and inaccurate. This paper presents a new approach to forecast shale gas production by detailed modeling of gas desorption, diffusion and non-linear flow mechanisms in combination with statistical representation of these processes. The representation of the model involves a cube as a porous media where free gas is present and a sphere (SiC: Sphere in Cube model) inside it where gas is adsorbed on to the kerogen or organic matter. Further, the sphere is considered consisting of many layers of adsorbed gas in an onion-like structure. With pressure decline, the gas desorbs first from the outer most layer of sphere causing decrease in its molecular concentration. The new available surface area and change in concentration triggers the diffusion of gas from kerogen. The process continues until all the gas present internally diffuses out of the kerogen, gets adsorbs onto available surface area and then desorbs into the nanopores and micro-fractures in the cube. Each SiC idealizes a gas pathway and is characterized by sphere diameter and length of the cube. The diameter allows to model gas storage, diffusion and desorption; the cube length takes into account the pathway for flow in nanopores and micro-fractures. Many of these representative but general cells of the reservoir are put together and linked to a well or hydraulic fracture. The paper quantitatively describes these processes as well as clarifies the geological conditions under which a successful shale gas production could be expected. A numerical model has been derived which is then compiled on FORTRAN to develop a simulator for the production of shale gas by considering the spheres as a source term in each of the grid blocks. By applying SiC to field data, we demonstrate that the model provides an effective way to quickly access gas production rates from shale formations. We also examine the effect of model input properties on gas production.

Keywords: adsorption, diffusion, non-linear flow, shale gas production

Procedia PDF Downloads 165
673 Adaptive Beamforming with Steering Error and Mutual Coupling between Antenna Sensors

Authors: Ju-Hong Lee, Ching-Wei Liao

Abstract:

Owing to close antenna spacing between antenna sensors within a compact space, a part of data in one antenna sensor would outflow to other antenna sensors when the antenna sensors in an antenna array operate simultaneously. This phenomenon is called mutual coupling effect (MCE). It has been shown that the performance of antenna array systems can be degraded when the antenna sensors are in close proximity. Especially, in a systems equipped with massive antenna sensors, the degradation of beamforming performance due to the MCE is significantly inevitable. Moreover, it has been shown that even a small angle error between the true direction angle of the desired signal and the steering angle deteriorates the effectiveness of an array beamforming system. However, the true direction vector of the desired signal may not be exactly known in some applications, e.g., the application in land mobile-cellular wireless systems. Therefore, it is worth developing robust techniques to deal with the problem due to the MCE and steering angle error for array beamforming systems. In this paper, we present an efficient technique for performing adaptive beamforming with robust capabilities against the MCE and the steering angle error. Only the data vector received by an antenna array is required by the proposed technique. By using the received array data vector, a correlation matrix is constructed to replace the original correlation matrix associated with the received array data vector. Then, the mutual coupling matrix due to the MCE on the antenna array is estimated through a recursive algorithm. An appropriate estimate of the direction angle of the desired signal can also be obtained during the recursive process. Based on the estimated mutual coupling matrix, the estimated direction angle, and the reconstructed correlation matrix, the proposed technique can effectively cure the performance degradation due to steering angle error and MCE. The novelty of the proposed technique is that the implementation procedure is very simple and the resulting adaptive beamforming performance is satisfactory. Simulation results show that the proposed technique provides much better beamforming performance without requiring complicated complexity as compared with the existing robust techniques.

Keywords: adaptive beamforming, mutual coupling effect, recursive algorithm, steering angle error

Procedia PDF Downloads 321
672 Numerical Modeling and Experimental Analysis of a Pallet Isolation Device to Protect Selective Type Industrial Storage Racks

Authors: Marcelo Sanhueza Cartes, Nelson Maureira Carsalade

Abstract:

This research evaluates the effectiveness of a pallet isolation device for the protection of selective-type industrial storage racks. The device works only in the longitudinal direction of the aisle, and it is made up of a platform installed on the rack beams. At both ends, the platform is connected to the rack structure by means of a spring-damper system working in parallel. A system of wheels is arranged between the isolation platform and the rack beams in order to reduce friction, decoupling of the movement and improve the effectiveness of the device. The latter is evaluated by the reduction of the maximum dynamic responses of basal shear load and story drift in relation to those corresponding to the same rack with the traditional construction system. In the first stage, numerical simulations of industrial storage racks were carried out with and without the pallet isolation device. The numerical results allowed us to identify the archetypes in which it would be more appropriate to carry out experimental tests, thus limiting the number of trials. In the second stage, experimental tests were carried out on a shaking table to a select group of full-scale racks with and without the proposed device. The movement simulated by the shaking table was based on the Mw 8.8 magnitude earthquake of February 27, 2010, in Chile, registered at the San Pedro de la Paz station. The peak ground acceleration (PGA) was scaled in the frequency domain to fit its response spectrum with the design spectrum of NCh433. The experimental setup contemplates the installation of sensors to measure relative displacement and absolute acceleration. The movement of the shaking table with respect to the ground, the inter-story drift of the rack and the pallets with respect to the rack structure were recorded. Accelerometers redundantly measured all of the above in order to corroborate measurements and adequately capture low and high-frequency vibrations, whereas displacement and acceleration sensors are respectively more reliable. The numerical and experimental results allowed us to identify that the pallet isolation period is the variable with the greatest influence on the dynamic responses considered. It was also possible to identify that the proposed device significantly reduces both the basal cut and the maximum inter-story drift by up to one order of magnitude.

Keywords: pallet isolation system, industrial storage racks, basal shear load, interstory drift.

Procedia PDF Downloads 73
671 Impact Evaluation and Technical Efficiency in Ethiopia: Correcting for Selectivity Bias in Stochastic Frontier Analysis

Authors: Tefera Kebede Leyu

Abstract:

The purpose of this study was to estimate the impact of LIVES project participation on the level of technical efficiency of farm households in three regions of Ethiopia. We used household-level data gathered by IRLI between February and April 2014 for the year 2013(retroactive). Data on 1,905 (754 intervention and 1, 151 control groups) sample households were analyzed using STATA software package version 14. Efforts were made to combine stochastic frontier modeling with impact evaluation methodology using the Heckman (1979) two-stage model to deal with possible selectivity bias arising from unobservable characteristics in the stochastic frontier model. Results indicate that farmers in the two groups are not efficient and operate below their potential frontiers i.e., there is a potential to increase crop productivity through efficiency improvements in both groups. In addition, the empirical results revealed selection bias in both groups of farmers confirming the justification for the use of selection bias corrected stochastic frontier model. It was also found that intervention farmers achieved higher technical efficiency scores than the control group of farmers. Furthermore, the selectivity bias-corrected model showed a different technical efficiency score for the intervention farmers while it more or less remained the same for that of control group farmers. However, the control group of farmers shows a higher dispersion as measured by the coefficient of variation compared to the intervention counterparts. Among the explanatory variables, the study found that farmer’s age (proxy to farm experience), land certification, frequency of visit to improved seed center, farmer’s education and row planting are important contributing factors for participation decisions and hence technical efficiency of farmers in the study areas. We recommend that policies targeting the design of development intervention programs in the agricultural sector focus more on providing farmers with on-farm visits by extension workers, provision of credit services, establishment of farmers’ training centers and adoption of modern farm technologies. Finally, we recommend further research to deal with this kind of methodological framework using a panel data set to test whether technical efficiency starts to increase or decrease with the length of time that farmers participate in development programs.

Keywords: impact evaluation, efficiency analysis and selection bias, stochastic frontier model, Heckman-two step

Procedia PDF Downloads 75
670 Numerical Analysis of the Response of Thin Flexible Membranes to Free Surface Water Flow

Authors: Mahtab Makaremi Masouleh, Günter Wozniak

Abstract:

This work is part of a major research project concerning the design of a light temporary installable textile flood control structure. The motivation for this work is the great need of applying light structures for the protection of coastal areas from detrimental effects of rapid water runoff. The prime objective of the study is the numerical analysis of the interaction among free surface water flow and slender shaped pliable structures, playing a key role in safety performance of the intended system. First, the behavior of down scale membrane is examined under hydrostatic pressure by the Abaqus explicit solver, which is part of the finite element based commercially available SIMULIA software. Then the procedure to achieve a stable and convergent solution for strongly coupled media including fluids and structures is explained. A partitioned strategy is imposed to make both structures and fluids be discretized and solved with appropriate formulations and solvers. In this regard, finite element method is again selected to analyze the structural domain. Moreover, computational fluid dynamics algorithms are introduced for solutions in flow domains by means of a commercial package of Star CCM+. Likewise, SIMULIA co-simulation engine and an implicit coupling algorithm, which are available communication tools in commercial package of the Star CCM+, enable powerful transmission of data between two applied codes. This approach is discussed for two different cases and compared with available experimental records. In one case, the down scale membrane interacts with open channel flow, where the flow velocity increases with time. The second case illustrates, how the full scale flexible flood barrier behaves when a massive flotsam is accelerated towards it.

Keywords: finite element formulation, finite volume algorithm, fluid-structure interaction, light pliable structure, VOF multiphase model

Procedia PDF Downloads 186
669 Modeling and Implementation of a Hierarchical Safety Controller for Human Machine Collaboration

Authors: Damtew Samson Zerihun

Abstract:

This paper primarily describes the concept of a hierarchical safety control (HSC) in discrete manufacturing to up-hold productivity with human intervention and machine failures using a systematic approach, through increasing the system availability and using additional knowledge on machines so as to improve the human machine collaboration (HMC). It also highlights the implemented PLC safety algorithm, in applying this generic concept to a concrete pro-duction line using a lab demonstrator called FATIE (Factory Automation Test and Integration Environment). Furthermore, the paper describes a model and provide a systematic representation of human-machine collabora-tion in discrete manufacturing and to this end, the Hierarchical Safety Control concept is proposed. This offers a ge-neric description of human-machine collaboration based on Finite State Machines (FSM) that can be applied to vari-ous discrete manufacturing lines instead of using ad-hoc solutions for each line. With its reusability, flexibility, and extendibility, the Hierarchical Safety Control scheme allows upholding productivity while maintaining safety with reduced engineering effort compared to existing solutions. The approach to the solution begins with a successful partitioning of different zones around the Integrated Manufacturing System (IMS), which are defined by operator tasks and the risk assessment, used to describe the location of the human operator and thus to identify the related po-tential hazards and trigger the corresponding safety functions to mitigate it. This includes selective reduced speed zones and stop zones, and in addition with the hierarchical safety control scheme and advanced safety functions such as safe standstill and safe reduced speed are used to achieve the main goals in improving the safe Human Ma-chine Collaboration and increasing the productivity. In a sample scenarios, It is shown that an increase of productivity in the order of 2.5% is already possible with a hi-erarchical safety control, which consequently under a given assumptions, a total sum of 213 € could be saved for each intervention, compared to a protective stop reaction. Thereby the loss is reduced by 22.8%, if occasional haz-ard can be refined in a hierarchical way. Furthermore, production downtime due to temporary unavailability of safety devices can be avoided with safety failover that can save millions per year. Moreover, the paper highlights the proof of the development, implementation and application of the concept on the lab demonstrator (FATIE), where it is realized on the new safety PLCs, Drive Units, HMI as well as Safety devices in addition to the main components of the IMS.

Keywords: discrete automation, hierarchical safety controller, human machine collaboration, programmable logical controller

Procedia PDF Downloads 369