Search results for: vector error correction model (VECM)
11691 Determination of the Stability of Haloperidol Tablets and Phenytoin Capsules Stored in the Inpatient Dispensary System (Swisslog) by the Respective HPLC and Raman Spectroscopy Assay
Authors: Carol Yue-En Ong, Angelina Hui-Min Tan, Quan Liu, Paul Chi-Lui Ho
Abstract:
A public general hospital in Singapore has recently implemented an automated unit-dose machine in their inpatient dispensary, Swisslog, with the objective of reducing human error and improving patient safety. However, a concern in stability arises as tablets are removed from their original packaging (bottled loose tablets/capsules) and are repackaged into individual, clear plastic wrappers as unit doses in the system. Drugs that are light-sensitive and hygroscopic would be more susceptible to degradation as the wrapper does not offer full protection. Hence, this study was carried out to study the stability of haloperidol tablets and phenytoin capsules that are light-sensitive and hygroscopic respectively. Validated HPLC-UV assays were first established for quantification of these two compounds. The medications involved were put in the Swisslog and sampled every week for one month. The collected data was analysed and showed no degradation over time. This study also explored an alternative approach for drug stability determination-Raman spectroscopy. The advantage of Raman spectroscopy is its high time efficiency and non-destructive nature. The results suggest that drug degradation can indeed be detected using Raman microscopy, but further research is needed to establish this approach for quantification or qualification of compounds. NanoRam®, a portable Raman spectrocope was also used alongside Raman microscopy but was unsuccessful in detecting degradation in this study.Keywords: drug stability, haloperidol, HPLC, phenytoin, raman spectroscopy, Swisslog
Procedia PDF Downloads 35111690 Design and Performance Improvement of Three-Dimensional Optical Code Division Multiple Access Networks with NAND Detection Technique
Authors: Satyasen Panda, Urmila Bhanja
Abstract:
In this paper, we have presented and analyzed three-dimensional (3-D) matrices of wavelength/time/space code for optical code division multiple access (OCDMA) networks with NAND subtraction detection technique. The 3-D codes are constructed by integrating a two-dimensional modified quadratic congruence (MQC) code with one-dimensional modified prime (MP) code. The respective encoders and decoders were designed using fiber Bragg gratings and optical delay lines to minimize the bit error rate (BER). The performance analysis of the 3D-OCDMA system is based on measurement of signal to noise ratio (SNR), BER and eye diagram for a different number of simultaneous users. Also, in the analysis, various types of noises and multiple access interference (MAI) effects were considered. The results obtained with NAND detection technique were compared with those obtained with OR and AND subtraction techniques. The comparison results proved that the NAND detection technique with 3-D MQC\MP code can accommodate more number of simultaneous users for longer distances of fiber with minimum BER as compared to OR and AND subtraction techniques. The received optical power is also measured at various levels of BER to analyze the effect of attenuation.Keywords: Cross Correlation (CC), Three dimensional Optical Code Division Multiple Access (3-D OCDMA), Spectral Amplitude Coding Optical Code Division Multiple Access (SAC-OCDMA), Multiple Access Interference (MAI), Phase Induced Intensity Noise (PIIN), Three Dimensional Modified Quadratic Congruence/Modified Prime (3-D MQC/MP) code
Procedia PDF Downloads 41311689 Copula Autoregressive Methodology for Simulation of Solar Irradiance and Air Temperature Time Series for Solar Energy Forecasting
Authors: Andres F. Ramirez, Carlos F. Valencia
Abstract:
The increasing interest in renewable energies strategies application and the path for diminishing the use of carbon related energy sources have encouraged the development of novel strategies for integration of solar energy into the electricity network. A correct inclusion of the fluctuating energy output of a photovoltaic (PV) energy system into an electric grid requires improvements in the forecasting and simulation methodologies for solar energy potential, and the understanding not only of the mean value of the series but the associated underlying stochastic process. We present a methodology for synthetic generation of solar irradiance (shortwave flux) and air temperature bivariate time series based on copula functions to represent the cross-dependence and temporal structure of the data. We explore the advantages of using this nonlinear time series method over traditional approaches that use a transformation of the data to normal distributions as an intermediate step. The use of copulas gives flexibility to represent the serial variability of the real data on the simulation and allows having more control on the desired properties of the data. We use discrete zero mass density distributions to assess the nature of solar irradiance, alongside vector generalized linear models for the bivariate time series time dependent distributions. We found that the copula autoregressive methodology used, including the zero mass characteristics of the solar irradiance time series, generates a significant improvement over state of the art strategies. These results will help to better understand the fluctuating nature of solar energy forecasting, the underlying stochastic process, and quantify the potential of a photovoltaic (PV) energy generating system integration into a country electricity network. Experimental analysis and real data application substantiate the usage and convenience of the proposed methodology to forecast solar irradiance time series and solar energy across northern hemisphere, southern hemisphere, and equatorial zones.Keywords: copula autoregressive, solar irradiance forecasting, solar energy forecasting, time series generation
Procedia PDF Downloads 32411688 Fault Tree Analysis (FTA) of CNC Turning Center
Authors: R. B. Patil, B. S. Kothavale, L. Y. Waghmode
Abstract:
Today, the CNC turning center becomes an important machine tool for manufacturing industry worldwide. However, as the breakdown of a single CNC turning center may result in the production of an entire plant being halted. For this reason, operations and preventive maintenance have to be minimized to ensure availability of the system. Indeed, improving the availability of the CNC turning center as a whole, objectively leads to a substantial reduction in production loss, operating, maintenance and support cost. In this paper, fault tree analysis (FTA) method is used for reliability analysis of CNC turning center. The major faults associated with the system and the causes for the faults are presented graphically. Boolean algebra is used for evaluating fault tree (FT) diagram and for deriving governing reliability model for CNC turning center. Failure data over a period of six years has been collected and used for evaluating the model. Qualitative and quantitative analysis is also carried out to identify critical sub-systems and components of CNC turning center. It is found that, at the end of the warranty period (one year), the reliability of the CNC turning center as a whole is around 0.61628.Keywords: fault tree analysis (FTA), reliability analysis, risk assessment, hazard analysis
Procedia PDF Downloads 41811687 Effect of Deep Mixing Columns and Geogrid on Embankment Settlement on the Soft Soil
Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi
Abstract:
Embankment settlement on soft clays has always been problematic due to the high compaction and low shear strength of the soil. Deep soil mixing and geosynthetics are two soil improvement methods in such fields. Here, a numerical study is conducted on the embankment performance on the soft ground improved by deep soil mixing columns and geosynthetics based on the data of a real project. For this purpose, the finite element method is used in the Plaxis 2D software. The Soft Soil Creep model considers the creep phenomenon in the soft clay layer while the Mohr-Columb model simulates other soil layers. Results are verified using the data of an experimental embankment built on deep mixing columns. The effect of depth and diameter of deep mixing columns and the stiffness of geogrid on the vertical and horizontal movements of embankment on clay subsoil will be investigated in the following.Keywords: PLAXIS 2D, embankment settlement, horizontal movement, deep soil mixing column, geogrid
Procedia PDF Downloads 17611686 Micromechanical Determination of the Mechanical Properties of Carbon Nanotube-Polymer Composites with a Functionally Graded Interphase
Authors: Vahidullah Tac, Ercan Gurses
Abstract:
There have been numerous attempts at modelling carbon nanotube – polymer composites micromechanically in recent years, albeit to limited success. One of the major setbacks of the models used in the scientific community is the lack of regard to the different phases present in a nanocomposite. We employ a multi-phase micromechanical model that allows functionally grading certain phases to determine the mechanical properties of nanocomposites. The model has four distinct phases; the nanotube, the interface between the nanotube and polymer, the interphase, and the bulk matrix. Among the four phases, the interphase is functionally graded such that its moduli gradually decrease from some predetermined values to those of the bulk polymer. We find that the interface plays little role in stiffening/softening of the polymer per se , but instead, it is responsible for load transfer between the polymer and the carbon nanotube. Our results indicate that the carbon nanotube, as well as the interphase, have significant roles in stiffening the composite. The results are then compared to experimental findings and the interphase is tuned accordingly.Keywords: carbon nanotube, composite, interphase, micromechanical modeling
Procedia PDF Downloads 16611685 Intelligent Fault Diagnosis for the Connection Elements of Modular Offshore Platforms
Authors: Jixiang Lei, Alexander Fuchs, Franz Pernkopf, Katrin Ellermann
Abstract:
Within the Space@Sea project, funded by the Horizon 2020 program, an island consisting of multiple platforms was designed. The platforms are connected by ropes and fenders. The connection is critical with respect to the safety of the whole system. Therefore, fault detection systems are investigated, which could detect early warning signs for a possible failure in the connection elements. Previously, a model-based method called Extended Kalman Filter was developed to detect the reduction of rope stiffness. This method detected several types of faults reliably, but some types of faults were much more difficult to detect. Furthermore, the model-based method is sensitive to environmental noise. When the wave height is low, a long time is needed to detect a fault and the accuracy is not always satisfactory. In this sense, it is necessary to develop a more accurate and robust technique that can detect all rope faults under a wide range of operational conditions. Inspired by this work on the Space at Sea design, we introduce a fault diagnosis method based on deep neural networks. Our method cannot only detect rope degradation by using the acceleration data from each platform but also estimate the contributions of the specific acceleration sensors using methods from explainable AI. In order to adapt to different operational conditions, the domain adaptation technique DANN is applied. The proposed model can accurately estimate rope degradation under a wide range of environmental conditions and help users understand the relationship between the output and the contributions of each acceleration sensor.Keywords: fault diagnosis, deep learning, domain adaptation, explainable AI
Procedia PDF Downloads 18311684 Folding of β-Structures via the Polarized Structure-Specific Backbone Charge (PSBC) Model
Authors: Yew Mun Yip, Dawei Zhang
Abstract:
Proteins are the biological machinery that executes specific vital functions in every cell of the human body by folding into their 3D structures. When a protein misfolds from its native structure, the machinery will malfunction and lead to misfolding diseases. Although in vitro experiments are able to conclude that the mutations of the amino acid sequence lead to incorrectly folded protein structures, these experiments are unable to decipher the folding process. Therefore, molecular dynamic (MD) simulations are employed to simulate the folding process so that our improved understanding of the folding process will enable us to contemplate better treatments for misfolding diseases. MD simulations make use of force fields to simulate the folding process of peptides. Secondary structures are formed via the hydrogen bonds formed between the backbone atoms (C, O, N, H). It is important that the hydrogen bond energy computed during the MD simulation is accurate in order to direct the folding process to the native structure. Since the atoms involved in a hydrogen bond possess very dissimilar electronegativities, the more electronegative atom will attract greater electron density from the less electronegative atom towards itself. This is known as the polarization effect. Since the polarization effect changes the electron density of the two atoms in close proximity, the atomic charges of the two atoms should also vary based on the strength of the polarization effect. However, the fixed atomic charge scheme in force fields does not account for the polarization effect. In this study, we introduce the polarized structure-specific backbone charge (PSBC) model. The PSBC model accounts for the polarization effect in MD simulation by updating the atomic charges of the backbone hydrogen bond atoms according to equations derived between the amount of charge transferred to the atom and the length of the hydrogen bond, which are calculated from quantum-mechanical calculations. Compared to other polarizable models, the PSBC model does not require quantum-mechanical calculations of the peptide simulated at every time-step of the simulation and maintains the dynamic update of atomic charges, thereby reducing the computational cost and time while accounting for the polarization effect dynamically at the same time. The PSBC model is applied to two different β-peptides, namely the Beta3s/GS peptide, a de novo designed three-stranded β-sheet whose structure is folded in vitro and studied by NMR, and the trpzip peptides, a double-stranded β-sheet where a correlation is found between the type of amino acids that constitute the β-turn and the β-propensity.Keywords: hydrogen bond, polarization effect, protein folding, PSBC
Procedia PDF Downloads 27011683 Simulation and Controller Tunning in a Photo-Bioreactor Applying by Taguchi Method
Authors: Hosein Ghahremani, MohammadReza Khoshchehre, Pejman Hakemi
Abstract:
This study involves numerical simulations of a vertical plate-type photo-bioreactor to investigate the performance of Microalgae Spirulina and Control and optimization of parameters for the digital controller by Taguchi method that MATLAB software and Qualitek-4 has been made. Since the addition of parameters such as temperature, dissolved carbon dioxide, biomass, and ... Some new physical parameters such as light intensity and physiological conditions like photosynthetic efficiency and light inhibitors are involved in biological processes, control is facing many challenges. Not only facilitate the commercial production photo-bioreactor Microalgae as feed for aquaculture and food supplements are efficient systems but also as a possible platform for the production of active molecules such as antibiotics or innovative anti-tumor agents, carbon dioxide removal and removal of heavy metals from wastewater is used. Digital controller is designed for controlling the light bioreactor until Microalgae growth rate and carbon dioxide concentration inside the bioreactor is investigated. The optimal values of the controller parameters of the S/N and ANOVA analysis software Qualitek-4 obtained With Reaction curve, Cohen-Con and Ziegler-Nichols method were compared. The sum of the squared error obtained for each of the control methods mentioned, the Taguchi method as the best method for controlling the light intensity was selected photo-bioreactor. This method compared to control methods listed the higher stability and a shorter interval to be answered.Keywords: photo-bioreactor, control and optimization, Light intensity, Taguchi method
Procedia PDF Downloads 39511682 Equilibrium Modeling of a Two Stage Downdraft Gasifier Using Different Gasification Fluids
Authors: F. R. M. Nascimento, E. E. S. Lora, J. C. E. Palácio
Abstract:
A mathematical model to investigate the performance of a two stage fixed bed downdraft gasifier operating with air, steam and oxygen mixtures as the gasifying fluid has been developed. The various conditions of mixtures for a double stage fluid entry, have been performed. The model has been validated through a series of experimental tests performed by NEST – The Excellence Group in Thermal and Distributed Generation of the Federal University of Itajubá. Influence of mixtures are analyzed through the Steam to Biomass (SB), Equivalence Ratio (ER) and the Oxygen Concentration (OP) parameters in order to predict the best operating conditions to obtain adequate output gas quality, once is a key parameter for subsequent gas processing in the synthesis of biofuels, heat and electricity generation. Results show that there is an optimal combination in the steam and oxygen content of the gasifying fluid which allows the user find the best conditions to design and operate the equipment according to the desired application.Keywords: air, equilibrium, downdraft, fixed bed gasification, mathematical modeling, mixtures, oxygen steam
Procedia PDF Downloads 48211681 Exploring the Changes in the Publishing of Scientific Journals in the Age of Digital Transformation as the Main Measure for Scientific Communication
Authors: Arūnas Gudinavičius
Abstract:
The historiography of scholarly journals in Eastern Europe is fragmented, and so far, the development of scholarly journals in Eastern Europe has not been studied from a publishing point of view in the context of scientific communication. There are only a few general articles on the period before World War II; also, there is hardly any systematic and publicly available information about the Soviet period and the situation of scientific communication in Eastern Europe at the end of the XX century and the beginning of the XXI century. There is a lack of research data on scholarly journals in Lithuania. The existing researches focuses mostly on the specific needs of academic institutions. The publication of scientific journals and papers is analyzed as a part of the scientific communication circle. Formal science communication from the point of view that it is the results formed in the course of communication are examined, which are necessarily characterized by long-term access to a large circle of users. Improved model of scientific communication by supplementing the dissemination of research results with formal and informal communication channels is used, according to which the scientific communication system forms the essence of science, where the social, lasting value of science and the dissemination of scientific results to scientists and the public are the most important. The model covers the science communication process from research initiation to journal publication and citation. We are focusing on the publishing and dissemination stages of the model of scientific communication. The paper is to systematize and analyze the various types of scientific journal publishers from 1907 until 2020 as a means of formal documentary communication in the context of all scientific communication. The research analyses the case of a small European country and presents chronological and geographical characteristics of the publication of scientific periodicals, analyzes the publishers of scientific periodicals and their activities, publishing formats, and dissemination methods.Keywords: scientific communication, scientific periodicals, scientific journals, publishing
Procedia PDF Downloads 7911680 Thermal Stress and Computational Fluid Dynamics Analysis of Coatings for High-Temperature Corrosion
Authors: Ali Kadir, O. Anwar Beg
Abstract:
Thermal barrier coatings are among the most popular methods for providing corrosion protection in high temperature applications including aircraft engine systems, external spacecraft structures, rocket chambers etc. Many different materials are available for such coatings, of which ceramics generally perform the best. Motivated by these applications, the current investigation presents detailed finite element simulations of coating stress analysis for a 3- dimensional, 3-layered model of a test sample representing a typical gas turbine component scenario. Structural steel is selected for the main inner layer, Titanium (Ti) alloy for the middle layer and Silicon Carbide (SiC) for the outermost layer. The model dimensions are 20 mm (width), 10 mm (height) and three 1mm deep layers. ANSYS software is employed to conduct three types of analysis- static structural, thermal stress analysis and also computational fluid dynamic erosion/corrosion analysis (via ANSYS FLUENT). The specified geometry which corresponds to corrosion test samples exactly is discretized using a body-sizing meshing approach, comprising mainly of tetrahedron cells. Refinements were concentrated at the connection points between the layers to shift the focus towards the static effects dissipated between them. A detailed grid independence study is conducted to confirm the accuracy of the selected mesh densities. To recreate gas turbine scenarios; in the stress analysis simulations, static loading and thermal environment conditions of up to 1000 N and 1000 degrees Kelvin are imposed. The default solver was used to set the controls for the simulation with the fixed support being set as one side of the model while subjecting the opposite side to a tabular force of 500 and 1000 Newtons. Equivalent elastic strain, total deformation, equivalent stress and strain energy were computed for all cases. Each analysis was duplicated twice to remove one of the layers each time, to allow testing of the static and thermal effects with each of the coatings. ANSYS FLUENT simulation was conducted to study the effect of corrosion on the model under similar thermal conditions. The momentum and energy equations were solved and the viscous heating option was applied to represent improved thermal physics of heat transfer between the layers of the structures. A Discrete Phase Model (DPM) in ANSYS FLUENT was employed which allows for the injection of continuous uniform air particles onto the model, thereby enabling an option for calculating the corrosion factor caused by hot air injection (particles prescribed 5 m/s velocity and 1273.15 K). Extensive visualization of results is provided. The simulations reveal interesting features associated with coating response to realistic gas turbine loading conditions including significantly different stress concentrations with different coatings.Keywords: thermal coating, corrosion, ANSYS FEA, CFD
Procedia PDF Downloads 13811679 The Competitiveness of Small and Medium Sized Enterprises: Digital Transformation of Business Models
Authors: Chante Van Tonder, Bart Bossink, Chris Schachtebeck, Cecile Nieuwenhuizen
Abstract:
Small and Medium-Sized Enterprises (SMEs) play a key role in national economies around the world, being contributors to economic and social well-being. Due to this, the success, growth and competitiveness of SMEs are critical. However, there are many factors that undermine this, such as resource constraints, poor information communication infrastructure (ICT), skills shortages and poor management. The Fourth Industrial Revolution offers new tools and opportunities such as digital transformation and business model innovation (BMI) to the SME sector to enhance its competitiveness. Adopting and leveraging digital technologies such as cloud, mobile technologies, big data and analytics can significantly improve business efficiencies, value proposition and customer experiences. Digital transformation can contribute to the growth and competitiveness of SMEs. However, SMEs are lagging behind in the participation of digital transformation. Extant research lacks conceptual and empirical research on how digital transformation drives BMI and the impact it has on the growth and competitiveness of SMEs. The purpose of the study is, therefore, to close this gap by developing and empirically validating a conceptual model to determine if SMEs are achieving BMI through digital transformation and how this is impacting the growth, competitiveness and overall business performance. An empirical study is being conducted on 300 SMEs, consisting of 150 South-African and 150 Dutch SMEs, to achieve this purpose. Structural equation modeling is used, since it is a multivariate statistical analysis technique that is used to analyse structural relationships and is a suitable research method to test the hypotheses in the model. Empirical research is needed to gather more insight into how and if SMEs are digitally transformed and how BMI can be driven through digital transformation. The findings of this study can be used by SME business owners, managers and employees at all levels. The findings will indicate if digital transformation can indeed impact the growth, competitiveness and overall performance of an SME, reiterating the importance and potential benefits of adopting digital technologies. In addition, the findings will also exhibit how BMI can be achieved in light of digital transformation. This study contributes to the body of knowledge in a highly relevant and important topic in management studies by analysing the impact of digital transformation on BMI on a large number of SMEs that are distinctly different in economic and cultural factorsKeywords: business models, business model innovation, digital transformation, SMEs
Procedia PDF Downloads 24111678 Downtime Modelling for the Post-Earthquake Building Assessment Phase
Authors: S. Khakurel, R. P. Dhakal, T. Z. Yeow
Abstract:
Downtime is one of the major sources (alongside damage and injury/death) of financial loss incurred by a structure in an earthquake. The length of downtime associated with a building after an earthquake varies depending on the time taken for the reaction (to the earthquake), decision (on the future course of action) and execution (of the decided course of action) phases. Post-earthquake assessment of buildings is a key step in the decision making process to decide the appropriate safety placarding as well as to decide whether a damaged building is to be repaired or demolished. The aim of the present study is to develop a model to quantify downtime associated with the post-earthquake building-assessment phase in terms of two parameters; i) duration of the different assessment phase; and ii) probability of different colour tagging. Post-earthquake assessment of buildings includes three stages; Level 1 Rapid Assessment including a fast external inspection shortly after the earthquake, Level 2 Rapid Assessment including a visit inside the building and Detailed Engineering Evaluation (if needed). In this study, the durations of all three assessment phases are first estimated from the total number of damaged buildings, total number of available engineers and the average time needed for assessing each building. Then, probability of different tag colours is computed from the 2010-11 Canterbury earthquake Sequence database. Finally, a downtime model for the post-earthquake building inspection phase is proposed based on the estimated phase length and probability of tag colours. This model is expected to be used for rapid estimation of seismic downtime within the Loss Optimisation Seismic Design (LOSD) framework.Keywords: assessment, downtime, LOSD, Loss Optimisation Seismic Design, phase length, tag color
Procedia PDF Downloads 18711677 Numerical Simulation of Two-Phase Flows Using a Pressure-Based Solver
Authors: Lei Zhang, Jean-Michel Ghidaglia, Anela Kumbaro
Abstract:
This work focuses on numerical simulation of two-phase flows based on the bi-fluid six-equation model widely used in many industrial areas, such as nuclear power plant safety analysis. A pressure-based numerical method is adopted in our studies due to the fact that in two-phase flows, it is common to have a large range of Mach numbers because of the mixture of liquid and gas, and density-based solvers experience stiffness problems as well as a loss of accuracy when approaching the low Mach number limit. This work extends the semi-implicit pressure solver in the nuclear component CUPID code, where the governing equations are solved on unstructured grids with co-located variables to accommodate complicated geometries. A conservative version of the solver is developed in order to capture exactly the shock in one-phase flows, and is extended to two-phase situations. An inter-facial pressure term is added to the bi-fluid model to make the system hyperbolic and to establish a well-posed mathematical problem that will allow us to obtain convergent solutions with refined meshes. The ability of the numerical method to treat phase appearance and disappearance as well as the behavior of the scheme at low Mach numbers will be demonstrated through several numerical results. Finally, inter-facial mass and heat transfer models are included to deal with situations when mass and energy transfer between phases is important, and associated industrial numerical benchmarks with tabulated EOS (equations of state) for fluids are performed.Keywords: two-phase flows, numerical simulation, bi-fluid model, unstructured grids, phase appearance and disappearance
Procedia PDF Downloads 39511676 Passive Neutralization of Acid Mine Drainage Using Locally Produced Limestone
Authors: Reneiloe Seodigeng, Malwandla Hanabe, Haleden Chiririwa, Hilary Rutto, Tumisang Seodigeng
Abstract:
Neutralisation of acid-mine drainage (AMD) using limestone is cost effective, and good results can be obtained. However, this process has its limitations; it cannot be used for highly acidic water which consists of Fe(III). When Fe(III) reacts with CaCO3, it results in armoring. Armoring slows the reaction, and additional alkalinity can no longer be generated. Limestone is easily accessible, so this problem can be easily dealt with. Experiments were carried out to evaluate the effect of PVC pipe length on ferric and ferrous ions. It was found that the shorter the pipe length the more these dissolved metals precipitate. The effect of the pipe length on the hydrogen ions was also studied, and it was found that these two have an inverse relationship. Experimental data were further compared with the model prediction data to see if they behave in a similar fashion. The model was able to predict the behaviour of 1.5m and 2 m pipes in ferric and ferrous ion precipitation.Keywords: acid mine drainage, neutralisation, limestone, mathematical modelling
Procedia PDF Downloads 36811675 Acquisition of the Attributive Adjectives and the Noun Adjuncts by the L3 Learners of French and German: Further Evidence for the Typological Proximity Model
Authors: Ali Akbar Jabbari
Abstract:
This study investigates the role of the prior acquired languages, Persian and English, concerning the acquisition of the third language (L3) French and German at the initial stages. The data were collected from two groups of L3 learners: 28 learners of L3 French and 21 learners of L3 German, in order to test the placement of the attributive adjectives and the noun adjuncts through a grammaticality judgment task and an element rearrangement task. The aim of the study was to investigate whether any of the models proposed in the L3 acquisition could account for the case of the present study. The results of the analysis revealed that the learners of L3 German and French were both affected by the typological similarity of the previous languages. The outperformance of the German learners is an indication of the facilitative effect of L2 English (which is typologically more similar to the German than that of French). English had also a non-facilitative role in the acquisition of French and this is proved in the lower performance of the French learners. This study provided evidence for the TPM as the most accepted model of L3 acquisition.Keywords: cross-linguistic influence, multilingualism, third language acquisition, transfer
Procedia PDF Downloads 18511674 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High Speed Streams
Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous
Abstract:
Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of solar wind using mathematical models, MHD models, and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulates the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar cycles (sc) 21, 22, 23, and most of 24.Keywords: artificial neural network, coronal hole area, feed-forward neural network models, solar high speed streams
Procedia PDF Downloads 9011673 Assessing Knowledge Management Impacts: Challenges, Limits and Base for a New Framework
Authors: Patrick Mbassegue, Mickael Gardoni
Abstract:
In a market environment centered more and more on services and the digital economy, knowledge management becomes a framework that can help organizations to create value and to improve their overall performance. Based on an optimal allocation of scarce resources, managers are interested in demonstrating the added value generated by knowledge management projects. One of the challenges faced by organizations is the difficulty in measuring impacts and concrete results of knowledge management initiatives. The present article concerns the measure of concrete results coming from knowledge management projects based on balance scorecard model. One of the goals is to underline what can be done based on this model but also to highlight the limits associated. The present article is structured in five parts; 1-knowledge management projects and organizational impacts; 2- a framework and a methodology to measure organizational impacts; 3- application illustrated in two case studies; 4- limits concerning the proposed framework; 5- the proposal of a new framework to measure organizational impacts.Keywords: knowledge management, project, balance scorecard, impacts
Procedia PDF Downloads 26311672 Radar Fault Diagnosis Strategy Based on Deep Learning
Authors: Bin Feng, Zhulin Zong
Abstract:
Radar systems are critical in the modern military, aviation, and maritime operations, and their proper functioning is essential for the success of these operations. However, due to the complexity and sensitivity of radar systems, they are susceptible to various faults that can significantly affect their performance. Traditional radar fault diagnosis strategies rely on expert knowledge and rule-based approaches, which are often limited in effectiveness and require a lot of time and resources. Deep learning has recently emerged as a promising approach for fault diagnosis due to its ability to learn features and patterns from large amounts of data automatically. In this paper, we propose a radar fault diagnosis strategy based on deep learning that can accurately identify and classify faults in radar systems. Our approach uses convolutional neural networks (CNN) to extract features from radar signals and fault classify the features. The proposed strategy is trained and validated on a dataset of measured radar signals with various types of faults. The results show that it achieves high accuracy in fault diagnosis. To further evaluate the effectiveness of the proposed strategy, we compare it with traditional rule-based approaches and other machine learning-based methods, including decision trees, support vector machines (SVMs), and random forests. The results demonstrate that our deep learning-based approach outperforms the traditional approaches in terms of accuracy and efficiency. Finally, we discuss the potential applications and limitations of the proposed strategy, as well as future research directions. Our study highlights the importance and potential of deep learning for radar fault diagnosis. It suggests that it can be a valuable tool for improving the performance and reliability of radar systems. In summary, this paper presents a radar fault diagnosis strategy based on deep learning that achieves high accuracy and efficiency in identifying and classifying faults in radar systems. The proposed strategy has significant potential for practical applications and can pave the way for further research.Keywords: radar system, fault diagnosis, deep learning, radar fault
Procedia PDF Downloads 9211671 Numerical Simulations of Acoustic Imaging in Hydrodynamic Tunnel with Model Adaptation and Boundary Layer Noise Reduction
Authors: Sylvain Amailland, Jean-Hugh Thomas, Charles Pézerat, Romuald Boucheron, Jean-Claude Pascal
Abstract:
The noise requirements for naval and research vessels have seen an increasing demand for quieter ships in order to fulfil current regulations and to reduce the effects on marine life. Hence, new methods dedicated to the characterization of propeller noise, which is the main source of noise in the far-field, are needed. The study of cavitating propellers in closed-section is interesting for analyzing hydrodynamic performance but could involve significant difficulties for hydroacoustic study, especially due to reverberation and boundary layer noise in the tunnel. The aim of this paper is to present a numerical methodology for the identification of hydroacoustic sources on marine propellers using hydrophone arrays in a large hydrodynamic tunnel. The main difficulties are linked to the reverberation of the tunnel and the boundary layer noise that strongly reduce the signal-to-noise ratio. In this paper it is proposed to estimate the reflection coefficients using an inverse method and some reference transfer functions measured in the tunnel. This approach allows to reduce the uncertainties of the propagation model used in the inverse problem. In order to reduce the boundary layer noise, a cleaning algorithm taking advantage of the low rank and sparse structure of the cross-spectrum matrices of the acoustic and the boundary layer noise is presented. This approach allows to recover the acoustic signal even well under the boundary layer noise. The improvement brought by this method is visible on acoustic maps resulting from beamforming and DAMAS algorithms.Keywords: acoustic imaging, boundary layer noise denoising, inverse problems, model adaptation
Procedia PDF Downloads 33611670 Voting Representation in Social Networks Using Rough Set Techniques
Authors: Yasser F. Hassan
Abstract:
Social networking involves use of an online platform or website that enables people to communicate, usually for a social purpose, through a variety of services, most of which are web-based and offer opportunities for people to interact over the internet, e.g. via e-mail and ‘instant messaging’, by analyzing the voting behavior and ratings of judges in a popular comments in social networks. While most of the party literature omits the electorate, this paper presents a model where elites and parties are emergent consequences of the behavior and preferences of voters. The research in artificial intelligence and psychology has provided powerful illustrations of the way in which the emergence of intelligent behavior depends on the development of representational structure. As opposed to the classical voting system (one person – one decision – one vote) a new voting system is designed where agents with opposed preferences are endowed with a given number of votes to freely distribute them among some issues. The paper uses ideas from machine learning, artificial intelligence and soft computing to provide a model of the development of voting system response in a simulated agent. The modeled development process involves (simulated) processes of evolution, learning and representation development. The main value of the model is that it provides an illustration of how simple learning processes may lead to the formation of structure. We employ agent-based computer simulation to demonstrate the formation and interaction of coalitions that arise from individual voter preferences. We are interested in coordinating the local behavior of individual agents to provide an appropriate system-level behavior.Keywords: voting system, rough sets, multi-agent, social networks, emergence, power indices
Procedia PDF Downloads 39511669 Bi-Criteria Objective Network Design Model for Multi Period Multi Product Green Supply Chain
Authors: Shahul Hamid Khan, S. Santhosh, Abhinav Kumar Sharma
Abstract:
Environmental performance along with social performance is becoming vital factors for industries to achieve global standards. With a good environmental policy global industries are differentiating them from their competitors. This paper concentrates on multi stage, multi product and multi period manufacturing network. Bi-objective mathematical models for total cost and total emission for the entire forward supply chain are considered. Here five different problems are considered by varying the number of suppliers, manufacturers, and environmental levels, for illustrating the taken mathematical model. GA, and Random search are used for finding the optimal solution. The input parameters of the optimal solution are used to find the tradeoff between the initial investment by the industry and the long term benefit of the environment.Keywords: closed loop supply chain, genetic algorithm, random search, green supply chain
Procedia PDF Downloads 54911668 Spatial Interpolation of Aerosol Optical Depth Pollution: Comparison of Methods for the Development of Aerosol Distribution
Authors: Sahabeh Safarpour, Khiruddin Abdullah, Hwee San Lim, Mohsen Dadras
Abstract:
Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA’s Terra satellites, for the 10 years period of 2000-2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) yielded the best results for spring, summer, and winter and ordinary kriging yielded the best results for fall.Keywords: aerosol optical depth, MODIS, spatial interpolation techniques, Radial Basis Functions
Procedia PDF Downloads 40911667 A Background Subtraction Based Moving Object Detection Around the Host Vehicle
Authors: Hyojin Lim, Cuong Nguyen Khac, Ho-Youl Jung
Abstract:
In this paper, we propose moving object detection method which is helpful for driver to safely take his/her car out of parking lot. When moving objects such as motorbikes, pedestrians, the other cars and some obstacles are detected at the rear-side of host vehicle, the proposed algorithm can provide to driver warning. We assume that the host vehicle is just before departure. Gaussian Mixture Model (GMM) based background subtraction is basically applied. Pre-processing such as smoothing and post-processing as morphological filtering are added.We examine “which color space has better performance for detection of moving objects?” Three color spaces including RGB, YCbCr, and Y are applied and compared, in terms of detection rate. Through simulation, we prove that RGB space is more suitable for moving object detection based on background subtraction.Keywords: gaussian mixture model, background subtraction, moving object detection, color space, morphological filtering
Procedia PDF Downloads 61911666 Theoretical Investigation of the Singlet and Triplet Electronic States of ⁹⁰ZrS Molecules
Authors: Makhlouf Sandy, Adem Ziad, Taher Fadia, Magnier Sylvie
Abstract:
The electronic structure of 90ZrS has been investigated using Ab-initio methods based on Complete Active Space Self Consistent Field and Multi-reference Configuration Interaction (CASSCF/MRCI). The number of predicted states has been extended to 14 singlet and 12 triplet lowest-lying states situated below 36000cm-1. The equilibrium energies of these 26 lowest-lying electronic states have been calculated in the 2S+1Λ(±) representation. The potential energy curves have been plotted in function of the inter-nuclear distances in a range of 1.5 to 4.5Å. Spectroscopic constants, permanent electric dipole moments and transition dipole moments between the different electronic states have also been determined. A discrepancy error of utmost 5% for the majority of values shows a good agreement with available experimental data. The ground state is found to be of symmetry X1Σ+ with an equilibrium inter-nuclear distance Re= 2.16Å. However, the (1)3Δ is the closest state to X1Σ+ and is situated at 514 cm-1. To the best of our knowledge, this is the first time that the spin-orbit coupling has been investigated for all the predicted states of ZrS. 52 electronic components in the Ω(±) representation have been predicted. The energies of these components, the spectroscopic constants ωe, ωeχe, βe and the equilibrium inter-nuclear distances have been also obtained. The percentage composition of the Ω state wave-functions in terms of S-Λ states was calculated to identify their corresponding main parents. These (SOC) calculations have determined the shift between (1)3Δ1 and X1Σ+ states and confirmed the ground state type being 1Σ+.Keywords: CASSCF/MRCI, electronic structure, spin-orbit effect, zirconium monosulfide
Procedia PDF Downloads 16811665 Effect of Drag Coefficient Models concerning Global Air-Sea Momentum Flux in Broad Wind Range including Extreme Wind Speeds
Authors: Takeshi Takemoto, Naoya Suzuki, Naohisa Takagaki, Satoru Komori, Masako Terui, George Truscott
Abstract:
Drag coefficient is an important parameter in order to correctly estimate the air-sea momentum flux. However, The parameterization of the drag coefficient hasn’t been established due to the variation in the field data. Instead, a number of drag coefficient model formulae have been proposed, even though almost all these models haven’t discussed the extreme wind speed range. With regards to such models, it is unclear how the drag coefficient changes in the extreme wind speed range as the wind speed increased. In this study, we investigated the effect of the drag coefficient models concerning the air-sea momentum flux in the extreme wind range on a global scale, comparing two different drag coefficient models. Interestingly, one model didn’t discuss the extreme wind speed range while the other model considered it. We found that the difference of the models in the annual global air-sea momentum flux was small because the occurrence frequency of strong wind was approximately 1% with a wind speed of 20m/s or more. However, we also discovered that the difference of the models was shown in the middle latitude where the annual mean air-sea momentum flux was large and the occurrence frequency of strong wind was high. In addition, the estimated data showed that the difference of the models in the drag coefficient was large in the extreme wind speed range and that the largest difference became 23% with a wind speed of 35m/s or more. These results clearly show that the difference of the two models concerning the drag coefficient has a significant impact on the estimation of a regional air-sea momentum flux in an extreme wind speed range such as that seen in a tropical cyclone environment. Furthermore, we estimated each air-sea momentum flux using several kinds of drag coefficient models. We will also provide data from an observation tower and result from CFD (Computational Fluid Dynamics) concerning the influence of wind flow at and around the place.Keywords: air-sea interaction, drag coefficient, air-sea momentum flux, CFD (Computational Fluid Dynamics)
Procedia PDF Downloads 37311664 A Comparative Study of Resilience Factors of First-Generation Students of Social Work with Their Non-first Generation Fellow Students
Authors: K. Verlinden
Abstract:
Being the first family member to study is challenging due to the lack of intergenerational support, financial challenges, etc. The often very deficit-oriented view of these first-generation students (FGS) is challenged by assuming that precisely these students have a high degree of resilience, which will be demonstrated by comparing individual resilience factors. First-generation students are disproportionately often found in courses of social work. Correspondingly, this study compares two samples from social work (FGS vs. non-FGS) with regard to certain determinants of resilience, such as grit, social support, self-efficacy, sense of coherence, and emotional intelligence. An online questionnaire was generated from valid psychological instruments and handed out to the sample. The results portray a double mediation model in which gender and being an FGS associate with lower levels of individual resources, which in then associate with social support. This tiered model supports the possibility that individual resources facilitate the recruitment and use of social support and perhaps other related social resources to better cope with academic challenges.Keywords: resilience, first generation students, grit, self-efficacy
Procedia PDF Downloads 12211663 An Alternative Semi-Defined Larval Diet for Rearing of Sand Fly Species Phlebotomus argentipes in Laboratory
Authors: Faizan Hassan, Seema Kumari, V. P. Singh, Pradeep Das, Diwakar Singh Dinesh
Abstract:
Phlebotomus argentipes is an established vector for Visceral Leishmaniasis in Indian subcontinent. Laboratory colonization of Sand flies is imperative in research on vectors, which requires a proper diet for their larvae and adult growth that ultimately affects their survival and fecundity. In most of the laboratories, adult Sand flies are reared on rabbit blood feeding/artificial blood feeding and their larvae on fine grinded rabbit faeces as a sole source of food. Rabbit faeces are unhygienic, difficult to handle, high mites infestation as well as owing to bad odour which creates menacing to human users ranging from respiratory problems to eye infection and most importantly it does not full fill all the nutrients required for proper growth and development. It is generally observed that the adult emergence is very low in comparison to egg hatched, which may be due to insufficient food nutrients provided to growing larvae. To check the role of food nutrients on larvae survival and adult emergence, a high protein rich artificial diet for sand fly larvae were used in this study. The composition of artificial diet to be tested includes fine grinded (9 gm each) Rice, Pea nuts & Soyabean balls. These three food ingredients are rich source of all essential amino acids along with carbohydrate and minerals which is essential for proper metabolism and growth. In this study artificial food was found significantly more effective for larval development and adult emergence than rabbit faeces alone (P value >0.05). The weight of individual larvae was also found higher in test pots than the control. This study suggest that protein plays an important role in insect larvae development and adding carbohydrate will also enhances the fecundity of insects larvae.Keywords: artificial food, nutrients, Phlebotomus argentipes, sand fly
Procedia PDF Downloads 30811662 The Combination of the Mel Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), JITTER and SHIMMER Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech
Authors: Brahim-Fares Zaidi, Malika Boudraa, Sid-Ahmed Selouani
Abstract:
Our work aims to improve our Automatic Recognition System for Dysarthria Speech (ARSDS) based on the Hidden Models of Markov (HMM) and the Hidden Markov Model Toolkit (HTK) to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients (MFCC's) and Perceptual Linear Prediction (PLP's) and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.Keywords: hidden Markov model toolkit (HTK), hidden models of Markov (HMM), Mel-frequency cepstral coefficients (MFCC), perceptual linear prediction (PLP’s)
Procedia PDF Downloads 164