Search results for: maximum entropy modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7893

Search results for: maximum entropy modeling

543 The Effectiveness of Multiphase Flow in Well- Control Operations

Authors: Ahmed Borg, Elsa Aristodemou, Attia Attia

Abstract:

Well control involves managing the circulating drilling fluid within the wells and avoiding kicks and blowouts as these can lead to losses in human life and drilling facilities. Current practices for good control incorporate predictions of pressure losses through computational models. Developing a realistic hydraulic model for a good control problem is a very complicated process due to the existence of a complex multiphase region, which usually contains a non-Newtonian drilling fluid and the miscibility of formation gas in drilling fluid. The current approaches assume an inaccurate flow fluid model within the well, which leads to incorrect pressure loss calculations. To overcome this problem, researchers have been considering the more complex two-phase fluid flow models. However, even these more sophisticated two-phase models are unsuitable for applications where pressure dynamics are important, such as in managed pressure drilling. This study aims to develop and implement new fluid flow models that take into consideration the miscibility of fluids as well as their non-Newtonian properties for enabling realistic kick treatment. furthermore, a corresponding numerical solution method is built with an enriched data bank. The research work considers and implements models that take into consideration the effect of two phases in kick treatment for well control in conventional drilling. In this work, a corresponding numerical solution method is built with an enriched data bank. Software STARCCM+ for the computational studies to study the important parameters to describe wellbore multiphase flow, the mass flow rate, volumetric fraction, and velocity of each phase. Results showed that based on the analysis of these simulation studies, a coarser full-scale model of the wellbore, including chemical modeling established. The focus of the investigations was put on the near drill bit section. This inflow area shows certain characteristics that are dominated by the inflow conditions of the gas as well as by the configuration of the mud stream entering the annulus. Without considering the gas solubility effect, the bottom hole pressure could be underestimated by 4.2%, while the bottom hole temperature is overestimated by 3.2%. and without considering the heat transfer effect, the bottom hole pressure could be overestimated by 11.4% under steady flow conditions. Besides, larger reservoir pressure leads to a larger gas fraction in the wellbore. However, reservoir pressure has a minor effect on the steady wellbore temperature. Also as choke pressure increases, less gas will exist in the annulus in the form of free gas.

Keywords: multiphase flow, well- control, STARCCM+, petroleum engineering and gas technology, computational fluid dynamic

Procedia PDF Downloads 100
542 Enhancing Institutional Roles and Managerial Instruments for Irrigation Modernization in Sudan: The Case of Gezira Scheme

Authors: Mohamed Ahmed Abdelmawla

Abstract:

Calling to achieve Millennium Development Goals (MDGs) engaged with agriculture, i.e. poverty alleviation targets, human resources involved in agricultural sectors with special emphasis on irrigation must receive wealth of practical experience and training. Increased food production, including staple food, is needed to overcome the present and future threats to food security. This should happen within a framework of sustainable management of natural resources, elimination of unsustainable methods of production and poverty reduction (i.e. axes of modernization). A didactic tool to confirm the task of wise and maximum utility is the best management and accurate measurement, as major requisites for modernization process. The key component to modernization as a warranted goal is adhering great attention to management and measurement issues via capacity building. As such, this paper stressed the issues of discharge management and measurement by Field Outlet Pipes (FOP) for selected ones within the Gezira Scheme, where randomly nine FOPs were selected as representative locations. These FOPs extended along the Gezira Main Canal at Kilo 57 areas in the South up to Kilo 194 in the North. The following steps were followed during the field data collection and measurements: For each selected FOP, a 90 v- notch thin plate weir was placed in such away that the water was directed to pass only through the notch. An optical survey level was used to measure the water head of the notch and FOP. Both calculated discharge rates as measured by the v – notch, denoted as [Qc], and the adopted discharges given by (MOIWR), denoted as [Qa], are tackled for the average of three replicated readings undertaken at each location. The study revealed that the FOP overestimates and sometimes underestimates the discharges. This is attributed to the fact that the original design specifications were not fulfilled or met at present conditions where water is allowed to flow day and night with high head fluctuation, knowing that the FOP is non modular structure, i.e. the flow depends on both levels upstream and downstream and confirmed by the results of this study. It is convenient and formative to quantify the discharge in FOP with weirs or Parshall flumes. Cropping calendar should be clearly determined and agreed upon before the beginning of the season in accordance and consistency with the Sudan Gezira Board (SGB) and Ministry of Irrigation and Water Resources. As such, the water indenting should be based on actual Crop Water Requirements (CWRs), not on rules of thumb (420 m3/feddan, irrespective of crop or time of season).

Keywords: management, measurement, MDGs, modernization

Procedia PDF Downloads 238
541 Acceleration of Adsorption Kinetics by Coupling Alternating Current with Adsorption Process onto Several Adsorbents

Authors: A. Kesraoui, M. Seffen

Abstract:

Applications of adsorption onto activated carbon for water treatment are well known. The process has been demonstrated to be widely effective for removing dissolved organic substances from wastewaters, but this treatment has a major drawback is the high operating cost. The main goal of our research work is to improve the retention capacity of Tunisian biomass for the depollution of industrial wastewater and retention of pollutants considered toxic. The biosorption process is based on the retention of molecules and ions onto a solid surface composed of biological materials. The evaluation of the potential use of these materials is important to propose as an alternative to the adsorption process generally expensive, used to remove organic compounds. Indeed, these materials are very abundant in nature and are low cost. Certainly, the biosorption process is effective to remove the pollutants, but it presents a slow kinetics. The improvement of the biosorption rates is a challenge to make this process competitive with respect to oxidation and adsorption onto lignocellulosic fibers. In this context, the alternating current appears as a new alternative, original and a very interesting phenomenon in the acceleration of chemical reactions. Our main goal is to increase the retention acceleration of dyes (indigo carmine, methylene blue) and phenol by using a new alternative: alternating current. The adsorption experiments have been performed in a batch reactor by adding some of the adsorbents in 150 mL of pollutants solution with the desired concentration and pH. The electrical part of the mounting comprises a current source which delivers an alternating current voltage of 2 to 15 V. It is connected to a voltmeter that allows us to read the voltage. In a 150 mL capacity cell, we plunged two zinc electrodes and the distance between two Zinc electrodes has been 4 cm. Thanks to alternating current, we have succeeded to improve the performance of activated carbon by increasing the speed of the indigo carmine adsorption process and reducing the treatment time. On the other hand, we have studied the influence of the alternating current on the biosorption rate of methylene blue onto Luffa cylindrica fibers and the hybrid material (Luffa cylindrica-ZnO). The results showed that the alternating current accelerated the biosorption rate of methylene blue onto the Luffa cylindrica and the Luffa cylindrica-ZnO hybrid material and increased the adsorbed amount of methylene blue on both adsorbents. In order to improve the removal of phenol, we performed the coupling between the alternating current and the biosorption onto two adsorbents: Luffa cylindrica and the hybrid material (Luffa cylindrica-ZnO). In fact, the alternating current has succeeded to improve the performance of adsorbents by increasing the speed of the adsorption process and the adsorption capacity and reduce the processing time.

Keywords: adsorption, alternating current, dyes, modeling

Procedia PDF Downloads 141
540 Measuring Oxygen Transfer Coefficients in Multiphase Bioprocesses: The Challenges and the Solution

Authors: Peter G. Hollis, Kim G. Clarke

Abstract:

Accurate quantification of the overall volumetric oxygen transfer coefficient (KLa) is ubiquitously measured in bioprocesses by analysing the response of dissolved oxygen (DO) to a step change in the oxygen partial pressure in the sparge gas using a DO probe. Typically, the response lag (τ) of the probe has been ignored in the calculation of KLa when τ is less than the reciprocal KLa, failing which a constant τ has invariably been assumed. These conventions have now been reassessed in the context of multiphase bioprocesses, such as a hydrocarbon-based system. Here, significant variation of τ in response to changes in process conditions has been documented. Experiments were conducted in a 5 L baffled stirred tank bioreactor (New Brunswick) in a simulated hydrocarbon-based bioprocess comprising a C14-20 alkane-aqueous dispersion with suspended non-viable Saccharomyces cerevisiae solids. DO was measured with a polarographic DO probe fitted with a Teflon membrane (Mettler Toledo). The DO concentration response to a step change in the sparge gas oxygen partial pressure was recorded, from which KLa was calculated using a first order model (without incorporation of τ) and a second order model (incorporating τ). τ was determined as the time taken to reach 63.2% of the saturation DO after the probe was transferred from a nitrogen saturated vessel to an oxygen saturated bioreactor and is represented as the inverse of the probe constant (KP). The relative effects of the process parameters on KP were quantified using a central composite design with factor levels typical of hydrocarbon bioprocesses, namely 1-10 g/L yeast, 2-20 vol% alkane and 450-1000 rpm. A response surface was fitted to the empirical data, while ANOVA was used to determine the significance of the effects with a 95% confidence interval. KP varied with changes in the system parameters with the impact of solid loading statistically significant at the 95% confidence level. Increased solid loading reduced KP consistently, an effect which was magnified at high alkane concentrations, with a minimum KP of 0.024 s-1 observed at the highest solids loading of 10 g/L. This KP was 2.8 fold lower that the maximum of 0.0661 s-1 recorded at 1 g/L solids, demonstrating a substantial increase in τ from 15.1 s to 41.6 s as a result of differing process conditions. Importantly, exclusion of KP in the calculation of KLa was shown to under-predict KLa for all process conditions, with an error up to 50% at the highest KLa values. Accurate quantification of KLa, and therefore KP, has far-reaching impact on industrial bioprocesses to ensure these systems are not transport limited during scale-up and operation. This study has shown the incorporation of τ to be essential to ensure KLa measurement accuracy in multiphase bioprocesses. Moreover, since τ has been conclusively shown to vary significantly with process conditions, it has also been shown that it is essential for τ to be determined individually for each set of process conditions.

Keywords: effect of process conditions, measuring oxygen transfer coefficients, multiphase bioprocesses, oxygen probe response lag

Procedia PDF Downloads 254
539 Using the Structural Equation Model to Explain the Effect of Supervisory Practices on Regulatory Density

Authors: Jill Round

Abstract:

In the economic system, the financial sector plays a crucial role as an intermediary between market participants, other financial institutions, and customers. Financial institutions such as banks have to make decisions to satisfy the demands of all the participants by keeping abreast of regulatory change. In recent years, progress has been made regarding frameworks, development of rules, standards, and processes to manage risks in the banking sector. The increasing focus of regulators and policymakers placed on risk management, corporate governance, and the organization’s culture is of special interest as it requires a well-resourced risk controlling function, compliance function, and internal audit function. In the past years, the relevance of these functions that make up the so-called Three Lines of Defense has moved from the backroom to the boardroom. The approach of the model can vary based on the various organizational characteristics. Due to the intense regulatory requirements, organizations operating in the financial sector have more mature models. In less regulated industries there is more cloudiness about what tasks are allocated where. All parties strive to achieve their objectives through the effective management of risks and serve the identical stakeholders. Today, the Three Lines of Defense model is used throughout the world. The research looks at trends and emerging issues in the professions of the Three Lines of Defense within the banking sector. The answers are believed to helping to explain the increasing regulatory requirements for the banking sector. While the number of supervisory practices increases the risk management requirements intensify and demand more regulatory compliance at the same time. The Structural Equation Modeling (SEM) is applied by making use of conducted surveys in the research field. It aims to describe (i) the theoretical model regarding the applicable linearity relationships, (ii) the causal relationship between multiple predictors (exogenous) and multiple dependent variables (endogenous), (iii) taking into consideration the unobservable variables and (iv) the measurement errors. The surveys conducted on the research field suggest that the observable variables are caused by various latent variables. The SEM consists of the 1) measurement model and the 2) structural model. There is a detectable correlation regarding the cause-effect relationship among the performed supervisory practices and the increasing scope of regulation. Supervisory practices reinforce the regulatory density. In the past, controls were placed after supervisory practices were conducted or incidents occurred. In further research, it is of interest to examine, whether risk management is proactive, reactive to incidents and supervisory practices or can be both at the same time.

Keywords: risk management, structural equation model, supervisory practice, three lines of defense

Procedia PDF Downloads 201
538 Solid State Drive End to End Reliability Prediction, Characterization and Control

Authors: Mohd Azman Abdul Latif, Erwan Basiron

Abstract:

A flaw or drift from expected operational performance in one component (NAND, PMIC, controller, DRAM, etc.) may affect the reliability of the entire Solid State Drive (SSD) system. Therefore, it is important to ensure the required quality of each individual component through qualification testing specified using standards or user requirements. Qualification testing is time-consuming and comes at a substantial cost for product manufacturers. A highly technical team, from all the eminent stakeholders is embarking on reliability prediction from beginning of new product development, identify critical to reliability parameters, perform full-blown characterization to embed margin into product reliability and establish control to ensure the product reliability is sustainable in the mass production. The paper will discuss a comprehensive development framework, comprehending SSD end to end from design to assembly, in-line inspection, in-line testing and will be able to predict and to validate the product reliability at the early stage of new product development. During the design stage, the SSD will go through intense reliability margin investigation with focus on assembly process attributes, process equipment control, in-process metrology and also comprehending forward looking product roadmap. Once these pillars are completed, the next step is to perform process characterization and build up reliability prediction modeling. Next, for the design validation process, the reliability prediction specifically solder joint simulator will be established. The SSD will be stratified into Non-Operating and Operating tests with focus on solder joint reliability and connectivity/component latent failures by prevention through design intervention and containment through Temperature Cycle Test (TCT). Some of the SSDs will be subjected to the physical solder joint analysis called Dye and Pry (DP) and Cross Section analysis. The result will be feedbacked to the simulation team for any corrective actions required to further improve the design. Once the SSD is validated and is proven working, it will be subjected to implementation of the monitor phase whereby Design for Assembly (DFA) rules will be updated. At this stage, the design change, process and equipment parameters are in control. Predictable product reliability at early product development will enable on-time sample qualification delivery to customer and will optimize product development validation, effective development resource and will avoid forced late investment to bandage the end-of-life product failures. Understanding the critical to reliability parameters earlier will allow focus on increasing the product margin that will increase customer confidence to product reliability.

Keywords: e2e reliability prediction, SSD, TCT, solder joint reliability, NUDD, connectivity issues, qualifications, characterization and control

Procedia PDF Downloads 158
537 Efficacy of Mitomycin C in Reducing Recurrence of Anterior Urethral Stricture after Internal Optical Urethrotomy

Authors: Liaqat Ali, Ehsan, Muhammad Shahzad, Nasir Orakzai

Abstract:

Introduction: Internal optical urethrotomy is the main stay treatment modality in management of urethral stricture. Being minimal invasive with less morbidity, it is commonly performed and favored procedure by urologists across the globe. Although short-term success rate of optical urethrotomy is promising but long-term efficacy of IOU is questionable with high recurrence rate in different studies. Numerous techniques had been adopted to reduce the recurrence after IOU like prolong catheterization and self-clean intermittent catheterization with varying success. Mitomycin C has anti-fibroblast and anti-collagen properties and has been used in trabeculectomy, myringotomy and after keloid scar excision in contemporary surgical practice. Present study according to the best of our knowledge is a pioneer pilot study in Pakistan to determine the efficacy of Mitomycin C in preventing recurrence of urethral stricture after internal optical urethrotomy. Objective: To determine the efficacy of Mitomycin C in reducing the recurrence of anterior urethral stricture after internal optical urethrotomy. Methods: It is a randomized control trial conducted in department of urology, Institute of Kidney Diseases Hayatabad Medical Complex Peshawar from March 2011 till December 2013. After approval of hospital ethical committee, we included maximum of 2 cm anterior urethral stricture irrespective of etiology. Total of 140 patients were equally divided into two groups by lottery method. Group A (Case) comprising of 70 patients in whom Mitomycin C 0.1% was injected sub mucosal in stricture area at 1,11,6 and 12 O clock position using straight working channel paediatric cystoscope after conventional optical urethrotomy. Group B (Control) 70 patients in whom only optical urethrotomy was performed. SCIC was not offered in both the groups. All the patients were regularly followed on a monthly basis for 3 months then three monthly for remaining 9 months. Recurrence was diagnosed by using diagnostic tools of retrograde urethrogram and flexible urethroscopy in selected cased. Data was collected on structured Proforma and was analyzed on SPSS. Result: The mean age in Group A was 33 ±1.5 years and Group B was 35 years. External trauma was leading cause of urethral stricture in both groups 46 (65%) Group A and 50 (71.4%) Group B. In Group A. Iatrogenic urethral trauma was 2nd etiological factor in both groups. 18(25%) Group A while 15( 21.4%) in Group B. At the end of 1 year, At the end of one year, recurrence of urethral stricture was recorded in 11 (15.71%) patient in Mitomycin C Group A and it was recorded in 27 (38.5 %) patients in group B. Significant difference p=0.001 was found in favour of group A Mitomycin group. Conclusion: Recurrence of urethral stricture is high after optical urethrotomy. Mitomycin C is found highly effective in preventing recurrence of urethral stricture after IOU.

Keywords: urethral stricture, mitomycine, internal optical urethrotomy, medical and health sciences

Procedia PDF Downloads 369
536 Pump-as-Turbine: Testing and Characterization as an Energy Recovery Device, for Use within the Water Distribution Network

Authors: T. Lydon, A. McNabola, P. Coughlan

Abstract:

Energy consumption in the water distribution network (WDN) is a well established problem equating to the industry contributing heavily to carbon emissions, with 0.9 kg CO2 emitted per m3 of water supplied. It is indicated that 85% of energy wasted in the WDN can be recovered by installing turbines. Existing potential in networks is present at small capacity sites (5-10 kW), numerous and dispersed across networks. However, traditional turbine technology cannot be scaled down to this size in an economically viable fashion, thus alternative approaches are needed. This research aims to enable energy recovery potential within the WDN by exploring the potential of pumps-as-turbines (PATs), to realise this potential. PATs are estimated to be ten times cheaper than traditional micro-hydro turbines, presenting potential to contribute to an economically viable solution. However, a number of technical constraints currently prohibit their widespread use, including the inability of a PAT to control pressure, difficulty in the selection of PATs due to lack of performance data and a lack of understanding on how PATs can cater for fluctuations as extreme as +/- 50% of the average daily flow, characteristic of the WDN. A PAT prototype is undergoing testing in order to identify the capabilities of the technology. Results of preliminary testing, which involved testing the efficiency and power potential of the PAT for varying flow and pressure conditions, in order to develop characteristic and efficiency curves for the PAT and a baseline understanding of the technologies capabilities, are presented here: •The limitations of existing selection methods which convert BEP from pump operation to BEP in turbine operation was highlighted by the failure of such methods to reflect the conditions of maximum efficiency of the PAT. A generalised selection method for the WDN may need to be informed by an understanding of impact of flow variations and pressure control on system power potential capital cost, maintenance costs, payback period. •A clear relationship between flow and efficiency rate of the PAT has been established. The rate of efficiency reductions for flows +/- 50% BEP is significant and more extreme for deviations in flow above the BEP than below, but not dissimilar to the reaction of efficiency of other turbines. •PAT alone is not sufficient to regulate pressure, yet the relationship of pressure across the PAT is foundational in exploring ways which PAT energy recovery systems can maintain required pressure level within the WDN. Efficiencies of systems of PAT energy recovery systems operating conditions of pressure regulation, which have been conceptualise in current literature, need to be established. Initial results guide the focus of forthcoming testing and exploration of PAT technology towards how PATs can form part of an efficiency energy recovery system.

Keywords: energy recovery, pump-as-turbine, water distribution network, water distribution network

Procedia PDF Downloads 242
535 Exploring Tweeters’ Concerns and Opinions about FIFA Arab Cup 2021: An Investigation Study

Authors: Md. Rafiul Biswas, Uzair Shah, Mohammad Alkayal, Zubair Shah, Othman Althawadi, Kamila Swart

Abstract:

Background: Social media platforms play a significant role in the mediated consumption of sport, especially so for sport mega-event. The characteristics of Twitter data (e.g., user mentions, retweets, likes, #hashtag) accumulate the users in one ground and spread information widely and quickly. Analysis of Twitter data can reflect the public attitudes, behavior, and sentiment toward a specific event on a larger scale than traditional surveys. Qatar is going to be the first Arab country to host the mega sports event FIFA World Cup 2022 (Q22). Qatar has hosted the FIFA Arab Cup 2021 (FAC21) to serve as a preparation for the mega-event. Objectives: This study investigates public sentiments and experiences about FAC21 and provides an insight to enhance the public experiences for the upcoming Q22. Method: FCA21-related tweets were downloaded using Twitter Academic research API between 01 October 2021 to 18 February 2022. Tweets were divided into three different periods: before T1 (01 Oct 2021 to 29 Nov 2021), during T2 (30 Nov 2021 -18 Dec 2021), and after the FAC21 T3 (19 Dec 2021-18 Feb 2022). The collected tweets were preprocessed in several steps to prepare for analysis; (1) removed duplicate and retweets, (2) removed emojis, punctuation, and stop words (3) normalized tweets using word lemmatization. Then, rule-based classification was applied to remove irrelevant tweets. Next, the twitter-XLM-roBERTa-base model from Huggingface was applied to identify the sentiment in the tweets. Further, state-of-the-art BertTopic modeling will be applied to identify trending topics over different periods. Results: We downloaded 8,669,875 Tweets posted by 2728220 unique users in different languages. Of those, 819,813 unique English tweets were selected in this study. After splitting into three periods, 541630, 138876, and 139307 were from T1, T2, and T3, respectively. Most of the sentiments were neutral, around 60% in different periods. However, the rate of negative sentiment (23%) was high compared to positive sentiment (18%). The analysis indicates negative concerns about FAC21. Therefore, we will apply BerTopic to identify public concerns. This study will permit the investigation of people’s expectations before FAC21 (e.g., stadium, transportation, accommodation, visa, tickets, travel, and other facilities) and ascertain whether these were met. Moreover, it will highlight public expectations and concerns. The findings of this study can assist the event organizers in enhancing implementation plans for Q22. Furthermore, this study can support policymakers with aligning strategies and plans to leverage outstanding outcomes.

Keywords: FIFA Arab Cup, FIFA, Twitter, machine learning

Procedia PDF Downloads 79
534 New Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator

Authors: Wedad Albalawi

Abstract:

The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques, and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then, dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is an arbitrary nonempty closed subset of the real numbers. Then, the dynamic inequalities on time scales have received a lot of attention in the literature and has become a major field in pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on Hardy and Coposon inequalities, using Steklov operator on time scale in double integrals to obtain special cases of time-scale inequalities of Hardy and Copson on high dimensions. The advantage of this study is that it uses the one-dimensional classical Hardy inequality to obtain higher dimensional on time scale versions that will be applied in the solution of the Cauchy problem for the wave equation. In addition, the obtained inequalities have various applications involving discontinuous domains such as bug populations, phytoremediation of metals, wound healing, maximization problems. The proof can be done by introducing restriction on the operator in several cases. The concepts in time scale version such as time scales calculus will be used that allows to unify and extend many problems from the theories of differential and of difference equations. In addition, using chain rule, and some properties of multiple integrals on time scales, some theorems of Fubini and the inequality of H¨older.

Keywords: time scales, inequality of hardy, inequality of coposon, steklov operator

Procedia PDF Downloads 74
533 The Evaluation of the Cognitive Training Program for Older Adults with Mild Cognitive Impairment: Protocol of a Randomized Controlled Study

Authors: Hui-Ling Yang, Kuei-Ru Chou

Abstract:

Background: Studies show that cognitive training can effectively delay cognitive failure. However, there are several gaps in the previous studies of cognitive training in mild cognitive impairment: 1) previous studies enrolled mostly healthy older adults, with few recruiting older adults with cognitive impairment; 2) they also had limited generalizability and lacked long-term follow-up data and measurements of the activities of daily living functional impact. Moreover, only 37% were randomized controlled trials (RCT). 3) Limited cognitive training has been specifically developed for mild cognitive impairment. Objective: This study sought to investigate the changes in cognitive function, activities of daily living and degree of depressive symptoms in older adults with mild cognitive impairment after cognitive training. Methods: This double-blind randomized controlled study has a 2-arm parallel group design. Study subjects are older adults diagnosed with mild cognitive impairment in residential care facilities. 124 subjects will be randomized by the permuted block randomization, into intervention group (Cognitive training, CT), or active control group (Passive information activities, PIA). Therapeutic adherence, sample attrition rate, medication compliance and adverse events will be monitored during the study period, and missing data analyzed using intent-to-treat analysis (ITT). Results: Training sessions of the CT group are 45 minutes/day, 3 days/week, for 12 weeks (36 sessions each). The training of active control group is the same as CT group (45min/day, 3days/week, for 12 weeks, for a total of 36 sessions). The primary outcome is cognitive function, using the Mini-Mental Status Examination (MMSE); the secondary outcome indicators are: 1) activities of daily living, using the Lawton’s Instrumental Activities of Daily Living (IADLs) and 2) degree of depressive symptoms, using the Geriatric Depression Scale-Short form (GDS-SF). Latent growth curve modeling will be used in the repeated measures statistical analysis to estimate the trajectory of improvement by examining the rate and pattern of change in cognitive functions, activities of daily living and degree of depressive symptoms for intervention efficacy over time, and the effects will be evaluated immediate post-test, 3 months, 6 months and one year after the last session. Conclusions: We constructed a rigorous CT program adhering to the Consolidated Standards of Reporting Trials (CONSORT) reporting guidelines. We expect to determine the improvement in cognitive function, activities of daily living and degree of depressive symptoms of older adults with mild cognitive impairment after using the CT.

Keywords: mild cognitive impairment, cognitive training, randomized controlled study

Procedia PDF Downloads 426
532 Effects of Temperature and the Use of Bacteriocins on Cross-Contamination from Animal Source Food Processing: A Mathematical Model

Authors: Benjamin Castillo, Luis Pastenes, Fernando Cerdova

Abstract:

The contamination of food by microbial agents is a common problem in the industry, especially regarding the elaboration of animal source products. Incorrect manipulation of the machinery or on the raw materials can cause a decrease in production or an epidemiological outbreak due to intoxication. In order to improve food product quality, different methods have been used to reduce or, at least, to slow down the growth of the pathogens, especially deteriorated, infectious or toxigenic bacteria. These methods are usually carried out under low temperatures and short processing time (abiotic agents), along with the application of antibacterial substances, such as bacteriocins (biotic agents). This, in a controlled and efficient way that fulfills the purpose of bacterial control without damaging the final product. Therefore, the objective of the present study is to design a secondary mathematical model that allows the prediction of both the biotic and abiotic factor impact associated with animal source food processing. In order to accomplish this objective, the authors propose a three-dimensional differential equation model, whose components are: bacterial growth, release, production and artificial incorporation of bacteriocins and changes in pH levels of the medium. These three dimensions are constantly being influenced by the temperature of the medium. Secondly, this model adapts to an idealized situation of cross-contamination animal source food processing, with the study agents being both the animal product and the contact surface. Thirdly, the stochastic simulations and the parametric sensibility analysis are compared with referential data. The main results obtained from the analysis and simulations of the mathematical model were to discover that, although bacterial growth can be stopped in lower temperatures, even lower ones are needed to eradicate it. However, this can be not only expensive, but counterproductive as well in terms of the quality of the raw materials and, on the other hand, higher temperatures accelerate bacterial growth. In other aspects, the use and efficiency of bacteriocins are an effective alternative in the short and medium terms. Moreover, an indicator of bacterial growth is a low-level pH, since lots of deteriorating bacteria are lactic acids. Lastly, the processing times are a secondary agent of concern when the rest of the aforementioned agents are under control. Our main conclusion is that when acclimating a mathematical model within the context of the industrial process, it can generate new tools that predict bacterial contamination, the impact of bacterial inhibition, and processing method times. In addition, the mathematical modeling proposed logistic input of broad application, which can be replicated on non-meat food products, other pathogens or even on contamination by crossed contact of allergen foods.

Keywords: bacteriocins, cross-contamination, mathematical model, temperature

Procedia PDF Downloads 124
531 The Use of Political Savviness in Dealing with Workplace Ostracism: A Social Information Processing Perspective

Authors: Amy Y. Wang, Eko L. Yi

Abstract:

Can vicarious experiences of workplace ostracism affect employees’ willingness to voice? Given the increasingly interdependent nature of the modern workplace in which employees rely on social interactions to fulfill organizational goals, workplace ostracism –the extent to which an individual perceives that he or she is ignored or excluded by others in the workplace– has garnered significant interest from scholars and practitioners alike. Extending beyond conventional studies that largely focus on the perspectives and outcomes of ostracized targets, we address the indirect effects of workplace ostracism on third-party employees embedded in the same social context. Using a social information processing approach, we propose that the ostracism of coworkers acts as political information that influences third-party employees in their decisions to engage in risky and discretionary behaviors such as employee voice. To make sense of and to navigate through experiences of workplace ostracism, we posit that both political understanding and political skill allow third party employees to minimize the risks and uncertainty of voicing. This conceptual model was tested by a study involving 154 supervisor-subordinate dyads of a publicly listed bio-technology firm located in Mainland China. Each supervisor and their direct subordinates composed of a work team; each team had a minimum of two subordinates and a maximum of four subordinates. Human resources used the master list to distribute the ID coded questionnaires to the matching names. All studied constructs were measured using existing scales proved effective in previous literature. Hypotheses were tested using Confirmatory Factor Analysis and Hierarchal Multiple Regression. All three hypotheses were supported which showed that employees were less likely to engage in voice behaviors when their coworkers reported having experienced ostracism in the workplace. Results also showed a significant three-way interaction between political understanding and political skill on the relationship between coworkers’ ostracism and employee voice, indicating that political savviness is a valuable resource in mitigating ostracism’s negative and indirect effects. Our results illustrated that an employee’s coworkers being ostracized indeed adversely impacted his or her own voice behavior. However, not all individuals reacted passively to the social context; rather, we found that politically savvy individuals – possessing both political understanding and political skill – and their voice behaviors were less impacted by ostracism in their work environment. At the same time, we found that having only political understanding or only political skill was significantly less effective in mitigating ostracism’s negative effects, suggesting a necessary duality of political knowledge and political skill in combatting ostracism. Organizational implications, recommendations, and future research ideas are also discussed.

Keywords: employee voice, organizational politics, social information processing, workplace ostracism

Procedia PDF Downloads 119
530 Development of High-Efficiency Down-Conversion Fluoride Phosphors to Increase the Efficiency of Solar Panels

Authors: S. V. Kuznetsov, M. N. Mayakova, V. Yu. Proydakova, V. V. Pavlov, A. S. Nizamutdinov, O. A. Morozov, V. V. Voronov, P. P. Fedorov

Abstract:

Increase in the share of electricity received by conversion of solar energy results in the reduction of the industrial impact on the environment from the use of the hydrocarbon energy sources. One way to increase said share is to improve the efficiency of solar energy conversion in silicon-based solar panels. Such efficiency increase can be achieved by transferring energy from sunlight-insensitive areas of work of silicon solar panels to the area of their photoresistivity. To achieve this goal, a transition to new luminescent materials with the high quantum yield of luminescence is necessary. Improvement in the quantum yield can be achieved by quantum cutting, which allows obtaining a quantum yield of down conversion of more than 150% due to the splitting of high-energy photons of the UV spectral range into lower-energy photons of the visible and near infrared spectral ranges. The goal of present work is to test approach of excitation through sensibilization of 4f-4f fluorescence of Yb3+ by various RE ions absorbing in UV and Vis spectral ranges. One of promising materials for quantum cutting luminophores are fluorides. In our investigation we have developed synthesis of nano- and submicron powders of calcium fluoride and strontium doped with rare-earth elements (Yb: Ce, Yb: Pr, Yb: Eu) of controlled dimensions and shape by co-precipitation from water solution technique. We have used Ca(NO3)2*4H2O, Sr(NO3)2, HF, NH4F as precursors. After initial solutions of nitrates were prepared they have been mixed with fluorine containing solution by dropwise manner. According to XRD data, the synthesis resulted in single phase samples with fluorite structure. By means of SEM measurements, we have confirmed spherical morphology and have determined sizes of particles (50-100 nm after synthesis and 150-300 nm after calcination). Temperature of calcination appeared to be 600°C. We have investigated the spectral-kinetic characteristics of above mentioned compounds. Here the diffuse reflection and laser induced fluorescence spectra of Yb3+ ions excited at around 4f-4f and 4f-5d transitions of Pr3+, Eu3+ and Ce3+ ions in the synthesized powders are reported. The investigation of down conversion luminescence capability of synthesized compounds included measurements of fluorescence decays and quantum yield of 2F5/2-2F7/2 fluorescence of Yb3+ ions as function of Yb3+ and sensitizer contents. An optimal chemical composition of CaF2-YbF3- LnF3 (Ln=Ce, Eu, Pr), SrF2-YbF3-LnF3 (Ln=Ce, Eu, Pr) micro- and nano- powders according to criteria of maximal IR fluorescence yield is proposed. We suppose that investigated materials are prospective in solar panels improvement applications. Work was supported by Russian Science Foundation grant #17-73- 20352.

Keywords: solar cell, fluorides, down-conversion luminescence, maximum quantum yield

Procedia PDF Downloads 255
529 A Comprehensive Finite Element Model for Incremental Launching of Bridges: Optimizing Construction and Design

Authors: Mohammad Bagher Anvari, Arman Shojaei

Abstract:

Incremental launching, a widely adopted bridge erection technique, offers numerous advantages for bridge designers. However, accurately simulating and modeling the dynamic behavior of the bridge during each step of the launching process proves to be tedious and time-consuming. The perpetual variation of internal forces within the deck during construction stages adds complexity, exacerbated further by considerations of other load cases, such as support settlements and temperature effects. As a result, there is an urgent need for a reliable, simple, economical, and fast algorithmic solution to model bridge construction stages effectively. This paper presents a novel Finite Element (FE) model that focuses on studying the static behavior of bridges during the launching process. Additionally, a simple method is introduced to normalize all quantities in the problem. The new FE model overcomes the limitations of previous models, enabling the simulation of all stages of launching, which conventional models fail to achieve due to underlying assumptions. By leveraging the results obtained from the new FE model, this study proposes solutions to improve the accuracy of conventional models, particularly for the initial stages of bridge construction that have been neglected in previous research. The research highlights the critical role played by the first span of the bridge during the initial stages, a factor often overlooked in existing studies. Furthermore, a new and simplified model termed the "semi-infinite beam" model, is developed to address this oversight. By utilizing this model alongside a simple optimization approach, optimal values for launching nose specifications are derived. The practical applications of this study extend to optimizing the nose-deck system of incrementally launched bridges, providing valuable insights for practical usage. In conclusion, this paper introduces a comprehensive Finite Element model for studying the static behavior of bridges during incremental launching. The proposed model addresses limitations found in previous approaches and offers practical solutions to enhance accuracy. The study emphasizes the importance of considering the initial stages and introduces the "semi-infinite beam" model. Through the developed model and optimization approach, optimal specifications for launching nose configurations are determined. This research holds significant practical implications and contributes to the optimization of incrementally launched bridges, benefiting both the construction industry and bridge designers.

Keywords: incremental launching, bridge construction, finite element model, optimization

Procedia PDF Downloads 76
528 Methods of Detoxification of Nuts With Aflatoxin B1 Contamination

Authors: Auteleyeva Laura, Maikanov Balgabai, Smagulova Ayana

Abstract:

In order to find and select detoxification methods, patent and information research was conducted, as a result of which 68 patents for inventions were found, among them from the near abroad - 14 (Russia), from far abroad: China – 27, USA - 6, South Korea–1, Germany - 2, Mexico – 4, Yugoslavia – 7, Austria, Taiwan, Belarus, Denmark, Italy, Japan, Canada for 1 security document. Aflatoxin B₁ in various nuts was determined by two methods: enzyme immunoassay "RIDASCREEN ® FAST Aflatoxin" with determination of optical density on a microplate spectrophotometer RIDA®ABSORPTION 96 with RIDASOFT® software Win.NET (Germany) and the method of high-performance liquid chromatography (HPLC Corporation Water, USA) according to GOST 307112001. For experimental contamination of nuts, the cultivation of strain A was carried out. flavus KWIK-STIK on the medium of Chapek (France) with subsequent infection of various nuts (peanuts, peanuts with shells, badam, walnuts with and without shells, pistachios).Based on our research, we have selected 2 detoxification methods: method 1 – combined (5% citric acid solution + microwave for 640 W for 3 min + UV for 20 min) and a chemical method with various leaves of plants: Artemisia terra-albae, Thymus vulgaris, Callogonum affilium, collected in the territory of Akmola region (Artemisia terra-albae, Thymus vulgaris) and Western Kazakhstan (Callogonum affilium). The first stage was the production of ethanol extracts of Artemisia terraea-albae, Thymus vulgaris, Callogonum affilium. To obtain them, 100 g of vegetable raw materials were taken, which was dissolved in 70% ethyl alcohol. Extraction was carried out for 2 hours at the boiling point of the solvent with a reverse refrigerator using an ultrasonic bath "Sapphire". The obtained extracts were evaporated on a rotary evaporator IKA RV 10. At the second stage, the three samples obtained were tested for antimicrobial and antifungal activity. Extracts of Thymus vulgaris and Callogonum affilium showed high antimicrobial and antifungal activity. Artemisia terraea-albae extract showed high antimicrobial activity and low antifungal activity. When testing method 1, it was found that in the first and third experimental groups there was a decrease in the concentration of aflatoxin B1 in walnut samples by 63 and 65%, respectively, but these values also exceeded the maximum permissible concentrations, while the nuts in the second and third experimental groups had a tart lemon flavor; When testing method 2, a decrease in the concentration of aflatoxin B1 to a safe level was observed by 91% (0.0038 mg/kg) in nuts of the 1st and 2nd experimental groups (Artemisia terra-albae, Thymus vulgaris), while in samples of the 2nd and 3rd experimental groups, a decrease in the amount of aflatoxin in 1 to a safe level was observed.

Keywords: nuts, aflatoxin B1, my, mycotoxins

Procedia PDF Downloads 66
527 An Empirical Analysis of Farmers Field Schools and Effect on Tomato Productivity in District Malakand Khyber Pakhtunkhwa-Pakistan

Authors: Mahmood Iqbal, Khalid Nawab, Tachibana Satoshi

Abstract:

Farmer Field School (FFS) is constantly aims to assist farmers to determine and learn about field ecology and integrated crop management. The study was conducted to examine the change in productivity of tomato crop in the study area; to determine increase in per acre yield of the crop, and find out reduction in per acre input cost. A study of tomato crop was conducted in ten villages namely Jabban, Bijligar Colony, Palonow, Heroshah, Zara Maira, Deghar Ghar, Sidra Jour, Anar Thangi, Miangano Korona and Wartair of district Malakand. From each village 15 respondents were selected randomly on the basis of identical allocation making sample size of 150 respondents. The research was based on primary as well as secondary data. Primary data was collected from farmers while secondary data were taken from Agriculture Extension Department Dargai, District Malakand. Interview schedule was planned and each farmer was interviewed personally. The study was based on comparison of cost, yield and income of tomato before and after FFS. Paired t-test and Statistical Package for Social Sciences (SPSS) was used for analysis; outcome of the study show that integrated pest management project has brought a positive change in the attitude of farmers of the project area through FFS approach. In district Malakand 66.0% of the respondents were between the age group of 31-50 years, 11.3% of respondents had primary level of education, 12.7% of middle level, 28.7% metric level, 3.3% of intermediate level and 2.0% of graduate level of education while 42.0% of respondents were illiterate and have no education. Average land holding size of farmers was 6.47 acres, cost of seed, crop protection from insect pest and crop protection from diseases was reduced by Rs. 210.67, Rs. 2584.43 and Rs. 3044.16 respectively, the cost of fertilizers and cost of farm yard manure was increased by Rs.1548.87 and Rs. 1151.40 respectively while tomato yield was increased by 1585.03 kg/acre from 7663.87 to 9248.90 kg/acre. The role of FFS initiate by integrated pest management project through department of agriculture extension for the development of agriculture was worth mentioning. It has brought enhancement in crop yield of tomato and their income through FFS approach. On the basis of results of the research studies, integrated pest management project should spread their developmental activities for maximum participation of the complete rural masses through participatory FFS approach.

Keywords: agriculture, Farmers field schools, extension education, tomato

Procedia PDF Downloads 590
526 Building an Opinion Dynamics Model from Experimental Data

Authors: Dino Carpentras, Paul J. Maher, Caoimhe O'Reilly, Michael Quayle

Abstract:

Opinion dynamics is a sub-field of agent-based modeling that focuses on people’s opinions and their evolutions over time. Despite the rapid increase in the number of publications in this field, it is still not clear how to apply these models to real-world scenarios. Indeed, there is no agreement on how people update their opinion while interacting. Furthermore, it is not clear if different topics will show the same dynamics (e.g., more polarized topics may behave differently). These problems are mostly due to the lack of experimental validation of the models. Some previous studies started bridging this gap in the literature by directly measuring people’s opinions before and after the interaction. However, these experiments force people to express their opinion as a number instead of using natural language (and then, eventually, encoding it as numbers). This is not the way people normally interact, and it may strongly alter the measured dynamics. Another limitation of these studies is that they usually average all the topics together, without checking if different topics may show different dynamics. In our work, we collected data from 200 participants on 5 unpolarized topics. Participants expressed their opinions in natural language (“agree” or “disagree”). We also measured the certainty of their answer, expressed as a number between 1 and 10. However, this value was not shown to other participants to keep the interaction based on natural language. We then showed the opinion (and not the certainty) of another participant and, after a distraction task, we repeated the measurement. To make the data compatible with opinion dynamics models, we multiplied opinion and certainty to obtain a new parameter (here called “continuous opinion”) ranging from -10 to +10 (using agree=1 and disagree=-1). We firstly checked the 5 topics individually, finding that all of them behaved in a similar way despite having different initial opinions distributions. This suggested that the same model could be applied for different unpolarized topics. We also observed that people tend to maintain similar levels of certainty, even when they changed their opinion. This is a strong violation of what is suggested from common models, where people starting at, for example, +8, will first move towards 0 instead of directly jumping to -8. We also observed social influence, meaning that people exposed with “agree” were more likely to move to higher levels of continuous opinion, while people exposed with “disagree” were more likely to move to lower levels. However, we also observed that the effect of influence was smaller than the effect of random fluctuations. Also, this configuration is different from standard models, where noise, when present, is usually much smaller than the effect of social influence. Starting from this, we built an opinion dynamics model that explains more than 80% of data variance. This model was also able to show the natural conversion of polarization from unpolarized states. This experimental approach offers a new way to build models grounded on experimental data. Furthermore, the model offers new insight into the fundamental terms of opinion dynamics models.

Keywords: experimental validation, micro-dynamics rule, opinion dynamics, update rule

Procedia PDF Downloads 94
525 Assessing the Material Determinants of Cavity Polariton Relaxation using Angle-Resolved Photoluminescence Excitation Spectroscopy

Authors: Elizabeth O. Odewale, Sachithra T. Wanasinghe, Aaron S. Rury

Abstract:

Cavity polaritons form when molecular excitons strongly couple to photons in carefully constructed optical cavities. These polaritons, which are hybrid light-matter states possessing a unique combination of photonic and excitonic properties, present the opportunity to manipulate the properties of various semiconductor materials. The systematic manipulation of materials through polariton formation could potentially improve the functionalities of many optoelectronic devices such as lasers, light-emitting diodes, photon-based quantum computers, and solar cells. However, the prospects of leveraging polariton formation for novel devices and device operation depend on more complete connections between the properties of molecular chromophores, and the hybrid light-matter states they form, which remains an outstanding scientific goal. Specifically, for most optoelectronic applications, it is paramount to understand how polariton formation affects the spectra of light absorbed by molecules coupled strongly to cavity photons. An essential feature of a polariton state is its dispersive energy, which occurs due to the enhanced spatial delocalization of the polaritons relative to bare molecules. To leverage the spatial delocalization of cavity polaritons, angle-resolved photoluminescence excitation spectroscopy was employed in characterizing light emission from the polaritonic states. Using lasers of appropriate energies, the polariton branches were resonantly excited to understand how molecular light absorption changes under different strong light-matter coupling conditions. Since an excited state has a finite lifetime, the photon absorbed by the polariton decays non-radiatively into lower-lying molecular states, from which radiative relaxation to the ground state occurs. The resulting fluorescence is collected across several angles of excitation incidence. By modeling the behavior of the light emission observed from the lower-lying molecular state and combining this result with the output of angle-resolved transmission measurements, inferences are drawn about how the behavior of molecules changes when they form polaritons. These results show how the intrinsic properties of molecules, such as the excitonic lifetime, affect the rate at which the polaritonic states relax. While it is true that the lifetime of the photon mediates the rate of relaxation in a cavity, the results from this study provide evidence that the lifetime of the molecular exciton also limits the rate of polariton relaxation.

Keywords: flourescece, molecules in cavityies, optical cavity, photoluminescence excitation, spectroscopy, strong coupling

Procedia PDF Downloads 52
524 Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell

Authors: Maksudur Rahman Khan, Kar Min Chan, Huei Ruey Ong, Chin Kui Cheng, Wasikur Rahman

Abstract:

Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However, the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol-gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The as-prepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance.

Keywords: microbial fuel cell, oxygen reduction reaction, Pt/MnO2, palm oil mill effluent, polarization curve

Procedia PDF Downloads 539
523 The Effect of Different Strength Training Methods on Muscle Strength, Body Composition and Factors Affecting Endurance Performance

Authors: Shaher A. I. Shalfawi, Fredrik Hviding, Bjornar Kjellstadli

Abstract:

The main purpose of this study was to measure the effect of two different strength training methods on muscle strength, muscle mass, fat mass and endurance factors. Fourteen physical education students accepted to participate in this study. The participants were then randomly divided into three groups, traditional training group (TTG), cluster training group (CTG) and control group (CG). TTG consisted of 4 participants aged ( ± SD) (22.3 ± 1.5 years), body mass (79.2 ± 15.4 kg) and height (178.3 ± 11.9 cm). CTG consisted of 5 participants aged (22.2 ± 3.5 years), body mass (81.0 ± 24.0 kg) and height (180.2 ± 12.3 cm). CG consisted of 5 participants aged (22 ± 2.8 years), body mass (77 ± 19 kg) and height (174 ± 6.7 cm). The participants underwent a hypertrophy strength training program twice a week consisting of 4 sets of 10 reps at 70% of one-repetition maximum (1RM), using barbell squat and barbell bench press for 8 weeks. The CTG performed 2 x 5 reps using 10 s recovery in between repetitions and 50 s recovery between sets, while TTG performed 4 sets of 10 reps with 90 s recovery in between sets. Pre- and post-tests were administrated to assess body composition (weight, muscle mass, and fat mass), 1RM (bench press and barbell squat) and a laboratory endurance test (Bruce Protocol). Instruments used to collect the data were Tanita BC-601 scale (Tanita, Illinois, USA), Woodway treadmill (Woodway, Wisconsin, USA) and Vyntus CPX breath-to-breath system (Jaeger, Hoechberg, Germany). Analysis was conducted at all measured variables including time to peak VO2, peak VO2, heart rate (HR) at peak VO2, respiratory exchange ratio (RER) at peak VO2, and number of breaths per minute. The results indicate an increase in 1RM performance after 8 weeks of training. The change in 1RM squat was for the TTG = 30 ± 3.8 kg, CTG = 28.6 ± 8.3 kg and CG = 10.3 ± 13.8 kg. Similarly, the change in 1RM bench press was for the TTG = 9.8 ± 2.8 kg, CTG = 7.4 ± 3.4 kg and CG = 4.4 ± 3.4 kg. The within-group analysis from the oxygen consumption measured during the incremental exercise indicated that the TTG had only a statistical significant increase in their RER from 1.16 ± 0.04 to 1.23 ± 0.05 (P < 0.05). The CTG had a statistical significant improvement in their HR at peak VO2 from 186 ± 24 to 191 ± 12 Beats Per Minute (P < 0.05) and their RER at peak VO2 from 1.11 ± 0.06 to 1.18 ±0.05 (P < 0.05). Finally, the CG had only a statistical significant increase in their RER at peak VO2 from 1.11 ± 0.07 to 1.21 ± 0.05 (P < 0.05). The between-group analysis showed no statistical differences between all groups in all the measured variables from the oxygen consumption test during the incremental exercise including changes in muscle mass, fat mass, and weight (kg). The results indicate a similar effect of hypertrophy strength training irrespective of the methods of the training used on untrained subjects. Because there were no notable changes in body-composition measures, the results suggest that the improvements in performance observed in all groups is most probably due to neuro-muscular adaptation to training.

Keywords: hypertrophy strength training, cluster set, Bruce protocol, peak VO2

Procedia PDF Downloads 237
522 Effect of Ageing of Laser-Treated Surfaces on Corrosion Resistance of Fusion-bonded Al Joints

Authors: Rio Hirakawa, Christian Gundlach, Sven Hartwig

Abstract:

Aluminium has been used in a wide range of industrial applications due to its numerous advantages, including excellent specific strength, thermal conductivity, corrosion resistance, workability and recyclability. The automotive industry is increasingly adopting multi-materials, including aluminium in structures and components to improve the mechanical usability and performance of individual components. A common method for assembling dissimilar materials is mechanical joining, but mechanical joining requires multiple manufacturing steps, affects the mechanical properties of the base material and increases the weight due to additional metal parts. Fusion bonding is being used in more and more industries as a way of avoiding the above drawbacks. Infusion bonding, and surface pre-treatment of the base material is essential to ensure the long-life durability of the joint. Laser surface treatment of aluminium has been shown to improve the durability of the joint by forming a passive oxide film and roughening the substrate surface. Infusion bonding, the polymer bonds directly to the metal instead of the adhesive, but the sensitivity to interfacial contamination is higher due to the chemical activity and molecular size of the polymer. Laser-treated surfaces are expected to absorb impurities from the storage atmosphere over time, but the effect of such changes in the treated surface over time on the durability of fusion-bonded joints has not yet been fully investigated. In this paper, the effect of the ageing of laser-treated surfaces of aluminum alloys on the corrosion resistance of fusion-bonded joints is therefore investigated. AlMg3 of 1.5 mm thickness was cut using a water-jet cutting machine, cleaned and degreased with isopropanol and surface pre-treated with a pulsed fiber laser at a wavelength of 1060 nm, maximum power of 70 W and repetition rate of 55 kHz. The aluminum surfaces were then stored in air for various periods of time and their corrosion resistance was assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). For the aluminum joints, induction heating was employed as the fusion bonding method and single-lap shear specimens were prepared. The corrosion resistance of the joints was assessed by measuring the lap shear strength before and after neutral salt spray. Cross-sectional observations by scanning electron microscopy (SEM) were also carried out to investigate changes in the microstructure of the bonded interface. Finally, the corrosion resistance of the surface and the joint were compared and the differences in the mechanisms of corrosion resistance enhancement between the two were discussed.

Keywords: laser surface treatment, pre-treatment, bonding, corrosion, durability, interface, automotive, aluminium alloys, joint, fusion bonding

Procedia PDF Downloads 61
521 Experimental Study of Vibration Isolators Made of Expanded Cork Agglomerate

Authors: S. Dias, A. Tadeu, J. Antonio, F. Pedro, C. Serra

Abstract:

The goal of the present work is to experimentally evaluate the feasibility of using vibration isolators made of expanded cork agglomerate. Even though this material, also known as insulation cork board (ICB), has mainly been studied for thermal and acoustic insulation purposes, it has strong potential for use in vibration isolation. However, the adequate design of expanded cork blocks vibration isolators will depend on several factors, such as excitation frequency, static load conditions and intrinsic dynamic behavior of the material. In this study, transmissibility tests for different static and dynamic loading conditions were performed in order to characterize the material. Since the material’s physical properties can influence the vibro-isolation performance of the blocks (in terms of density and thickness), this study covered four mass density ranges and four block thicknesses. A total of 72 expanded cork agglomerate specimens were tested. The test apparatus comprises a vibration exciter connected to an excitation mass that holds the test specimen. The test specimens under characterization were loaded successively with steel plates in order to obtain results for different masses. An accelerometer was placed at the top of these masses and at the base of the excitation mass. The test was performed for a defined frequency range, and the amplitude registered by the accelerometers was recorded in time domain. For each of the signals (signal 1- vibration of the excitation mass, signal 2- vibration of the loading mass) a fast Fourier transform (FFT) was applied in order to obtain the frequency domain response. For each of the frequency domain signals, the maximum amplitude reached was registered. The ratio between the amplitude (acceleration) of signal 2 and the amplitude of signal 1, allows the calculation of the transmissibility for each frequency. Repeating this procedure allowed us to plot a transmissibility curve for a certain frequency range. A number of transmissibility experiments were performed to assess the influence of changing the mass density and thickness of the expanded cork blocks and the experimental conditions (static load and frequency of excitation). The experimental transmissibility tests performed in this study showed that expanded cork agglomerate blocks are a good option for mitigating vibrations. It was concluded that specimens with lower mass density and larger thickness lead to better performance, with higher vibration isolation and a larger range of isolated frequencies. In conclusion, the study of the performance of expanded cork agglomerate blocks presented herein will allow for a more efficient application of expanded cork vibration isolators. This is particularly relevant since this material is a more sustainable alternative to other commonly used non-environmentally friendly products, such as rubber.

Keywords: expanded cork agglomerate, insulation cork board, transmissibility tests, sustainable materials, vibration isolators

Procedia PDF Downloads 323
520 Development and Characterization of Topical 5-Fluorouracil Solid Lipid Nanoparticles for the Effective Treatment of Non-Melanoma Skin Cancer

Authors: Sudhir Kumar, V. R. Sinha

Abstract:

Background: The topical and systemic toxicity associated with present nonmelanoma skin cancer (NMSC) treatment therapy using 5-Fluorouracil (5-FU) make it necessary to develop a novel delivery system having lesser toxicity and better control over drug release. Solid lipid nanoparticles offer many advantages like: controlled and localized release of entrapped actives, nontoxicity, and better tolerance. Aim:-To investigate safety and efficacy of 5-FU loaded solid lipid nanoparticles as a topical delivery system for the treatment of nonmelanoma skin cancer. Method: Topical solid lipid nanoparticles of 5-FU were prepared using Compritol 888 ATO (Glyceryl behenate) as lipid component and pluronic F68 (Poloxamer 188), Tween 80 (Polysorbate 80), Tyloxapol (4-(1,1,3,3-Tetramethylbutyl) phenol polymer with formaldehyde and oxirane) as surfactants. The SLNs were prepared with emulsification method. Different formulation parameters viz. type and ratio of surfactant, ratio of lipid and ratio of surfactant:lipid were investigated on particle size and drug entrapment efficiency. Results: Characterization of SLNs like–Transmission Electron Microscopy (TEM), Differential Scannig calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Particle size determination, Polydispersity index, Entrapment efficiency, Drug loading, ex vivo skin permeation and skin retention studies, skin irritation and histopathology studies were performed. TEM results showed that shape of SLNs was spherical with size range 200-500nm. Higher encapsulation efficiency was obtained for batches having higher concentration of surfactant and lipid. It was found maximum 64.3% for SLN-6 batch with size of 400.1±9.22 nm and PDI 0.221±0.031. Optimized SLN batches and marketed 5-FU cream were compared for flux across rat skin and skin drug retention. The lesser flux and higher skin retention was obtained for SLN formulation in comparison to topical 5-FU cream, which ensures less systemic toxicity and better control of drug release across skin. Chronic skin irritation studies lacks serious erythema or inflammation and histopathology studies showed no significant change in physiology of epidermal layers of rat skin. So, these studies suggest that the optimized SLN formulation is efficient then marketed cream and safer for long term NMSC treatment regimens. Conclusion: Topical and systemic toxicity associated with long-term use of 5-FU, in the treatment of NMSC, can be minimized with its controlled release with significant drug retention with minimal flux across skin. The study may provide a better alternate for effective NMSC treatment.

Keywords: 5-FU, topical formulation, solid lipid nanoparticles, non melanoma skin cancer

Procedia PDF Downloads 496
519 Methods Used to Achieve Airtightness of 0.07 Ach@50Pa for an Industrial Building

Authors: G. Wimmers

Abstract:

The University of Northern British Columbia needed a new laboratory building for the Master of Engineering in Integrated Wood Design Program and its new Civil Engineering Program. Since the University is committed to reducing its environmental footprint and because the Master of Engineering Program is actively involved in research of energy efficient buildings, the decision was made to request the energy efficiency of the Passive House Standard in the Request for Proposals. The building is located in Prince George in Northern British Columbia, a city located at the northern edge of climate zone 6 with an average low between -8 and -10.5 in the winter months. The footprint of the building is 30m x 30m with a height of about 10m. The building consists of a large open space for the shop and laboratory with a small portion of the floorplan being two floors, allowing for a mezzanine level with a few offices as well as mechanical and storage rooms. The total net floor area is 1042m² and the building’s gross volume 9686m³. One key requirement of the Passive House Standard is the airtight envelope with an airtightness of < 0.6 ach@50Pa. In the past, we have seen that this requirement can be challenging to reach for industrial buildings. When testing for air tightness, it is important to test in both directions, pressurization, and depressurization, since the airflow through all leakages of the building will, in reality, happen simultaneously in both directions. A specific detail or situation such as overlapping but not sealed membranes might be airtight in one direction, due to the valve effect, but are opening up when tested in the opposite direction. In this specific project, the advantage was the overall very compact envelope and the good volume to envelope area ratio. The building had to be very airtight and the details for the windows and doors installation as well as all transitions from walls to roof and floor, the connections of the prefabricated wall panels and all penetrations had to be carefully developed to allow for maximum airtightness. The biggest challenges were the specific components of this industrial building, the large bay door for semi-trucks and the dust extraction system for the wood processing machinery. The testing was carried out in accordance with EN 132829 (method A) as specified in the International Passive House Standard and the volume calculation was also following the Passive House guideline resulting in a net volume of 7383m3, excluding all walls, floors and suspended ceiling volumes. This paper will explore the details and strategies used to achieve an airtightness of 0.07 ach@50Pa, to the best of our knowledge the lowest value achieved in North America so far following the test protocol of the International Passive House Standard and discuss the crucial steps throughout the project phases and the most challenging details.

Keywords: air changes, airtightness, envelope design, industrial building, passive house

Procedia PDF Downloads 136
518 Corrosion Protection and Failure Mechanism of ZrO₂ Coating on Zirconium Alloy Zry-4 under Varied LiOH Concentrations in Lithiated Water at 360°C and 18.5 MPa

Authors: Guanyu Jiang, Donghai Xu, Huanteng Liu

Abstract:

After the Fukushima-Daiichi accident, the development of accident tolerant fuel cladding materials to improve reactor safety has become a hot topic in the field of nuclear industry. ZrO₂ has a satisfactory neutron economy and can guarantee the fission chain reaction process, which enables it to be a promising coating for zirconium alloy cladding. Maintaining a good corrosion resistance in primary coolant loop during normal operations of Pressurized Water Reactors is a prerequisite for ZrO₂ as a protective coating on zirconium alloy cladding. Research on the corrosion performance of ZrO₂ coating in nuclear water chemistry is relatively scarce, and existing reports failed to provide an in-depth explanation for the failure causes of ZrO₂ coating. Herein, a detailed corrosion process of ZrO₂ coating in lithiated water at 360 °C and 18.5 MPa was proposed based on experimental research and molecular dynamics simulation. Lithiated water with different LiOH solutions in the present work was deaerated and had a dissolved oxygen concentration of < 10 ppb. The concentration of Li (as LiOH) was determined to be 2.3 ppm, 70 ppm, and 500 ppm, respectively. Corrosion tests were conducted in a static autoclave. Modeling and corresponding calculations were operated on Materials Studio software. The calculation of adsorption energy and dynamics parameters were undertaken by the Energy task and Dynamics task of the Forcite module, respectively. The protective effect and failure mechanism of ZrO₂ coating on Zry-4 under varied LiOH concentrations was further revealed by comparison with the coating corrosion performance in pure water (namely 0 ppm Li). ZrO₂ coating provided a favorable corrosion protection with the occurrence of localized corrosion at low LiOH concentrations. Factors influencing corrosion resistance mainly include pitting corrosion extension, enhanced Li+ permeation, short-circuit diffusion of O²⁻ and ZrO₂ phase transformation. In highly-concentrated LiOH solutions, intergranular corrosion, internal oxidation, and perforation resulted in coating failure. Zr ions were released to coating surface to form flocculent ZrO₂ and ZrO₂ clusters due to the strong diffusion and dissolution tendency of α-Zr in the Zry-4 substrate. Considering that primary water of Pressurized Water Reactors usually includes 2.3 ppm Li, the stability of ZrO₂ make itself a candidate fuel cladding coating material. Under unfavorable conditions with high Li concentrations, more boric acid should be added to alleviate caustic corrosion of ZrO₂ coating once it is used. This work can provide some references to understand the service behavior of nuclear coatings under variable water chemistry conditions and promote the in-pile application of ZrO₂ coating.

Keywords: ZrO₂ coating, Zry-4, corrosion behavior, failure mechanism, LiOH concentration

Procedia PDF Downloads 58
517 Novel EGFR Ectodomain Mutations and Resistance to Anti-EGFR and Radiation Therapy in H&N Cancer

Authors: Markus Bredel, Sindhu Nair, Hoa Q. Trummell, Rajani Rajbhandari, Christopher D. Willey, Lewis Z. Shi, Zhuo Zhang, William J. Placzek, James A. Bonner

Abstract:

Purpose: EGFR-targeted monoclonal antibodies (mAbs) provide clinical benefit in some patients with H&N squamous cell carcinoma (HNSCC), but others progress with minimal response. Missense mutations in the EGFR ectodomain (ECD) can be acquired under mAb therapy by mimicking the effect of large deletions on receptor untethering and activation. Little is known about the contribution of EGFR ECD mutations to EGFR activation and anti-EGFR response in HNSCC. Methods: We selected patient-derived HNSCC cells (UM-SCC-1) for resistance to mAb Cetuximab (CTX) by repeated, stepwise exposure to mimic what may occur clinically and identified two concurrent EGFR ECD mutations (UM-SCC-1R). We examined the competence of the mutants to bind EGF ligand or CTX. We assessed the potential impact of the mutations through visual analysis of space-filling models of the native sidechains in the original structures vs. their respective side-chain mutations. We performed CRISPR in combination with site-directed mutagenesis to test for the effect of the mutants on ligand-independent EGFR activation and sorting. We determined the effects on receptor internalization, endocytosis, downstream signaling, and radiation sensitivity. Results: UM-SCC-1R cells carried two non-synonymous missense mutations (G33S and N56K) mapping to domain I in or near the EGF binding pocket of the EGFR ECD. Structural modeling predicted that these mutants restrict the adoption of a tethered, inactive EGFR conformation while not permitting association of EGFR with the EGF ligand or CTX. Binding studies confirmed that the mutant, untethered receptor displayed a reduced affinity for both EGF and CTX but demonstrated sustained activation and presence at the cell surface with diminished internalization and sorting for endosomal degradation. Single and double-mutant models demonstrated that the G33S mutant is dominant over the N56K mutant in its effect on EGFR activation and EGF binding. CTX-resistant UM-SCC-1R cells demonstrated cross-resistance to mAb Panitumuab but, paradoxically, remained sensitive to the reversible receptor tyrosine kinase inhibitor Erlotinib. Conclusions: HNSCC cells can select for EGFR ECD mutations under EGFR mAb exposure that converge to trap the receptor in an open, constitutively activated state. These mutants impede the receptor’s competence to bind mAbs and EGF ligand and alter its endosomal trafficking, possibly explaining certain cases of clinical mAb and radiation resistance.

Keywords: head and neck cancer, EGFR mutation, resistance, cetuximab

Procedia PDF Downloads 72
516 Correlation Analysis between Physical Fitness Norm and Cardio-Pulmonary Signals under Graded Exercise and Recovery

Authors: Shyan-Lung Lin, Cheng-Yi Huang, Tung-Yi Lin

Abstract:

Physical fitness is the adaptability of the body to physical work and the environment, and is generally known to include cardiopulmonary-fitness, muscular-fitness, body flexibility, and body composition. This paper is aimed to study the ventilatory and cardiovascular activity under various exercise intensities for subjects at distinct ends of cardiopulmonary fitness norm. Three graded upright biking exercises, light, moderate, and vigorous exercise, were designed for subjects at distinct ends of cardiopulmonary fitness norm from their physical education classes. The participants in the experiments were 9, 9, and 11 subjects in the top 20%, middle 20%, and bottom 20%, respectively, among all freshmen of the Feng Chia University in the academic year of 2015. All participants were requested to perform 5 minutes of upright biking exercise to attain 50%, 65%, and 85% of their maximum heart rate (HRmax) during the light, moderate, and vigorous exercise experiment, respectively, and 5 minutes of recovery following each graded exercise. The cardiovascular and ventilatory signals, including breathing frequency (f), tidal volume (VT), heart rate (HR), mean arterial pressure (MAP), and ECG signals were recorded during rest, exercise, and recovery periods. The physiological signals of three groups were analyzed based on their recovery, recovery rate, and percentage variation from rest. Selected time domain parameters, SDNN and RMSSD, were computed and spectral analysis was performed to study the hear rate variability from collected ECG signals. The comparison studies were performed to examine the correlations between physical fitness norm and cardio-pulmonary signals during graded exercises and exercise recovery. No significant difference was found among three groups with VT during all levels of exercise intensity and recovery. The top 20% group was found to have better performance in heart recovery (HRR), frequency recovery rate (fRR) and percentage variation from rest (Δf) during the recovery period of vigorous exercise. The top 20% group was also found to achieve lower mean arterial pressure MAP only at rest but showed no significant difference during graded exercises and recovery periods. In time-domain analysis of HRV, the top 20% group again seemed to have better recovery rate and less variation in terms of SDNN during recovery period of light and vigorous exercises. Most assessed frequency domain parameters changed significantly during the experiment (p<0.05, ANOVA). The analysis showed that the top 20% group, in comparison with middle and bottom 20% groups, appeared to have significantly higher TP, LF, HF, and nHF index, while the bottom 20% group showed higher nLF and LF/HF index during rest, three graded levels of exercises, and their recovery periods.

Keywords: physical fitness, cardio-pulmonary signals, graded exercise, exercise recovery

Procedia PDF Downloads 240
515 Carbon Nanofibers as the Favorite Conducting Additive for Mn₃O₄ Catalysts for Oxygen Reactions in Rechargeable Zinc-Air Battery

Authors: Augustus K. Lebechi, Kenneth I. Ozoemena

Abstract:

Rechargeable zinc-air batteries (RZABs) have been described as one of the most viable next-generation ‘beyond-the-lithium-ion’ battery technologies with great potential for renewable energy storage. It is safe, with a high specific energy density (1086 Wh/kg), environmentally benign, and low-cost, especially in resource-limited African countries. For widespread commercialization, the sluggish oxygen reaction kinetics pose a major challenge that impedes the reversibility of the system. Hence, there is a need for low-cost and highly active bifunctional electrocatalysts. Manganese oxide catalysts on carbon conducting additives remain the best couple for the realization of such low-cost RZABs. In this work, hausmannite Mn₃O₄ nanoparticles were synthesized through the annealing method from commercial electrolytic manganese dioxide (EMD), multi-walled carbon nanotubes (MWCNTs) were synthesized via the chemical vapor deposition (CVD) method and carbon nanofibers (CNFs) were synthesized via the electrospinning process with subsequent carbonization. Both Mn₃O₄ catalysts and the carbon conducting additives (MWCNT and CNF) were thoroughly characterized using X-ray powder diffraction spectroscopy (XRD), scanning electron microscopy (SEM), thermogravimetry analysis (TGA) and X-ray photoelectron spectroscopy (XPS). Composite electrocatalysts (Mn₃O₄/CNT and Mn₃O₄/CNF) were investigated for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in an alkaline medium. Using the established electrocatalytic modalities for evaluating the electrocatalytic performance of materials (including double layer, electrochemical active surface area, roughness factor, specific current density, and catalytic stability), CNFs proved to be the most efficient conducting additive material for the Mn₃O₄ catalyst. From the DFT calculations, the higher performance of the CNFs over the MWCNTs is related to the ability of the CNFs to allow for a more favorable distribution of the d-electrons of the manganese (Mn) and enhanced synergistic effect with Mn₃O₄ for weaker adsorption energies of the oxygen intermediates (O*, OH* and OOH*). In a proof-of-concept, Mn₃O₄/CNF was investigated as the air cathode for rechargeable zinc-air battery (RZAB) in a micro-3D-printed cell configuration. The RZAB showed good performance in terms of open circuit voltage (1.77 V), maximum power density (177.5 mW cm-2), areal-discharge energy and cycling stability comparable to Pt/C (20 wt%) + IrO2. The findings here provide fresh physicochemical perspectives on the future design and utility of CNFs for developing manganese-based RZABs.

Keywords: bifunctional electrocatalyst, oxygen evolution reaction, oxygen reduction reactions, rechargeable zinc-air batteries.

Procedia PDF Downloads 45
514 Prevalence of Antibiotic Resistant Enterococci in Treated Wastewater Effluent in Durban, South Africa and Characterization of Vancomycin and High-Level Gentamicin-Resistant Strains

Authors: S. H. Gasa, L. Singh, B. Pillay, A. O. Olaniran

Abstract:

Wastewater treatment plants (WWTPs) have been implicated as the leading reservoir for antibiotic resistant bacteria (ARB), including Enterococci spp. and antibiotic resistance genes (ARGs), worldwide. Enterococci are a group of clinically significant bacteria that have gained much attention as a result of their antibiotic resistance. They play a significant role as the principal cause of nosocomial infections and dissemination of antimicrobial resistance genes in the environment. The main objective of this study was to ascertain the role of WWTPs in Durban, South Africa as potential reservoirs for antibiotic resistant Enterococci (ARE) and their related ARGs. Furthermore, the antibiogram and resistance gene profile of Enterococci species recovered from treated wastewater effluent and receiving surface water in Durban were also investigated. Using membrane filtration technique, Enterococcus selective agar and selected antibiotics, ARE were enumerated in samples (influent, activated sludge, before chlorination and final effluent) collected from two WWTPs, as well as from upstream and downstream of the receiving surface water. Two hundred Enterococcus isolates recovered from the treated effluent and receiving surface water were identified by biochemical and PCR-based methods, and their antibiotic resistance profiles determined by the Kirby-Bauer disc diffusion assay, while PCR-based assays were used to detect the presence of resistance and virulence genes. High prevalence of ARE was obtained at both WWTPs, with values reaching a maximum of 40%. The influent and activated sludge samples contained the greatest prevalence of ARE with lower values observed in the before and after chlorination samples. Of the 44 vancomycin and high-level gentamicin-resistant isolates, 11 were identified as E. faecium, 18 as E. faecalis, 4 as E. hirae while 11 are classified as “other” Enterococci species. High-level aminoglycoside resistance for gentamicin (39%) and vancomycin (61%) was recorded in species tested. The most commonly detected virulence gene was the gelE (44%), followed by asa1 (40%), while cylA and esp were detected in only 2% of the isolates. The most prevalent aminoglycoside resistance genes were aac(6')-Ie-aph(2''), aph(3')-IIIa, and ant(6')-Ia detected in 43%, 45% and 41% of the isolates, respectively. Positive correlation was observed between resistant phenotypes to high levels of aminoglycosides and presence of all aminoglycoside resistance genes. Resistance genes for glycopeptide: vanB (37%) and vanC-1 (25%), and macrolide: ermB (11%) and ermC (54%) were detected in the isolates. These results show the need for more efficient wastewater treatment and disposal in order to prevent the release of virulent and antibiotic resistant Enterococci species and safeguard public health.

Keywords: antibiogram, enterococci, gentamicin, vancomycin, virulence signatures

Procedia PDF Downloads 198