Search results for: uncertainty and error visualisation
2198 Genetic Algorithm for In-Theatre Military Logistics Search-and-Delivery Path Planning
Authors: Jean Berger, Mohamed Barkaoui
Abstract:
Discrete search path planning in time-constrained uncertain environment relying upon imperfect sensors is known to be hard, and current problem-solving techniques proposed so far to compute near real-time efficient path plans are mainly bounded to provide a few move solutions. A new information-theoretic –based open-loop decision model explicitly incorporating false alarm sensor readings, to solve a single agent military logistics search-and-delivery path planning problem with anticipated feedback is presented. The decision model consists in minimizing expected entropy considering anticipated possible observation outcomes over a given time horizon. The model captures uncertainty associated with observation events for all possible scenarios. Entropy represents a measure of uncertainty about the searched target location. Feedback information resulting from possible sensor observations outcomes along the projected path plan is exploited to update anticipated unit target occupancy beliefs. For the first time, a compact belief update formulation is generalized to explicitly include false positive observation events that may occur during plan execution. A novel genetic algorithm is then proposed to efficiently solve search path planning, providing near-optimal solutions for practical realistic problem instances. Given the run-time performance of the algorithm, natural extension to a closed-loop environment to progressively integrate real visit outcomes on a rolling time horizon can be easily envisioned. Computational results show the value of the approach in comparison to alternate heuristics.Keywords: search path planning, false alarm, search-and-delivery, entropy, genetic algorithm
Procedia PDF Downloads 3602197 Technological Advancement in Fashion Online Retailing: A Comparative Study of Pakistan and UK Fashion E-Commerce
Authors: Sadia Idrees, Gianpaolo Vignali, Simeon Gill
Abstract:
The study aims to establish the virtual size and fit technology features to enhance fashion online retailing platforms, utilising digital human measurements to provide customised style and function to consumers. A few firms in the UK have launched advanced interactive fashion shopping domains for personalised shopping globally, aided by the latest internet technology. Virtual size and fit interfaces have a great potential to provide a personalised better-fitted garment to promote mass customisation globally. Made-to-measure clothing, consuming unstitched fabric is a common practice offered by fashion brands in Pakistan. This product is regarded as economical and sustainable to be utilised by consumers in Pakistan. Although the manual sizing system is practiced to sell garments online, virtual size and fit visualisation and recommendation technologies are uncommon in Pakistani fashion interfaces. A comparative assessment of Pakistani fashion brand websites and UK technology-driven fashion interfaces was conducted to highlight the vast potential of the virtual size and fit technology. The results indicated that web 2.0 technology adopted by Pakistani apparel brands has limited features, whereas companies practicing web 3.0 technology provide interactive online real-store shopping experience leading to enhanced customer satisfaction and globalisation of brands.Keywords: e-commerce, mass customization, virtual size and fit, web 3.0 technology
Procedia PDF Downloads 1412196 Identifying, Reporting and Preventing Medical Errors Among Nurses Working in Critical Care Units At Kenyatta National Hospital, Kenya: Closing the Gap Between Attitude and Practice
Authors: Jared Abuga, Wesley Too
Abstract:
Medical error is the third leading cause of death in US, with approximately 98,000 deaths occurring every year as a result of medical errors. The world financial burden of medication errors is roughly USD 42 billion. Medication errors may lead to at least one death daily and injure roughly 1.3 million people every year. Medical error reporting is essential in creating a culture of accountability in our healthcare system. Studies have shown that attitudes and practice of healthcare workers in reporting medical errors showed that the major factors in under-reporting of errors included work stress and fear of medico-legal consequences due to the disclosure of error. Further, the majority believed that increase in reporting medical errors would contribute to a better system. Most hospitals depend on nurses to discover medication errors because they are considered to be the sources of these errors, as contributors or mere observers, consequently, the nurse’s perception of medication errors and what needs to be done is a vital feature to reducing incidences of medication errors. We sought to explore knowledge among nurses on medical errors and factors affecting or hindering reporting of medical errors among nurses working at the emergency unit, KNH. Critical care nurses are faced with many barriers to completing incident reports on medication errors. One of these barriers which contribute to underreporting is a lack of education and/or knowledge regarding medication errors and the reporting process. This study, therefore, sought to determine the availability and the use of reporting systems for medical errors in critical care unity. It also sought to establish nurses’ perception regarding medical errors and reporting and document factors facilitating timely identification and reporting of medical errors in critical care settings. Methods: The study used cross-section study design to collect data from 76 critical care nurses from Kenyatta Teaching & Research National Referral Hospital, Kenya. Data analysis and results is ongoing. By October 2022, we will have analysis, results, discussions, and recommendations of the study for purposes of the conference in 2023Keywords: errors, medical, kenya, nurses, safety
Procedia PDF Downloads 2472195 A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics
Authors: Thor Alexis Sazon, Alexander Guzman-Urbina, Yasuhiro Fukushima
Abstract:
This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system.Keywords: solar photovoltaic, fuzzy logic, inference system, artificial neural networks
Procedia PDF Downloads 1642194 Modeling Pan Evaporation Using Intelligent Methods of ANN, LSSVM and Tree Model M5 (Case Study: Shahroud and Mayamey Stations)
Authors: Hamidreza Ghazvinian, Khosro Ghazvinian, Touba Khodaiean
Abstract:
The importance of evaporation estimation in water resources and agricultural studies is undeniable. Pan evaporation are used as an indicator to determine the evaporation of lakes and reservoirs around the world due to the ease of interpreting its data. In this research, intelligent models were investigated in estimating pan evaporation on a daily basis. Shahroud and Mayamey were considered as the studied cities. These two cities are located in Semnan province in Iran. The mentioned cities have dry weather conditions that are susceptible to high evaporation potential. Meteorological data of 11 years of synoptic stations of Shahrood and Mayamey cities were used. The intelligent models used in this study are Artificial Neural Network (ANN), Least Squares Support Vector Machine (LSSVM), and M5 tree models. Meteorological parameters of minimum and maximum air temperature (Tmax, Tmin), wind speed (WS), sunshine hours (SH), air pressure (PA), relative humidity (RH) as selected input data and evaporation data from pan (EP) to The output data was considered. 70% of data is used at the education level, and 30 % of the data is used at the test level. Models used with explanation coefficient evaluation (R2) Root of Mean Squares Error (RMSE) and Mean Absolute Error (MAE). The results for the two Shahroud and Mayamey stations showed that the above three models' operations are rather appropriate.Keywords: pan evaporation, intelligent methods, shahroud, mayamey
Procedia PDF Downloads 742193 Modeling of a UAV Longitudinal Dynamics through System Identification Technique
Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad
Abstract:
System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc. This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.Keywords: fixed wing UAV, system identification, black box modeling, longitudinal dynamics, least square error
Procedia PDF Downloads 3252192 Error Amount in Viscoelasticity Analysis Depending on Time Step Size and Method used in ANSYS
Authors: A. Fettahoglu
Abstract:
Theory of viscoelasticity is used by many researchers to represent behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain like pavements of bridges can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell elements and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Subsequently, a practical problem, which has an analytical solution given in literature, is used to verify the applicability of viscoelasticity tool embedded in ANSYS. Finally, amount of error in the results of ANSYS is compared with the analytical results to indicate the influence of used method and time step size.Keywords: generalized Maxwell model, finite element method, prony series, time step size, viscoelasticity
Procedia PDF Downloads 3692191 Indeterminacy: An Urban Design Tool to Measure Resilience to Climate Change, a Caribbean Case Study
Authors: Tapan Kumar Dhar
Abstract:
How well are our city forms designed to adapt to climate change and its resulting uncertainty? What urban design tools can be used to measure and improve resilience to climate change, and how would they do so? In addressing these questions, this paper considers indeterminacy, a concept originated in the resilience literature, to measure the resilience of built environments. In the realm of urban design, ‘indeterminacy’ can be referred to as built-in design capabilities of an urban system to serve different purposes which are not necessarily predetermined. An urban system, particularly that with a higher degree of indeterminacy, can enable the system to be reorganized and changed to accommodate new or unknown functions while coping with uncertainty over time. Underlying principles of this concept have long been discussed in the urban design and planning literature, including open architecture, landscape urbanism, and flexible housing. This paper argues that the concept indeterminacy holds the potential to reduce the impacts of climate change incrementally and proactively. With regard to sustainable development, both planning and climate change literature highly recommend proactive adaptation as it involves less cost, efforts, and energy than last-minute emergency or reactive actions. Nevertheless, the concept still remains isolated from resilience and climate change adaptation discourses even though the discourses advocate the incremental transformation of a system to cope with climatic uncertainty. This paper considers indeterminacy, as an urban design tool, to measure and increase resilience (and adaptive capacity) of Long Bay’s coastal settlements in Negril, Jamaica. Negril is one of the popular tourism destinations in the Caribbean highly vulnerable to sea-level rise and its associated impacts. This paper employs empirical information obtained from direct observation and informal interviews with local people. While testing the tool, this paper deploys an urban morphology study, which includes land use patterns and the physical characteristics of urban form, including street networks, block patterns, and building footprints. The results reveal that most resorts in Long Bay are designed for pre-determined purposes and offer a little potential to use differently if needed. Additionally, Negril’s street networks are found to be rigid and have limited accessibility to different points of interest. This rigidity can expose the entire infrastructure further to extreme climatic events and also impedes recovery actions after a disaster. However, Long Bay still has room for future resilient developments in other relatively less vulnerable areas. In adapting to climate change, indeterminacy can be reached through design that achieves a balance between the degree of vulnerability and the degree of indeterminacy: the more vulnerable a place is, the more indeterminacy is useful. This paper concludes with a set of urban design typologies to increase the resilience of coastal settlements.Keywords: climate change adaptation, resilience, sea-level rise, urban form
Procedia PDF Downloads 3652190 Deep Learning to Improve the 5G NR Uplink Control Channel
Authors: Ahmed Krobba, Meriem Touzene, Mohamed Debeyche
Abstract:
The wireless communications system (5G) will provide more diverse applications and higher quality services for users compared to the long-term evolution 4G (LTE). 5G uses a higher carrier frequency, which suffers from information loss in 5G coverage. Most 5G users often cannot obtain high-quality communications due to transmission channel noise and channel complexity. Physical Uplink Control Channel (PUCCH-NR: Physical Uplink Control Channel New Radio) plays a crucial role in 5G NR telecommunication technology, which is mainly used to transmit link control information uplink (UCI: Uplink Control Information. This study based of evaluating the performance of channel physical uplink control PUCCH-NR under low Signal-to-Noise Ratios with various antenna numbers reception. We propose the artificial intelligence approach based on deep neural networks (Deep Learning) to estimate the PUCCH-NR channel in comparison with this approach with different conventional methods such as least-square (LS) and minimum-mean-square-error (MMSE). To evaluate the channel performance we use the block error rate (BLER) as an evaluation criterion of the communication system. The results show that the deep neural networks method gives best performance compared with MMSE and LSKeywords: 5G network, uplink (Uplink), PUCCH channel, NR-PUCCH channel, deep learning
Procedia PDF Downloads 832189 Reverse Logistics End of Life Products Acquisition and Sorting
Authors: Badli Shah Mohd Yusoff, Khairur Rijal Jamaludin, Rozetta Dollah
Abstract:
The emerging of reverse logistics and product recovery management is an important concept in reconciling economic and environmental objectives through recapturing values of the end of life product returns. End of life products contains valuable modules, parts, residues and materials that can create value if recovered efficiently. The main objective of this study is to explore and develop a model to recover as much of the economic value as reasonably possible to find the optimality of return acquisition and sorting to meet demand and maximize profits over time. In this study, the benefits that can be obtained for remanufacturer is to develop demand forecasting of used products in the future with uncertainty of returns and quality of products. Formulated based on a generic disassembly tree, the proposed model focused on three reverse logistics activity, namely refurbish, remanufacture and disposal incorporating all plausible means quality levels of the returns. While stricter sorting policy, constitute to the decrease amount of products to be refurbished or remanufactured and increases the level of discarded products. Numerical experiments carried out to investigate the characteristics and behaviour of the proposed model with mathematical programming model using Lingo 16.0 for medium-term planning of return acquisition, disassembly (refurbish or remanufacture) and disposal activities. Moreover, the model seeks an analysis a number of decisions relating to trade off management system to maximize revenue from the collection of use products reverse logistics services through refurbish and remanufacture recovery options. The results showed that full utilization in the sorting process leads the system to obtain less quantity from acquisition with minimal overall cost. Further, sensitivity analysis provides a range of possible scenarios to consider in optimizing the overall cost of refurbished and remanufactured products.Keywords: core acquisition, end of life, reverse logistics, quality uncertainty
Procedia PDF Downloads 3032188 Prediction of Formation Pressure Using Artificial Intelligence Techniques
Authors: Abdulmalek Ahmed
Abstract:
Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)
Procedia PDF Downloads 1492187 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach
Authors: Niyongabo Elyse
Abstract:
Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling
Procedia PDF Downloads 502186 Optimization of Process Parameters and Modeling of Mass Transport during Hybrid Solar Drying of Paddy
Authors: Aprajeeta Jha, Punyadarshini P. Tripathy
Abstract:
Drying is one of the most critical unit operations for prolonging the shelf-life of food grains in order to ensure global food security. Photovoltaic integrated solar dryers can be a sustainable solution for replacing energy intensive thermal dryers as it is capable of drying in off-sunshine hours and provide better control over drying conditions. But, performance and reliability of PV based solar dryers depend hugely on climatic conditions thereby, drastically affecting process parameters. Therefore, to ensure quality and prolonged shelf-life of paddy, optimization of process parameters for solar dryers is critical. Proper moisture distribution within the grains is most detrimental factor to enhance the shelf-life of paddy therefore; modeling of mass transport can help in providing a better insight of moisture migration. Hence, present work aims at optimizing the process parameters and to develop a 3D finite element model (FEM) for predicting moisture profile in paddy during solar drying. Optimization of process parameters (power level, air velocity and moisture content) was done using box Behnken model in Design expert software. Furthermore, COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Optimized model for drying paddy was found to be 700W, 2.75 m/s and 13% wb with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Furthermore, 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product to achieve global food and energy securityKeywords: finite element modeling, hybrid solar drying, mass transport, paddy, process optimization
Procedia PDF Downloads 1392185 Two-Stage Launch Vehicle Trajectory Modeling for Low Earth Orbit Applications
Authors: Assem M. F. Sallam, Ah. El-S. Makled
Abstract:
This paper presents a study on the trajectory of a two stage launch vehicle. The study includes dynamic responses of motion parameters as well as the variation of angles affecting the orientation of the launch vehicle (LV). LV dynamic characteristics including state vector variation with corresponding altitude and velocity for the different LV stages separation, as well as the angle of attack and flight path angles are also discussed. A flight trajectory study for the drop zone of first stage and the jettisoning of fairing are introduced in the mathematical modeling to study their effect. To increase the accuracy of the LV model, atmospheric model is used taking into consideration geographical location and the values of solar flux related to the date and time of launch, accurate atmospheric model leads to enhancement of the calculation of Mach number, which affects the drag force over the LV. The mathematical model is implemented on MATLAB based software (Simulink). The real available experimental data are compared with results obtained from the theoretical computation model. The comparison shows good agreement, which proves the validity of the developed simulation model; the maximum error noticed was generally less than 10%, which is a result that can lead to future works and enhancement to decrease this level of error.Keywords: launch vehicle modeling, launch vehicle trajectory, mathematical modeling, Matlab- Simulink
Procedia PDF Downloads 2772184 Investigating Non-suicidal Self-Injury Discussions on Twitter
Authors: Muhammad Abubakar Alhassan, Diane Pennington
Abstract:
Social networking sites have become a space for people to discuss public health issues such as non-suicidal self-injury (NSSI). There are thousands of tweets containing self-harm and self-injury hashtags on Twitter. It is difficult to distinguish between different users who participate in self-injury discussions on Twitter and how their opinions change over time. Also, it is challenging to understand the topics surrounding NSSI discussions on Twitter. We retrieved tweets using #selfham and #selfinjury hashtags and investigated those from the United kingdom. We applied inductive coding and grouped tweeters into different categories. This study used the Latent Dirichlet Allocation (LDA) algorithm to infer the optimum number of topics that describes our corpus. Our findings revealed that many of those participating in NSSI discussions are non-professional users as opposed to medical experts and academics. Support organisations, medical teams, and academics were campaigning positively on rais-ing self-injury awareness and recovery. Using LDAvis visualisation technique, we selected the top 20 most relevant terms from each topic and interpreted the topics as; children and youth well-being, self-harm misjudgement, mental health awareness, school and mental health support and, suicide and mental-health issues. More than 50% of these topics were discussed in England compared to Scotland, Wales, Ireland and Northern Ireland. Our findings highlight the advantages of using the Twitter social network in tackling the problem of self-injury through awareness. There is a need to study the potential risks associated with the use of social networks among self-injurers.Keywords: self-harm, non-suicidal self-injury, Twitter, social networks
Procedia PDF Downloads 1322183 Numerical Solution of Manning's Equation in Rectangular Channels
Authors: Abdulrahman Abdulrahman
Abstract:
When the Manning equation is used, a unique value of normal depth in the uniform flow exists for a given channel geometry, discharge, roughness, and slope. Depending on the value of normal depth relative to the critical depth, the flow type (supercritical or subcritical) for a given characteristic of channel conditions is determined whether or not flow is uniform. There is no general solution of Manning's equation for determining the flow depth for a given flow rate, because the area of cross section and the hydraulic radius produce a complicated function of depth. The familiar solution of normal depth for a rectangular channel involves 1) a trial-and-error solution; 2) constructing a non-dimensional graph; 3) preparing tables involving non-dimensional parameters. Author in this paper has derived semi-analytical solution to Manning's equation for determining the flow depth given the flow rate in rectangular open channel. The solution was derived by expressing Manning's equation in non-dimensional form, then expanding this form using Maclaurin's series. In order to simplify the solution, terms containing power up to 4 have been considered. The resulted equation is a quartic equation with a standard form, where its solution was obtained by resolving this into two quadratic factors. The proposed solution for Manning's equation is valid over a large range of parameters, and its maximum error is within -1.586%.Keywords: channel design, civil engineering, hydraulic engineering, open channel flow, Manning's equation, normal depth, uniform flow
Procedia PDF Downloads 2212182 Investigation of Shear Strength, and Dilative Behavior of Coarse-grained Samples Using Laboratory Test and Machine Learning Technique
Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari
Abstract:
Coarse-grained soils are known and commonly used in a wide range of geotechnical projects, including high earth dams or embankments for their high shear strength. The most important engineering property of these soils is friction angle which represents the interlocking between soil particles and can be applied widely in designing and constructing these earth structures. Friction angle and dilative behavior of coarse-grained soils can be estimated from empirical correlations with in-situ testing and physical properties of the soil or measured directly in the laboratory performing direct shear or triaxial tests. Unfortunately, large-scale testing is difficult, challenging, and expensive and is not possible in most soil mechanic laboratories. So, it is common to remove the large particles and do the tests, which cannot be counted as an exact estimation of the parameters and behavior of the original soil. This paper describes a new methodology to simulate particles grading distribution of a well-graded gravel sample to a smaller scale sample as it can be tested in an ordinary direct shear apparatus to estimate the stress-strain behavior, friction angle, and dilative behavior of the original coarse-grained soil considering its confining pressure, and relative density using a machine learning method. A total number of 72 direct shear tests are performed in 6 different sizes, 3 different confining pressures, and 4 different relative densities. Multivariate Adaptive Regression Spline (MARS) technique was used to develop an equation in order to predict shear strength and dilative behavior based on the size distribution of coarse-grained soil particles. Also, an uncertainty analysis was performed in order to examine the reliability of the proposed equation.Keywords: MARS, coarse-grained soil, shear strength, uncertainty analysis
Procedia PDF Downloads 1622181 Uncertainty Quantification of Crack Widths and Crack Spacing in Reinforced Concrete
Authors: Marcel Meinhardt, Manfred Keuser, Thomas Braml
Abstract:
Cracking of reinforced concrete is a complex phenomenon induced by direct loads or restraints affecting reinforced concrete structures as soon as the tensile strength of the concrete is exceeded. Hence it is important to predict where cracks will be located and how they will propagate. The bond theory and the crack formulas in the actual design codes, for example, DIN EN 1992-1-1, are all based on the assumption that the reinforcement bars are embedded in homogeneous concrete without taking into account the influence of transverse reinforcement and the real stress situation. However, it can often be observed that real structures such as walls, slabs or beams show a crack spacing that is orientated to the transverse reinforcement bars or to the stirrups. In most Finite Element Analysis studies, the smeared crack approach is used for crack prediction. The disadvantage of this model is that the typical strain localization of a crack on element level can’t be seen. The crack propagation in concrete is a discontinuous process characterized by different factors such as the initial random distribution of defects or the scatter of material properties. Such behavior presupposes the elaboration of adequate models and methods of simulation because traditional mechanical approaches deal mainly with average material parameters. This paper concerned with the modelling of the initiation and the propagation of cracks in reinforced concrete structures considering the influence of transverse reinforcement and the real stress distribution in reinforced concrete (R/C) beams/plates in bending action. Therefore, a parameter study was carried out to investigate: (I) the influence of the transversal reinforcement to the stress distribution in concrete in bending mode and (II) the crack initiation in dependence of the diameter and distance of the transversal reinforcement to each other. The numerical investigations on the crack initiation and propagation were carried out with a 2D reinforced concrete structure subjected to quasi static loading and given boundary conditions. To model the uncertainty in the tensile strength of concrete in the Finite Element Analysis correlated normally and lognormally distributed random filed with different correlation lengths were generated. The paper also presents and discuss different methods to generate random fields, e.g. the Covariance Matrix Decomposition Method. For all computations, a plastic constitutive law with softening was used to model the crack initiation and the damage of the concrete in tension. It was found that the distributions of crack spacing and crack widths are highly dependent of the used random field. These distributions are validated to experimental studies on R/C panels which were carried out at the Laboratory for Structural Engineering at the University of the German Armed Forces in Munich. Also, a recommendation for parameters of the random field for realistic modelling the uncertainty of the tensile strength is given. The aim of this research was to show a method in which the localization of strains and cracks as well as the influence of transverse reinforcement on the crack initiation and propagation in Finite Element Analysis can be seen.Keywords: crack initiation, crack modelling, crack propagation, cracks, numerical simulation, random fields, reinforced concrete, stochastic
Procedia PDF Downloads 1572180 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction
Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba
Abstract:
Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform
Procedia PDF Downloads 502179 Astronomical Object Classification
Authors: Alina Muradyan, Lina Babayan, Arsen Nanyan, Gohar Galstyan, Vigen Khachatryan
Abstract:
We present a photometric method for identifying stars, galaxies and quasars in multi-color surveys, which uses a library of ∼> 65000 color templates for comparison with observed objects. The method aims for extracting the information content of object colors in a statistically correct way, and performs a classification as well as a redshift estimation for galaxies and quasars in a unified approach based on the same probability density functions. For the redshift estimation, we employ an advanced version of the Minimum Error Variance estimator which determines the redshift error from the redshift dependent probability density function itself. The method was originally developed for the Calar Alto Deep Imaging Survey (CADIS), but is now used in a wide variety of survey projects. We checked its performance by spectroscopy of CADIS objects, where the method provides high reliability (6 errors among 151 objects with R < 24), especially for the quasar selection, and redshifts accurate within σz ≈ 0.03 for galaxies and σz ≈ 0.1 for quasars. For an optimization of future survey efforts, a few model surveys are compared, which are designed to use the same total amount of telescope time but different sets of broad-band and medium-band filters. Their performance is investigated by Monte-Carlo simulations as well as by analytic evaluation in terms of classification and redshift estimation. If photon noise were the only error source, broad-band surveys and medium-band surveys should perform equally well, as long as they provide the same spectral coverage. In practice, medium-band surveys show superior performance due to their higher tolerance for calibration errors and cosmic variance. Finally, we discuss the relevance of color calibration and derive important conclusions for the issues of library design and choice of filters. The calibration accuracy poses strong constraints on an accurate classification, which are most critical for surveys with few, broad and deeply exposed filters, but less severe for surveys with many, narrow and less deep filters.Keywords: VO, ArVO, DFBS, FITS, image processing, data analysis
Procedia PDF Downloads 802178 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters
Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran
Abstract:
The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.Keywords: electric propulsion, mass gauging, propellant, PVT, xenon
Procedia PDF Downloads 3452177 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling
Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha
Abstract:
The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat
Procedia PDF Downloads 552176 Power System Stability Enhancement Using Self Tuning Fuzzy PI Controller for TCSC
Authors: Salman Hameed
Abstract:
In this paper, a self-tuning fuzzy PI controller (STFPIC) is proposed for thyristor controlled series capacitor (TCSC) to improve power system dynamic performance. In a STFPIC controller, the output scaling factor is adjusted on-line by an updating factor (α). The value of α is determined from a fuzzy rule-base defined on error (e) and change of error (Δe) of the controlled variable. The proposed self-tuning controller is designed using a very simple control rule-base and the most natural and unbiased membership functions (MFs) (symmetric triangles with equal base and 50% overlap with neighboring MFs). The comparative performances of the proposed STFPIC and the standard fuzzy PI controller (FPIC) have been investigated on a multi-machine power system (namely, 4 machine two area system) through detailed non-linear simulation studies using MATLAB/SIMULINK. From the simulation studies it has been found out that for damping oscillations, the performance of the proposed STFPIC is better than that obtained by the standard FPIC. Moreover, the proposed STFPIC as well as the FPIC have been found to be quite effective in damping oscillations over a wide range of operating conditions and are quite effective in enhancing the power carrying capability of the power system significantly.Keywords: genetic algorithm, power system stability, self-tuning fuzzy controller, thyristor controlled series capacitor
Procedia PDF Downloads 4232175 Development of Advanced Linear Calibration Technique for Air Flow Sensing by Using CTA-Based Hot Wire Anemometry
Authors: Ming-Jong Tsai, T. M. Wu, R. C. Chu
Abstract:
The purpose of this study is to develop an Advanced linear calibration Technique for air flow sensing by using CTA-based Hot wire Anemometry. It contains a host PC with Human Machine Interface, a wind tunnel, a wind speed controller, an automatic data acquisition module, and nonlinear calibration model. To improve the fitting error by using single fitting polynomial, this study proposes a Multiple three-order Polynomial Fitting Method (MPFM) for fitting the non-linear output of a CTA-based Hot wire Anemometry. The CTA-based anemometer with built-in fitting parameters is installed in the wind tunnel, and the wind speed is controlled by the PC-based controller. The Hot-Wire anemometer's thermistor resistance change is converted into a voltage signal or temperature differences, and then sent to the PC through a DAQ card. After completion measurements of original signal, the Multiple polynomial mathematical coefficients can be automatically calculated, and then sent into the micro-processor in the Hot-Wire anemometer. Finally, the corrected Hot-Wire anemometer is verified for the linearity, the repeatability, error percentage, and the system outputs quality control reports.Keywords: flow rate sensing, hot wire, constant temperature anemometry (CTA), linear calibration, multiple three-order polynomial fitting method (MPFM), temperature compensation
Procedia PDF Downloads 4162174 Business Strategy, Crisis and Digitalization
Authors: Flora Xu, Marta Fernandez Olmos
Abstract:
This article is mainly about critical assessment and comprehensive understanding of the business strategy in the post COVID-19 scenario. This study aims to elucidate how companies are responding to the unique challenges posed by the pandemic and how these measures are shaping the future of the business environment. The pandemic has exposed the fragility and flexibility of the global supply chain, and procurement and production strategies should be reconsidered. It should increase the diversity of suppliers and the flexibility of the supply chain, and some companies are considering transferring their survival to the local market. This can increase local employment and reduce international transportation disruptions and customs issues. By shortening the distance between production and market, companies can respond more quickly to changes in demand and unforeseen events. The demand for remote work and online solutions will increase the adoption of digital technology and accelerate the digital transformation of many organizations. Marketing and communication strategies need to adapt to a constantly changing environment. The business resilience strategy was emphasized as a key component of the response to the COVID-19. The company is seeking to strengthen its risk management capabilities and develop a business continuity plan to cope with future unexpected disruptions. The pandemic has reconfigured human resource practices and changed the way companies manage their employees. Remote work has become the norm, and companies focus on managing workers' health and well-being, as well as flexible work policies to ensure operations and support for employees during crises. This change in human resources practice has a lasting impact on how companies apply talent and labor management in the post COVID-19 world. The pandemic has prompted a significant review of business strategies as companies adapt to constantly changing environments and seek to ensure their sustainability and profitability in times of crisis. This strategic reassessment has led to product diversification, exploring international markets and adapting to the changing market. Companies have responded to the unprecedented challenges brought by the COVID-19. The COVID-19 has promoted innovation effort in key areas and focused on the responsibility in today's business strategy for sustainability and the importance of corporate society. The important challenge of formulating and implementing business strategies in uncertain times. These challenges include making quick and agile decisions in turbulent environments, risk management, and adaptability to constantly changing market conditions. The COVID-19 highlights the importance of strategic planning and informed decision-making - making in a business environment characterized by uncertainty and complexity. In short, the pandemic has reconfigured the way companies handle business strategies and emphasized the necessity of preparing for future challenges in a business world marked by uncertainty and complexity.Keywords: business strategy, crisis, digitalization, uncertainty
Procedia PDF Downloads 182173 Design an Algorithm for Software Development in CBSE Envrionment Using Feed Forward Neural Network
Authors: Amit Verma, Pardeep Kaur
Abstract:
In software development organizations, Component based Software engineering (CBSE) is emerging paradigm for software development and gained wide acceptance as it often results in increase quality of software product within development time and budget. In component reusability, main challenges are the right component identification from large repositories at right time. The major objective of this work is to provide efficient algorithm for storage and effective retrieval of components using neural network and parameters based on user choice through clustering. This research paper aims to propose an algorithm that provides error free and automatic process (for retrieval of the components) while reuse of the component. In this algorithm, keywords (or components) are extracted from software document, after by applying k mean clustering algorithm. Then weights assigned to those keywords based on their frequency and after assigning weights, ANN predicts whether correct weight is assigned to keywords (or components) or not, otherwise it back propagates in to initial step (re-assign the weights). In last, store those all keywords into repositories for effective retrieval. Proposed algorithm is very effective in the error correction and detection with user base choice while choice of component for reusability for efficient retrieval is there.Keywords: component based development, clustering, back propagation algorithm, keyword based retrieval
Procedia PDF Downloads 3782172 An Automatic Speech Recognition of Conversational Telephone Speech in Malay Language
Authors: M. Draman, S. Z. Muhamad Yassin, M. S. Alias, Z. Lambak, M. I. Zulkifli, S. N. Padhi, K. N. Baharim, F. Maskuriy, A. I. A. Rahim
Abstract:
The performance of Malay automatic speech recognition (ASR) system for the call centre environment is presented. The system utilizes Kaldi toolkit as the platform to the entire library and algorithm used in performing the ASR task. The acoustic model implemented in this system uses a deep neural network (DNN) method to model the acoustic signal and the standard (n-gram) model for language modelling. With 80 hours of training data from the call centre recordings, the ASR system can achieve 72% of accuracy that corresponds to 28% of word error rate (WER). The testing was done using 20 hours of audio data. Despite the implementation of DNN, the system shows a low accuracy owing to the varieties of noises, accent and dialect that typically occurs in Malaysian call centre environment. This significant variation of speakers is reflected by the large standard deviation of the average word error rate (WERav) (i.e., ~ 10%). It is observed that the lowest WER (13.8%) was obtained from recording sample with a standard Malay dialect (central Malaysia) of native speaker as compared to 49% of the sample with the highest WER that contains conversation of the speaker that uses non-standard Malay dialect.Keywords: conversational speech recognition, deep neural network, Malay language, speech recognition
Procedia PDF Downloads 3222171 Hydrological Analysis for Urban Water Management
Authors: Ranjit Kumar Sahu, Ramakar Jha
Abstract:
Urban Water Management is the practice of managing freshwater, waste water, and storm water as components of a basin-wide management plan. It builds on existing water supply and sanitation considerations within an urban settlement by incorporating urban water management within the scope of the entire river basin. The pervasive problems generated by urban development have prompted, in the present work, to study the spatial extent of urbanization in Golden Triangle of Odisha connecting the cities Bhubaneswar (20.2700° N, 85.8400° E), Puri (19.8106° N, 85.8314° E) and Konark (19.9000° N, 86.1200° E)., and patterns of periodic changes in urban development (systematic/random) in order to develop future plans for (i) urbanization promotion areas, and (ii) urbanization control areas. Remote Sensing, using USGS (U.S. Geological Survey) Landsat8 maps, supervised classification of the Urban Sprawl has been done for during 1980 - 2014, specifically after 2000. This Work presents the following: (i) Time series analysis of Hydrological data (ground water and rainfall), (ii) Application of SWMM (Storm Water Management Model) and other soft computing techniques for Urban Water Management, and (iii) Uncertainty analysis of model parameters (Urban Sprawl and correlation analysis). The outcome of the study shows drastic growth results in urbanization and depletion of ground water levels in the area that has been discussed briefly. Other relative outcomes like declining trend of rainfall and rise of sand mining in local vicinity has been also discussed. Research on this kind of work will (i) improve water supply and consumption efficiency (ii) Upgrade drinking water quality and waste water treatment (iii) Increase economic efficiency of services to sustain operations and investments for water, waste water, and storm water management, and (iv) engage communities to reflect their needs and knowledge for water management.Keywords: Storm Water Management Model (SWMM), uncertainty analysis, urban sprawl, land use change
Procedia PDF Downloads 4252170 The Effect of Exposure to High Noise Level on the Performance and Rate of Error in Manual Activities
Authors: Zahra Zamanian, Alireza Zamanian, Jafar Hasanzadeh
Abstract:
Background: Unwanted sound, as one of the most important physical factors in the majority of production units, imposes a great number of problems on the industrial workers. Sound is one of the environmental factors which can cause physical as well as psychological damages and also affects the individuals’ performance and productivity. Therefore, the present study aimed to determine the effect of noise exposure on human performance. Methods: The present study assessed the effect of noise on the performance of 50 students of Shiraz University of Medical Sciences (25 males and 25 females) at the sound pressures of 70, 90, and 110 dB by using two factors of physical features and the creation of different conditions of sound pressure source as well as applying Two-Arm coordination Test. Results: The results of the present study revealed no significant difference between male and female subjects as well as different conditions of creating sound pressure regarding the length of performance (p> 0.05). In addition, as the sound pressure increased, the length of performance increased, as well. According to the results, no significant difference was found between the performance at 70 and 90 dB. On the other hand, the performance at 110 dB was significantly different from the performance at 70 and 90 dB (p<0.05 and p<0.001). Conclusion: In general, as the sound pressure increases, the performance decreases which results in a considerable increase in the individuals’ rate of error.Keywords: physical factors, two-arm coordination test, Shiraz University of Medical Sciences, noise
Procedia PDF Downloads 3052169 Cross-Sectional Study Investigating the Prevalence of Uncorrected Refractive Error and Visual Acuity through Mobile Vision Screening in the Homeless in Wales
Authors: Pakinee Pooprasert, Wanxin Wang, Tina Parmar, Dana Ahnood, Tafadzwa Young-Zvandasara, James Morgan
Abstract:
Homelessness has been shown to be correlated to poor health outcomes, including increased visual health morbidity. Despite this, there are relatively few studies regarding visual health in the homeless population, especially in the UK. This research aims to investigate visual disability and access barriers prevalent in the homeless population in Cardiff, South Wales. Data was collected from 100 homeless participants in three different shelters. Visual outcomes included near and distance visual acuity as well as non-cycloplegic refraction. Qualitative data was collected via a questionnaire and included socio-demographic profile, ocular history, subjective visual acuity and level of access to healthcare facilities. Based on the participants’ presenting visual acuity, the total prevalence of myopia and hyperopia was 17.0% and 19.0% respectively based on spherical equivalent from the eye with the greatest absolute value. The prevalence of astigmatism was 8.0%. The mean absolute spherical equivalent was 0.841D and 0.853D for right and left eye respectively. The number of participants with sight loss (as defined by VA= 6/12-6/60 in the better-seeing eye) was 27.0% in comparison to 0.89% and 1.1% in the general Cardiff and Wales population respectively (p-value is < 0.05). Additionally, 1.0% of the homeless subjects were registered blind (VA less than 3/60), in comparison to 0.17% for the national consensus after age standardization. Most participants had good knowledge regarding access to prescription glasses and eye examination services. Despite this, 85.0% never had their eyes examined by a doctor and 73.0% had their last optometrist appointment in more than 5 years. These findings suggested that there was a significant disparity in ocular health, including visual acuity and refractive error amongst the homeless in comparison to the general population. Further, the homeless were less likely to receive the same level of support and continued care in the community due to access barriers. These included a number of socio-economic factors such as travel expenses and regional availability of services, as well as administrative shortcomings. In conclusion, this research demonstrated unmet visual health needs within the homeless, and that inclusive policy changes may need to be implemented for better healthcare outcomes within this marginalized community.Keywords: homelessness, refractive error, visual disability, Wales
Procedia PDF Downloads 172