Search results for: computational load reduction
8346 Performance Evaluation of Composite Beam under Uniform Corrosion
Authors: Ririt Aprilin Sumarsono
Abstract:
Composite member (concrete and steel) has been widely advanced for structural utilization due to its best performance in resisting load, reducing the total weight of the structure, increasing stiffness, and other available advantages. On the other hand, the environment load such as corrosion (e.g. chloride ingress) creates significant time-dependent degradation for steel. Analysis performed in this paper is mainly considered uniform corrosion for evaluating the composite beam without examining the pit corrosion as the initial corrosion formed. Corrosion level in terms of weight loss is modified in yield stress and modulus elasticity of steel. Those two mechanical properties are utilized in this paper for observing the stresses due to corrosion attacked. As corrosion level increases, the effective width of the composite beam in the concrete section will be wider. The position of a neutral axis of composite section will indicate the composite action due to corrosion of composite beam so that numerous shear connectors provided must be reconsidered. Flexure capacity quantification provides stresses, and shear capacity calculation derives connectors needed in overcoming the shear problem for composite beam under corrosion. A model of simply supported composite beam examined in this paper under uniform corrosion where the stresses as the focus of the evaluation. Principal stress at the first stage of composite construction decline as the corrosion level incline, parallel for the second stage stress analysis where the tension region held by the steel undergoes lower capacity due to corrosion. Total stresses of the composite section for steel to be born significantly decreases particularly in the outermost fiber of tension side. Whereas, the available compression side is smaller as the corrosion level increases so that the stress occurs on the compression side shows reduction as well. As a conclusion, the increment of corrosion level will degrade both compression and tension side of stresses.Keywords: composite beam, modulus of elasticity, stress analysis, yield strength, uniform corrosion
Procedia PDF Downloads 2868345 Financial Benefits after the Implementation of Antimicrobial Copper in Intensive Care Units (ICUs)
Authors: P. Efstathiou, E. Kouskouni, S. Papanikolaou, K. Karageorgou, Z. Manolidou, Tseroni Maria, A. Efstathiou, V. Karyoti, I. Agrafa
Abstract:
Aim: Aim of this study was to evaluate the reduction on Intensive Care Unit (ICU) microbial flora after the antimicrobial copper alloy (Cu+) implementation as well as the effect on financial-epidemiological operation parameters. Methods: Medical, epidemiological and financial data in two time periods, before and after the implementation of copper (Cu 63% - Zn 37%, low lead) were recorded and analyzed in a general ICU. The evaluated parameters were: the importance of patients' admission (Acute Physiology and Chronic Health Evaluation - APACHE II and Simplified Acute Physiology Score - SAPS), microbial flora's record in the ICU before and after the implementation of Cu+ as well as the impact on epidemiological and ICU's operation financial parameters. Results: During December 2010 and March 2011 and respectively during December 2011 and March 2012 comparative results showed statistically significant reduction on the microbial flora (CFU/ml) by 95% and the use of antimicrobial medicine (per day per patient) by 30% (p = 0,014) as well as patients hospitalization time and cost. Conclusions: The innovative implementation of antimicrobial copper in ICUs contributed to their microbial flora significant reduction and antimicrobial drugs use reduction with the apparent positive effect (decrease) in both patient’s hospitalization time and cost. Under the present circumstances of economic crisis, survey results are of highest importance and value.Keywords: antimicrobial copper, financial benefits, ICU, cost reduction
Procedia PDF Downloads 4718344 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery
Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong
Abstract:
The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition
Procedia PDF Downloads 2908343 Elastoplastic Collapse Analysis of Pipe Bends Using Finite Element Analysis
Authors: Tawanda Mushiri, Charles Mbohwa
Abstract:
When an external load is applied to one of its ends, a pipe’s bends cross section tends to deform significantly both in and out of its end plane. This shell type behaviour characteristic of pipe bends and mainly due to their curves geometry accounts for their greater flexibility. This added flexibility is also accompanied by stressed and strains that are much higher than those present in a straight pipe. The primary goal of this research is to study the elastic-plastic behaviour of pipe bends under out of plane moment loading. It is also required to study the effects of changing the value of the pipe bend factor and the value of the internal pressure on that behaviour and to determine the value of the limit moments in each case. The results of these analyses are presented in the form of load deflection plots for each load case belonging to each model. From the load deflection curves, the limit moments of each case are obtained. The limit loads are then compared to those computed using some of the analytical and empirical equation available in the literature. The effects of modelling parameters are also studied. The results obtained from small displacement and large displacement analyses are compared and the effects of using a strain hardened material model are also investigated. To better understand the behaviour of pipe elbows under out of plane bending and internal pressure, it was deemed important to know how the cross section deforms and to study the distribution of stresses that cause it to deform in a particular manner. An elbow with pipe bend factor h=0.1 to h=1 is considered and the results of the detailed analysis are thereof examined.Keywords: elasto-plastic, finite element analysis, pipe bends, simulation
Procedia PDF Downloads 3258342 Use of Waste Active Sludge for Reducing Fe₂O₃
Authors: A. Parra Parra, M. Vlasova, P. A. Marquez, M. Kakazey, M. C. Resendiz Gonzalez
Abstract:
The work of water treatment plants from various sources of pollution includes a biological treatment stage using activated sludge. Due to the large volume of toxic activated sludge waste (WAS) generated and soil contamination during its storage, WAS disposal technologies are being continuously developed. The most common is the carbonization of WAS. The carbonization products are various forms of ordered and disordered carbon material having different reactivity. The aim of this work was to study the reduction process of Fe₂O₃ mixed with activated sludge waste (WAS). It could be assumed that the simultaneous action of the WAS thermal decomposition process, accompanied by the formation of reactive nano-carbon, with carbothermal reduction of the Fe₂O₃, will permit intensify reduction of metal oxide up to stage of metal and iron carbide formation. The studies showed that the temperature treatment in the region of (800-1000) °C for 1 hour under conditions of oxygen deficiency is accompanied by the occurrence of reactions: Fe₂O₃ → Fe₃O₄ → FeO → Fe, which are typical for the metallurgical process of iron smelting, but less energy-intensive. Depending on the ratio of the WAS - Fe₂O₃ components and the temperature-time regime of reduction of iron oxide, it is possible to distinguish the stages of the predominant formation of ferromagnetic compounds, cast iron, and iron carbide. The results indicated the promise of using WAS as a metals oxide reducing agent and obtaining of ceramic-based on metal carbides.Keywords: carbothermal reduction, Fe₂O₃, FeₓOᵧ-C, waste activated sludge
Procedia PDF Downloads 1348341 Multiscale Computational Approach to Enhance the Understanding, Design and Development of CO₂ Catalytic Conversion Technologies
Authors: Agnieszka S. Dzielendziak, Lindsay-Marie Armstrong, Matthew E. Potter, Robert Raja, Pier J. A. Sazio
Abstract:
Reducing carbon dioxide, CO₂, is one of the greatest global challenges. Conversion of CO₂ for utilisation across synthetic fuel, pharmaceutical, and agrochemical industries offers a promising option, yet requires significant research to understanding the complex multiscale processes involved. To experimentally understand and optimize such processes at that catalytic sites and exploring the impact of the process at reactor scale, is too expensive. Computational methods offer significant insight and flexibility but require a more detailed multi-scale approach which is a significant challenge in itself. This work introduces a computational approach which incorporates detailed catalytic models, taken from experimental investigations, into a larger-scale computational flow dynamics framework. The reactor-scale species transport approach is modified near the catalytic walls to determine the influence of catalytic clustering regions. This coupling approach enables more accurate modelling of velocity, pressures, temperatures, species concentrations and near-wall surface characteristics which will ultimately enable the impact of overall reactor design on chemical conversion performance.Keywords: catalysis, CCU, CO₂, multi-scale model
Procedia PDF Downloads 2538340 Importance of Islamic Microfinance for Poverty Reduction: Evidence from Ethiopia Islamic Microfinance Institutions
Authors: Anwar Adem Shikur, Erhan Akkas
Abstract:
Purpose: This study investigates the impact of Islamic microfinance services on poverty alleviation in Ethiopia. Methodology: Employing a binary logistic regression model, this research analyzes the relationship between poverty reduction and a range of variables—income, education, household size, age, and savings—among clients of Islamic microfinance services. Data was collected through a semi-structured questionnaire administered to a purposive sample and complemented by semi-structured interviews with senior officials from Islamic microfinance institutions. Findings: The study reveals that income, education, household size, and age of clients are primary determinants of poverty reduction within the context of Islamic microfinance services in Ethiopia. Practical Implications: The findings offer valuable insights for policymakers and government agencies seeking to enhance the livelihoods of Islamic microfinance clients and reduce poverty. Originality/Value: This research contributes to the existing literature by elucidating the specific mechanisms through which income, education, household size, and age influence poverty reduction among clients of Islamic microfinance services in Ethiopia. Furthermore, it provides a novel perspective on the role of Islamic microfinance in the country, including its challenges and opportunities. Social Implications: The study underscores the imperative for governments and institutions to prioritize financial inclusion as a means of addressing poverty and inequality across all socioeconomic strata.Keywords: microfinance, binary logistic model, poverty reduction, Ethiopia.
Procedia PDF Downloads 418339 Thermal Performance of a Pair of Synthetic Jets Equipped in Microchannel
Authors: J. Mohammadpour, G. E. Lau, S. Cheng, A. Lee
Abstract:
Numerical study was conducted using two synthetic jet actuators attached underneath a micro-channel. By fixing the oscillating frequency and diaphragm amplitude, the effects on the heat transfer within the micro-channel were investigated with two synthetic jets being in-phase and 180° out-of-phase at different orifice spacing. There was a significant benefit identified with two jets being 180° out-of-phase with each other at the orifice spacing of 2 mm. By having this configuration, there was a distinct pattern of vortex forming which disrupts the main channel flow as well as promoting thermal mixing at high velocity within the channel. Therefore, this configuration achieved higher cooling performance compared to the other cases studied in terms of the reduction in the maximum temperature and cooling uniformity in the silicon wafer.Keywords: synthetic jets, microchannel, electronic cooling, computational fluid dynamics
Procedia PDF Downloads 1998338 Dynamic Soil Structure Interaction in Buildings
Authors: Shreya Thusoo, Karan Modi, Ankit Kumar Jha, Rajesh Kumar
Abstract:
Since the evolution of computational tools and simulation software, there has been considerable increase in research on Soil Structure Interaction (SSI) to decrease the computational time and increase accuracy in the results. To aid the designer with a proper understanding of the response of structure in different soil types, the presented paper compares the deformation, shear stress, acceleration and other parameters of multi-storey building for a specific input ground motion using Response-spectrum Analysis (RSA) method. The response of all the models of different heights have been compared in different soil types. Finite Element Simulation software, ANSYS, has been used for all the computational purposes. Overall, higher response is observed with SSI, while it increases with decreasing stiffness of soil.Keywords: soil-structure interaction, response spectrum, analysis, finite element method, multi-storey buildings
Procedia PDF Downloads 4808337 The Effect of Excess Workload on Lecturers in Higher Institution and Its Relation with Instructional Technology a Case Study of North-West Nigeria
Authors: Shitu Sani
Abstract:
The paper is advanced on the historical background of the effects of excess work load on lecturers in higher institutions of learning which will assess the socio-economic and psychological disposition of lecturers in the realm of quality production. The paper further discusses the significant roles played by excess work load in general transformation of higher education, which will give the management and stake holders input for successful development of higher education. Even though all forms of work and organizational procedures are potential source of stress and stressors. In higher institution of leaning, lecturers perform many responsibilities such as lecturing, carrying out research and engaging in community services. If these multiple roles could not be handle property it would have result in stress which may have negative impact on job performance, and it’s relation with instructional technology. A sample 191 lecturers were randomly selected from the higher institutions in the northern west zone in Nigerian using two instruments i.e. work load stress management question and job performance Approval, data were collected on lecturers of socio-economic and physiological stress and job performances. Findings of the study shows that lecture experienced excess work load in academic activities. Lecturer’s job performance was negatively influences by socio-economic and psychological work stress. Among the recommendation made were the need for organizing regular induction courses for lecturers on stress, and enhance interpersonal relations among the lecturers as well as provision of electronic public address system to reduce the stress.Keywords: effect, excess, lecturers, workload
Procedia PDF Downloads 3528336 T-S Fuzzy Modeling Based on Power Coefficient Limit Nonlinearity Applied to an Isolated Single Machine Load Frequency Deviation Control
Authors: R. S. Sheu, H. Usman, M. S. Lawal
Abstract:
Takagi-Sugeno (T-S) fuzzy model based control of a load frequency deviation in a single machine with limit nonlinearity on power coefficient is presented in the paper. Two T-S fuzzy rules with only rotor angle variable as input in the premise part, and linear state space models in the consequent part involving characteristic matrices determined from limits set on the power coefficient constant are formulated, state feedback control gains for closed loop control was determined from the formulated Linear Matrix Inequality (LMI) with eigenvalue optimization scheme for asymptotic and exponential stability (speed of esponse). Numerical evaluation of the closed loop object was carried out in Matlab. Simulation results generated of both the open and closed loop system showed the effectiveness of the control scheme in maintaining load frequency stability.Keywords: T-S fuzzy model, state feedback control, linear matrix inequality (LMI), frequency deviation control
Procedia PDF Downloads 3978335 Micromechanical Investigation on the Influence of Thermal Stress on Elastic Properties of Fiber-Reinforced Composites
Authors: Arber Sejdiji, Jan Schmitz-Huebsch, Christian Mittelstedt
Abstract:
Due to its use in a broad range of temperatures, the prediction of elastic properties of fiber composite materials under thermal load is significant. Especially the transversal stiffness dominates the potential of use for fiber-reinforced composites (FRC). A numerical study on the influence of thermal stress on transversal stiffness of fiber-reinforced composites is presented. In the numerical study, a representative volume element (RVE) is used to estimate the elastic properties of a unidirectional ply with finite element method (FEM). For the investigation, periodic boundary conditions are applied to the RVE. Firstly, the elastic properties under pure mechanical load are derived numerically and compared to results, which are obtained by analytical methods. Thereupon thermo-mechanical load is implemented into the model to investigate the influence of temperature change with low temperature as a key aspect. Regarding low temperatures, the transversal stiffness increases intensely, especially when thermal stress is dominant over mechanical stress. This paper outlines the employed numerical methods as well as the derived results.Keywords: elastic properties, micromechanics, thermal stress, representative volume element
Procedia PDF Downloads 1088334 Geared Turbofan with Water Alcohol Technology
Authors: Abhinav Purohit, Shruthi S. Pradeep
Abstract:
In today’s world, aviation industries are using turbofan engines (permutation of turboprop and turbojet) which meet the obligatory requirements to be fuel competent and to produce enough thrust to propel an aircraft. But one can imagine increasing the work output of this particular machine by reducing the input power. In striving to improve technologies, especially to augment the efficiency of the engine with some adaptations, which can be crooked to new concepts by introducing a step change in the turbofan engine development. One hopeful concept is, to de-couple the fan with the help of reduction gear box in a two spool shaft engine from the rest of the machinery to get more work output with maximum efficiency by reducing the load on the turbine shaft. By adapting this configuration we can get an additional degree of freedom to better optimize each component at different speeds. Since the components are running at different speeds we can get hold of preferable efficiency. Introducing water alcohol mixture to this concept would really help to get better results.Keywords: emissions, fuel consumption, more power, turbofan
Procedia PDF Downloads 4368333 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-Time Stochastic Systems
Authors: Tomoaki Hashimoto
Abstract:
Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the validity of the obtained stability condition.Keywords: computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems
Procedia PDF Downloads 4328332 Dynamic Test for Stability of Bar Loaded by a Compression Force Directed Towards the Pole
Authors: Elia Efraim, Boris Blostotsky
Abstract:
The phenomenon of buckling of structural elements under compression is revealed in many cases of loading and found consideration in many structures and mechanisms. In the present work the method and results of dynamic test for buckling of bar loaded by a compression force directed towards the pole are considered. Experimental determination of critical force for such system has not been made previously. The tested object is a bar with semi-rigid connection to the base at one of its ends, and with a hinge moving along a circle at the other. The test includes measuring the natural frequency of the bar at different values of compression load. The lateral stiffness is calculated based on natural frequency and reduced mass on the bar's movable end. The critical load is determined by extrapolation the values of lateral stiffness up to zero value. For the experimental investigation the special test-bed was created that allows the stability testing at positive and negative curvature of the movable end's trajectory, as well as varying the rotational stiffness of the other end connection. Decreasing a friction at the movable end allows extend the diapason of applied compression force. The testing method includes : - methodology of the experiment planning, that allows determine the required number of tests under various loads values in the defined range and the type of extrapolating function; - methodology of experimental determination of reduced mass at the bar's movable end including its own mass; - methodology of experimental determination of lateral stiffness of uncompressed bar rotational semi-rigid connection at the base. For planning the experiment and for comparison of the experimental results with the theoretical values of critical load, the analytical dependencies of lateral stiffness of the bar with defined end conditions on compression load. In the particular case of perfectly rigid connection of the bar to the base, the critical load value corresponds to solution by S.P. Timoshenko. Correspondence of the calculated and experimental values was obtained.Keywords: buckling, dynamic method, end-fixity factor, force directed towards a pole
Procedia PDF Downloads 3518331 Mechanical Behaviours of Ti/GFRP/Ti Laminates with Different Surface Treatments of Titanium Sheets
Authors: Amit Kumar Haldar, Mark Simms, Ian McDevitt, Anthony Comer
Abstract:
Interface properties of fiber metal laminates (FML) affects the integrity and deformation failure modes. In this paper, the mechanical behaviours of Ti/GFRP/Ti laminates were experimentally investigated through low-velocity impact tests. Two different surface treatments of Titanium (Ti-6Al-4V) alloy sheets were prepared to obtain the composite interface properties based on annealing and sandblast surface treatment processes. The deformation failure modes, impact load sustaining ability and energy absorption capacity of FMLs were analysed. The impact load and modulus were shown to be dependent on the surface treatments of Titanium (Ti-6Al-4V) alloy sheets. It was demonstrated that the impact load performance was enhanced when titanium surfaces were annealed and sandblasted. It has also been shown that the values of the strength and energy absorption were slightly higher when the tests conducted at relatively higher loading rate, as a result of the rate-sensitive effects on the damage resistance of the FML.Keywords: fiber metal laminates, metal composite interface, indentation, low velocity impact
Procedia PDF Downloads 1978330 Performance of the Aptima® HIV-1 Quant Dx Assay on the Panther System
Authors: Siobhan O’Shea, Sangeetha Vijaysri Nair, Hee Cheol Kim, Charles Thomas Nugent, Cheuk Yan William Tong, Sam Douthwaite, Andrew Worlock
Abstract:
The Aptima® HIV-1 Quant Dx Assay is a fully automated assay on the Panther system. It is based on Transcription-Mediated Amplification and real time detection technologies. This assay is intended for monitoring HIV-1 viral load in plasma specimens and for the detection of HIV-1 in plasma and serum specimens. Nine-hundred and seventy nine specimens selected at random from routine testing at St Thomas’ Hospital, London were anonymised and used to compare the performance of the Aptima HIV-1 Quant Dx assay and Roche COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0. Two-hundred and thirty four specimens gave quantitative HIV-1 viral load results in both assays. The quantitative results reported by the Aptima Assay were comparable those reported by the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, v2.0 with a linear regression slope of 1.04 and an intercept on -0.097. The Aptima assay detected HIV-1 in more samples than the Roche assay. This was not due to lack of specificity of the Aptima assay because this assay gave 99.83% specificity on testing plasma specimens from 600 HIV-1 negative individuals. To understand the reason for this higher detection rate a side-by-side comparison of low level panels made from the HIV-1 3rd international standard (NIBSC10/152) and clinical samples of various subtypes were tested in both assays. The Aptima assay was more sensitive than the Roche assay. The good sensitivity, specificity and agreement with other commercial assays make the HIV-1 Quant Dx Assay appropriate for both viral load monitoring and detection of HIV-1 infections.Keywords: HIV viral load, Aptima, Roche, Panther system
Procedia PDF Downloads 3758329 Community Based Disaster Risk Reduction in Mizoram, India
Authors: Lalrokima Chenkual
Abstract:
Legal provision and various guidelines issued by the National Disaster Management Authority in India strives for setting up of disaster management authority from the central government to the district level. Community-Based Disaster Risk Reduction practice is still relevant as the communities are the victim as well as the first responder in any incidents. The primary goal of Community Based Disaster Risk Reduction is to reduce vulnerability of the concerned community and strengthen its existing capacity to cope with disaster. By involving the community in the preparedness phase, it not only increases the likelihood of coordinated action by the communities to help in mitigating disasters and lessening the impact of disaster but also brings the community together to address the issue collectively. Community participation ensures local ownership, addresses local needs, and promotes volunteerism and mutual help to prevent and minimise damage. Community-Based Disaster Risk Reduction is very much relevant for Mizoram as the society is closed knit, population is very less, religion homogeneity i.e Christianity, very active and widespread community-based organization viz, Young Mizo Association, MHIP (Women Federation), MUP (Elders Clubs which are guided together by Mizo code of morals conduct termed as Tlawmngaihna.Keywords: community, close-knit, first responder, Tlawmngaihna
Procedia PDF Downloads 1428328 Integrated Modeling Approach for Energy Planning and Climate Change Mitigation Assessment in the State of Florida
Authors: K. Thakkar, C. Ghenai
Abstract:
An integrated modeling approach was used in this study to (1) track energy consumption, production, and resource extraction, (2) track greenhouse gases emissions and (3) analyze emissions for local and regional air pollutions. The model was used in this study for short and long term energy and GHG emissions reduction analysis for the state of Florida. The integrated modeling methodology will help to evaluate the alternative energy scenarios and examine emissions-reduction strategies. The mitigation scenarios have been designed to describe the future energy strategies. They consist of various demand and supply side scenarios. One of the GHG mitigation scenarios is crafted by taking into account the available renewable resources potential for power generation in the state of Florida to compare and analyze the GHG reduction measure against ‘Business As Usual’ and ‘Florida State Policy’ scenario. Two more ‘integrated’ scenarios, (‘Electrification’ and ‘Efficiency and Lifestyle’) are crafted through combination of various mitigation scenarios to assess the cumulative impact of the reduction measures such as technological changes and energy efficiency and conservation.Keywords: energy planning, climate change mitigation assessment, integrated modeling approach, energy alternatives, and GHG emission reductions
Procedia PDF Downloads 4438327 Seismic Assessment of Flat Slab and Conventional Slab System for Irregular Building Equipped with Shear Wall
Authors: Muhammad Aji Fajari, Ririt Aprilin Sumarsono
Abstract:
Particular instability of structural building under lateral load (e.g earthquake) will rise due to irregularity in vertical and horizontal direction as stated in SNI 03-1762-2012. The conventional slab has been considered for its less contribution in increasing the stability of the structure, except special slab system such as flat slab turned into account. In this paper, the analysis of flat slab system at Sequis Tower located in South Jakarta will be assessed its performance under earthquake. It consists of 6 floors of the basement where the flat slab system is applied. The flat slab system will be the main focus in this paper to be compared for its performance with conventional slab system under earthquake. Regarding the floor plan of Sequis Tower basement, re-entrant corner signed for this building is 43.21% which exceeded the allowable re-entrant corner is 15% as stated in ASCE 7-05 Based on that, the horizontal irregularity will be another concern for analysis, otherwise vertical irregularity does not exist for this building. Flat slab system is a system where the slabs use drop panel with shear head as their support instead of using beams. Major advantages of flat slab application are decreasing dead load of structure, removing beams so that the clear height can be maximized, and providing lateral resistance due to lateral load. Whilst, deflection at middle strip and punching shear are problems to be detail considered. Torsion usually appears when the structural member under flexure such as beam or column dimension is improper in ratio. Considering flat slab as alternative slab system will keep the collapse due to torsion down. Common seismic load resisting system applied in the building is a shear wall. Installation of shear wall will keep the structural system stronger and stiffer affecting in reduced displacement under earthquake. Eccentricity of shear wall location of this building resolved the instability due to horizontal irregularity so that the earthquake load can be absorbed. Performing linear dynamic analysis such as response spectrum and time history analysis due to earthquake load is suitable as the irregularity arise so that the performance of structure can be significantly observed. Utilization of response spectrum data for South Jakarta which PGA 0.389g is basic for the earthquake load idealization to be involved in several load combinations stated on SNI 03-1726-2012. The analysis will result in some basic seismic parameters such as period, displacement, and base shear of the system; besides the internal forces of the critical member will be presented. Predicted period of a structure under earthquake load is 0.45 second, but as different slab system applied in the analysis then the period will show a different value. Flat slab system will probably result in better performance for the displacement parameter compare to conventional slab system due to higher contribution of stiffness to the whole system of the building. In line with displacement, the deflection of the slab will result smaller for flat slab than a conventional slab. Henceforth, shear wall will be effective to strengthen the conventional slab system than flat slab system.Keywords: conventional slab, flat slab, horizontal irregularity, response spectrum, shear wall
Procedia PDF Downloads 1918326 A Novel Multi-Block Selective Mapping Scheme for PAPR Reduction in FBMC/OQAM Systems
Authors: Laabidi Mounira, Zayani Rafk, Bouallegue Ridha
Abstract:
Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation (FBMC/OQAM) is presently known as a sustainable alternative to conventional Orthogonal Frequency Division Multiplexing (OFDM) for signal transmission over multi-path fading channels. Like all multicarrier systems, FBMC/OQAM suffers from high Peak to Average Power Ratio (PAPR). Due to the symbol overlap inherent in the FBMC/OQAM system, the direct application of conventional OFDM PAPR reduction scheme is far from being effective. This paper suggests a novel scheme termed Multi-Blocks Selective Mapping (MB-SLM) whose simulation results show that its performance in terms of PAPR reduction is almost identical to that of OFDM system.Keywords: FBMC/OQAM, multi-blocks, OFDM, PAPR, SLM
Procedia PDF Downloads 4638325 Effect of Bi-Dispersity on Particle Clustering in Sedimentation
Authors: Ali Abbas Zaidi
Abstract:
In free settling or sedimentation, particles form clusters at high Reynolds number and dilute suspensions. It is due to the entrapment of particles in the wakes of upstream particles. In this paper, the effect of bi-dispersity of settling particles on particle clustering is investigated using particle-resolved direct numerical simulation. Immersed boundary method is used for particle fluid interactions and discrete element method is used for particle-particle interactions. The solid volume fraction used in the simulation is 1% and the Reynolds number based on Sauter mean diameter is 350. Both solid volume fraction and Reynolds number lie in the clustering regime of sedimentation. In simulations, the particle diameter ratio (i.e. diameter of larger particle to smaller particle (d₁/d₂)) is varied from 2:1, 3:1 and 4:1. For each case of particle diameter ratio, solid volume fraction for each particle size (φ₁/φ₂) is varied from 1:1, 1:2 and 2:1. For comparison, simulations are also performed for monodisperse particles. For studying particles clustering, radial distribution function and instantaneous location of particles in the computational domain are studied. It is observed that the degree of particle clustering decreases with the increase in the bi-dispersity of settling particles. The smallest degree of particle clustering or dispersion of particles is observed for particles with d₁/d₂ equal to 4:1 and φ₁/φ₂ equal to 1:2. Simulations showed that the reduction in particle clustering by increasing bi-dispersity is due to the difference in settling velocity of particles. Particles with larger size settle faster and knockout the smaller particles from clustered regions of particles in the computational domain.Keywords: dispersion in bi-disperse settling particles, particle microstructures in bi-disperse suspensions, particle resolved direct numerical simulations, settling of bi-disperse particles
Procedia PDF Downloads 2088324 Oxygen-Tolerant H₂O₂ Reduction Catalysis by Iron Phosphate Coated Iron Oxides
Authors: Chia-Ting Chang, Chia-Yu Lin
Abstract:
We report on the decisive role of iron phosphate (FePO₄), formed in-situ during the electrochemical characterization, played in the electrocatalytic activity, especially its oxygen tolerance of iron oxides towards H₂O₂ reduction. Iron oxides studied including, Nanorod arrays (NRs) of β-FeOOH, γ-Fe₂O₃, α-Fe₂O₃, α-Fe₂O₃ nanosheets (α-Fe₂O₃NS), α-Fe₂O₃ nanoparticles (α-Fe₂O₃NP), were synthesized using chemical bath deposition. The nanostructure was controlled simply by adjusting the composition of precursor solution and reaction duration for CBD process, whereas the crystal phase was controlled by adjusting the annealing temperature. It was found that iron phosphate (FePO₄) was deposited in-situ onto the surface of this nanostructured α-Fe₂O₃ during the electrochemical pretreatment in the phosphate electrolyte, and both FePO₄ and α-Fe₂O₃ showed the activity in catalysing the electrochemical reduction of H₂O₂. In addition, the interaction/compatibility between deposited FePO₄ and iron oxides has a decisive effect on the overall electrocatalytic activity of the resultant electrodes; FePO₄ only showed synergetic effect on the overall electrocatalytic activity of α-Fe₂O₃NR and α-Fe2O₃NS. Both α-Fe₂O₃NR and α-Fe₂O₃NS showed two reduction peaks in phosphate electrolyte containing H₂O₂, one being pH-dependent and related to the electrocatalytic properties of FePO₄, and the other one being pH-independent and only related to the intrinsic electrocatalytic properties of α-Fe₂O₃NR and α-Fe₂O₃NS. However, all iron oxides showed only one pH-independent reductive peak in non-phosphate electrolyte containing H₂O₂. The synergesitic catalysis exerted by FePO₄ with α-Fe₂O₃NR or α-Fe₂O₃NS providing additional oxygen-insensitive active site for H₂O₂ reduction, which allows their applications to electrochemical detection of H₂O₂ without the interference of O₂ involving in oxidase-catalyzed chemical processes.Keywords: H₂O₂ reduction, Iron oxide, iron phosphate, O₂ tolerance
Procedia PDF Downloads 4158323 Best Resource Recommendation for a Stochastic Process
Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa
Abstract:
The aim of this study was to develop an Artificial Neural Network0 s recommendation model for an online process using the complexity of load, performance, and average servicing time of the resources. Here, the proposed model investigates the resource performance using stochastic gradient decent method for learning ranking function. A probabilistic cost function is implemented to identify the optimal θ values (load) on each resource. Based on this result the recommendation of resource suitable for performing the currently executing task is made. The test result of CoSeLoG project is presented with an accuracy of 72.856%.Keywords: ADALINE, neural network, gradient decent, process mining, resource behaviour, polynomial regression model
Procedia PDF Downloads 3908322 High Efficiency ZPS-PWM Dual-Output Converters with EMI Reduction Method
Authors: Yasunori Kobori, Nobukazu Tsukiji, Nobukazu Takai, Haruo Kobayashi
Abstract:
In this paper, we study a Pulse-WidthModulation (PWM) controlled Zero-Voltage-Switching (ZVS) for single-inductor dual-output (SIDO) converters. This method can meet the industry demands for high efficiency due to ZVS and small size and low cost, thanks to single-inductor per multiple voltages. We show the single inductor single-output (SISO) ZVS buck converter with its operation and simulation and then the experimental results. Next proposed ZVS-PWM controlled SIDO converters are explained in the simulation. Finally we have proposed EMI reduction method with spread spectrum.Keywords: DC-DC switching converter, zero-oltage switching control, single-inductor dual-output converter, EMI reduction, spread spectrum
Procedia PDF Downloads 4978321 Design and Analysis of a Rear Bumper of an Automobile with a Hybrid Polymer Composite of Oil Palm Empty Fruit Bunch Fiber/Banana Fibres
Authors: S. O. Ologe, U. P. Anaidhuno, Duru C. A.
Abstract:
This research investigated the design and analysis of a rear bumper of an automobile with a hybrid polymer composite of OPEBF/Banana fibre. OPEBF/Banana fibre hybrid polymers composite is of low cost, lightweight, as well as possesses satisfactory mechanical properties. In this research work, hybrid composites have been developed using the hand layup technique based on the percentage combination of OPEBF/Banana fibre at 10:90, 20:80, 30:70, 40:60, 50:50. 60:40, 70:30. 20:80, 90:10, 95:5. The mechanical properties in the context of compressive strength of 65MPa, a flexural strength of 20MPa, and impact strength of 3.25Joule were observed, and the simulation analysis on the induction of 500N load at the factor of safety of 3 was observed to have displayed a good strength suitable for automobile bumper with the advantages of weight reduction.Keywords: OPEBF, Banana, fibre, hybrid
Procedia PDF Downloads 1148320 Optimizing Protection of Medieval Glass Mosaic
Authors: J. Valach, S. Pospisil, S. Kuznecov
Abstract:
The paper deals with experimental estimation of future environmental load on medieval mosaic of Last Judgement on entrance to St. Vitus cathedral on Prague castle. The mosaic suffers from seasonal changes of weather pattern, as well as rains, their acidity, deposition of dust and sooth particles from polluted air and also from freeze-thaw cycles. These phenomena influence state of the mosaic. The mosaic elements, tesserae are mostly made from glass prone to weathering. To estimate future procedure of the best maintenance, relation between various weather scenarios and their effect on the mosaic was investigated. At the same time local method for evaluation of protective coating was developed. Together both methods will contribute to better care for the mosaic and also visitors aesthetical experience.Keywords: environmental load, cultural heritage, glass mosaic, protection
Procedia PDF Downloads 2808319 Implementation of the Recursive Formula for Evaluation of the Strength of Daniels' Bundle
Authors: Vaclav Sadilek, Miroslav Vorechovsky
Abstract:
The paper deals with the classical fiber bundle model of equal load sharing, sometimes referred to as the Daniels' bundle or the democratic bundle. Daniels formulated a multidimensional integral and also a recursive formula for evaluation of the strength cumulative distribution function. This paper describes three algorithms for evaluation of the recursive formula and also their implementations with source codes in high-level programming language Python. A comparison of the algorithms are provided with respect to execution time. Analysis of orders of magnitudes of addends in the recursion is also provided.Keywords: equal load sharing, mpmath, python, strength of Daniels' bundle
Procedia PDF Downloads 4058318 Influence of Pressure from Compression Textile Bands: Their Using in the Treatment of Venous Human Leg Ulcers
Authors: Bachir Chemani, Rachid Halfaoui
Abstract:
The aim of study was to evaluate pressure distribution characteristics of the elastic textile bandages using two instrumental techniques: a prototype Instrument and a load Transference. The prototype instrument which simulates shape of real leg has pressure sensors which measure bandage pressure. Using this instrument, the results show that elastic textile bandages presents different pressure distribution characteristics and none produces a uniform distribution around lower limb. The load transference test procedure is used to determine whether a relationship exists between elastic textile bandage structure and pressure distribution characteristics. The test procedure assesses degree of load, directly transferred through a textile when loads series are applied to bandaging surface. A range of weave fabrics was produced using needle weaving machine and a sewing technique. A textile bandage was developed with optimal characteristics far superior pressure distribution than other bandages. From results, we find that theoretical pressure is not consistent exactly with practical pressure. It is important in this study to make a practical application for specialized nurses in order to verify the results and draw useful conclusions for predicting the use of this type of elastic band.Keywords: textile, cotton, pressure, venous ulcers, elastic
Procedia PDF Downloads 3608317 Device for Reversible Hydrogen Isotope Storage with Aluminum Oxide Ceramic Case
Authors: Igor P. Maximkin, Arkady A. Yukhimchuk, Victor V. Baluev, Igor L. Malkov, Rafael K. Musyaev, Damir T. Sitdikov, Alexey V. Buchirin, Vasily V. Tikhonov
Abstract:
Minimization of tritium diffusion leakage when developing devices handling tritium-containing media is key problems whose solution will at least allow essential enhancement of radiation safety and minimization of diffusion losses of expensive tritium. One of the ways to solve this problem is to use Al₂O₃ high-strength non-porous ceramics as a structural material of the bed body. This alumina ceramics offers high strength characteristics, but its main advantages are low hydrogen permeability (as against the used structural material) and high dielectric properties. The latter enables direct induction heating of an hydride-forming metal without essential heating of the pressure and containment vessel. The use of alumina ceramics and induction heating allows: - essential reduction of tritium extraction time; - several orders reduction of tritium diffusion leakage; - more complete extraction of tritium from metal hydrides due to its higher heating up to melting in the event of final disposal of the device. The paper presents computational and experimental results for the tritium bed designed to absorb 6 liters of tritium. Titanium was used as hydrogen isotope sorbent. Results of hydrogen realize kinetic from hydride-forming metal, strength and cyclic service life tests are reported. Recommendations are also provided for the practical use of the given bed type.Keywords: aluminum oxide ceramic, hydrogen pressure, hydrogen isotope storage, titanium hydride
Procedia PDF Downloads 407