Search results for: fuzzy sets
1230 Monitoring Potential Temblor Localities as a Supplemental Risk Control System
Authors: Mikhail Zimin, Svetlana Zimina, Maxim Zimin
Abstract:
Without question, the basic method of prevention of human and material losses is the provision for adequate strength of constructions. At the same time, seismic load has a stochastic character. So, at all times, there is little danger of earthquake forces exceeding the selected design load. This risk is very low, but the consequences of such events may be extremely serious. Very dangerous are also occasional mistakes in seismic zoning, soil conditions changing before temblors, and failure to take into account hazardous natural phenomena caused by earthquakes. Besides, it is known that temblors detrimentally affect the environmental situation in regions where they occur, resulting in panic and worsening various disease courses. It may lead to mistakes of personnel of hazardous production facilities like the production and distribution of gas and oil, which may provoke severe accidents. In addition, gas and oil pipelines often have long mileage and cross many perilous zones by contrast with buildings. This situation increases the risk of heavy accidents. In such cases, complex monitoring of potential earthquake localities would be relevant. Even though the number of successful real-time forecasts of earthquakes is not great, it is well in excess, such as may be under random guessing. Experimental performed time-lapse study and analysis consist of searching seismic, biological, meteorological, and light earthquake precursors, processing such data with the help of fuzzy sets, collecting weather information, utilizing a database of terrain, and computing risk of slope processes under the temblor in a given setting. Works were done in a real-time environment and broadly acceptable results took place. Observations from already in-place seismic recording systems are used. Furthermore, a look back study of precursors of known earthquakes is done. Situations before Ashkhabad, Tashkent, and Haicheng seismic events are analyzed. Fairish findings are obtained. Results of earthquake forecasts can be used for predicting dangerous natural phenomena caused by temblors such as avalanches and mudslides. They may also be utilized for prophylaxis of some diseases and their complications. Relevant software is worked out too. It should be emphasized that such control does not require serious financial expenses and can be performed by a small group of professionals. Thus, complex monitoring of potential earthquake localities, including short-term earthquake forecasts and analysis of possible hazardous consequences of temblors, may further the safety of pipeline facilities.Keywords: risk, earthquake, monitoring, forecast, precursor
Procedia PDF Downloads 221229 Pruning Algorithm for the Minimum Rule Reduct Generation
Authors: Sahin Emrah Amrahov, Fatih Aybar, Serhat Dogan
Abstract:
In this paper we consider the rule reduct generation problem. Rule Reduct Generation (RG) and Modified Rule Generation (MRG) algorithms, that are used to solve this problem, are well-known. Alternative to these algorithms, we develop Pruning Rule Generation (PRG) algorithm. We compare the PRG algorithm with RG and MRG.Keywords: rough sets, decision rules, rule induction, classification
Procedia PDF Downloads 5281228 Calculation of Electronic Structures of Nickel in Interaction with Hydrogen by Density Functional Theoretical (DFT) Method
Authors: Choukri Lekbir, Mira Mokhtari
Abstract:
Hydrogen-Materials interaction and mechanisms can be modeled at nano scale by quantum methods. In this work, the effect of hydrogen on the electronic properties of a cluster material model «nickel» has been studied by using of density functional theoretical (DFT) method. Two types of clusters are optimized: Nickel and hydrogen-nickel system. In the case of nickel clusters (n = 1-6) without presence of hydrogen, three types of electronic structures (neutral, cationic and anionic), have been optimized according to three basis sets calculations (B3LYP/LANL2DZ, PW91PW91/DGDZVP2, PBE/DGDZVP2). The comparison of binding energies and bond lengths of the three structures of nickel clusters (neutral, cationic and anionic) obtained by those basis sets, shows that the results of neutral and anionic nickel clusters are in good agreement with the experimental results. In the case of neutral and anionic nickel clusters, comparing energies and bond lengths obtained by the three bases, shows that the basis set PBE/DGDZVP2 is most suitable to experimental results. In the case of anionic nickel clusters (n = 1-6) with presence of hydrogen, the optimization of the hydrogen-nickel (anionic) structures by using of the basis set PBE/DGDZVP2, shows that the binding energies and bond lengths increase compared to those obtained in the case of anionic nickel clusters without the presence of hydrogen, that reveals the armor effect exerted by hydrogen on the electronic structure of nickel, which due to the storing of hydrogen energy within nickel clusters structures. The comparison between the bond lengths for both clusters shows the expansion effect of clusters geometry which due to hydrogen presence.Keywords: binding energies, bond lengths, density functional theoretical, geometry optimization, hydrogen energy, nickel cluster
Procedia PDF Downloads 4221227 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 3161226 Dosimetric Comparison of Conventional Optimization Methods with Inverse Planning Simulated Annealing Technique
Authors: Shraddha Srivastava, N. K. Painuly, S. P. Mishra, Navin Singh, Muhsin Punchankandy, Kirti Srivastava, M. L. B. Bhatt
Abstract:
Various optimization methods used in interstitial brachytherapy are based on dwell positions and dwell weights alteration to produce dose distribution based on the implant geometry. Since these optimization schemes are not anatomy based, they could lead to deviations from the desired plan. This study was henceforth carried out to compare anatomy-based Inverse Planning Simulated Annealing (IPSA) optimization technique with graphical and geometrical optimization methods in interstitial high dose rate brachytherapy planning of cervical carcinoma. Six patients with 12 CT data sets of MUPIT implants in HDR brachytherapy of cervical cancer were prospectively studied. HR-CTV and organs at risk (OARs) were contoured in Oncentra treatment planning system (TPS) using GYN GEC-ESTRO guidelines on cervical carcinoma. Three sets of plans were generated for each fraction using IPSA, graphical optimization (GrOPT) and geometrical optimization (GOPT) methods. All patients were treated to a dose of 20 Gy in 2 fractions. The main objective was to cover at least 95% of HR-CTV with 100% of the prescribed dose (V100 ≥ 95% of HR-CTV). IPSA, GrOPT, and GOPT based plans were compared in terms of target coverage, OAR doses, homogeneity index (HI) and conformity index (COIN) using dose-volume histogram (DVH). Target volume coverage (mean V100) was found to be 93.980.87%, 91.341.02% and 85.052.84% for IPSA, GrOPT and GOPT plans respectively. Mean D90 (minimum dose received by 90% of HR-CTV) values for IPSA, GrOPT and GOPT plans were 10.19 ± 1.07 Gy, 10.17 ± 0.12 Gy and 7.99 ± 1.0 Gy respectively, while D100 (minimum dose received by 100% volume of HR-CTV) for IPSA, GrOPT and GOPT plans was 6.55 ± 0.85 Gy, 6.55 ± 0.65 Gy, 4.73 ± 0.14 Gy respectively. IPSA plans resulted in lower doses to the bladder (D₂Keywords: cervical cancer, HDR brachytherapy, IPSA, MUPIT
Procedia PDF Downloads 1871225 Multimodal Biometric Cryptography Based Authentication in Cloud Environment to Enhance Information Security
Authors: D. Pugazhenthi, B. Sree Vidya
Abstract:
Cloud computing is one of the emerging technologies that enables end users to use the services of cloud on ‘pay per usage’ strategy. This technology grows in a fast pace and so is its security threat. One among the various services provided by cloud is storage. In this service, security plays a vital factor for both authenticating legitimate users and protection of information. This paper brings in efficient ways of authenticating users as well as securing information on the cloud. Initial phase proposed in this paper deals with an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. Unique identification and slow intrusive formulates an advanced reliability on user-behaviour based biometrics than conventional means of password authentication. By biometric systems, the accounts are accessed only by a legitimate user and not by a nonentity. The biometric templates employed here do not include single trait but multiple, viz., iris and finger prints. The coordinating stage of the authentication system functions on Ensemble Support Vector Machine (SVM) and optimization by assembling weights of base SVMs for SVM ensemble after individual SVM of ensemble is trained by the Artificial Fish Swarm Algorithm (AFSA). Thus it helps in generating a user-specific secure cryptographic key of the multimodal biometric template by fusion process. Data security problem is averted and enhanced security architecture is proposed using encryption and decryption system with double key cryptography based on Fuzzy Neural Network (FNN) for data storing and retrieval in cloud computing . The proposing scheme aims to protect the records from hackers by arresting the breaking of cipher text to original text. This improves the authentication performance that the proposed double cryptographic key scheme is capable of providing better user authentication and better security which distinguish between the genuine and fake users. Thus, there are three important modules in this proposed work such as 1) Feature extraction, 2) Multimodal biometric template generation and 3) Cryptographic key generation. The extraction of the feature and texture properties from the respective fingerprint and iris images has been done initially. Finally, with the help of fuzzy neural network and symmetric cryptography algorithm, the technique of double key encryption technique has been developed. As the proposed approach is based on neural networks, it has the advantage of not being decrypted by the hacker even though the data were hacked already. The results prove that authentication process is optimal and stored information is secured.Keywords: artificial fish swarm algorithm (AFSA), biometric authentication, decryption, encryption, fingerprint, fusion, fuzzy neural network (FNN), iris, multi-modal, support vector machine classification
Procedia PDF Downloads 2591224 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling
Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow
Abstract:
Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.Keywords: dynamic modeling, missing data, mobility, multiple imputation
Procedia PDF Downloads 1641223 Building a Comprehensive Repository for Montreal Gamelan Archives
Authors: Laurent Bellemare
Abstract:
After the showcase of traditional Indonesian performing arts at the Vancouver Expo 1986, Canadian universities inherited sets of Indonesian gamelan orchestras and soon began offering courses for music students interested in learning these diverse traditions. Among them, Université de Montréal was offered two sets of Balinese orchestras, a novelty that allowed a community of Montreal gamelan enthusiasts to form and engage with this music. A few generations later, a large body of archives have amassed, framing the history of this niche community’s achievements. This data, scattered in public and private archive collections, comes in various formats: Digital Audio Tape, audio cassettes, Video Home System videotape, digital files, photos, reel-to-reel audiotape, posters, concert programs, letters, TV shows, reports and more. Attempting to study these documents in order to unearth a chronology of gamelan in Montreal has proven to be challenging since no suitable platform for preservation, storage, and research currently exists. These files are, therefore, hard to find due to their decentralized locations. Additionally, most of the documents in older formats have yet to be digitized. In the case of recent digital files, such as pictures or rehearsal recordings, their locations can be even messier and their quantity overwhelming. Aside from the basic issue of choosing a suitable repository platform, questions of legal rights and methodology arise. For posterity, these documents should nonetheless be digitized, organized, and stored in an easily accessible online repository. This paper aims to underline the various challenges encountered in the early stages of such a project as well as to suggest ways of overcoming the obstacles to a thorough archival investigation.Keywords: archival work, archives, Balinese gamelan, Canada, Gamelan, Indonesia, Javanese gamelan, Montreal
Procedia PDF Downloads 1191222 Comparative Study of Water Quality Parameters in the Proximity of Various Landfills Sites in India
Authors: Abhishek N. Srivastava, Rahul Singh, Sumedha Chakma
Abstract:
The rapid urbanization in the developing countries is generating an enormous amount of waste leading to the creation of unregulated landfill sites at various places at its disposal. The liquid waste, known as leachate, produced from these landfills sites is severely affecting the surrounding water quality. The water quality in the proximity areas of the landfill is found affected by various physico-chemical parameters of leachate such as pH, alkalinity, total hardness, conductivity, chloride, total dissolved solids (TDS), total suspended solids (TSS), sulphate, nitrate, phosphate, fluoride, sodium and potassium, biological parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), Faecal coliform, and heavy metals such as cadmium (Cd), lead (Pb), iron (Fe), mercury (Hg), arsenic (As), cobalt (Co), manganese (Mn), zinc (Zn), copper (Cu), chromium (Cr), nickel (Ni). However, all these parameters are distributive in leachate that produced according to the nature of waste being dumped at various landfill sites, therefore, it becomes very difficult to predict the main responsible parameter of leachate for water quality contamination. The present study is endeavour the comparative analysis of the physical, chemical and biological parameters of various landfills in India viz. Okhla landfill, Ghazipur landfill, Bhalswa ladfill in NCR Delhi, Deonar landfill in Mumbai, Dhapa landfill in Kolkata and Kodungayaiyur landfill, Perungudi landfill in Chennai. The statistical analysis of the parameters was carried out using the Statistical Packages for the Social Sciences (SPSS) and LandSim 2.5 model to simulate the long term effect of various parameters on different time scale. Further, the uncertainties characterization of various input parameters has also been analysed using fuzzy alpha cut (FAC) technique to check the sensitivity of various water quality parameters at the proximity of numerous landfill sites. Finally, the study would help to suggest the best method for the prevention of pollution migration from the landfill sites on priority basis.Keywords: landfill leachate, water quality, LandSim, fuzzy alpha cut
Procedia PDF Downloads 1251221 The Influence of the Visual and the Direct Physical Accessibility on the Sense of Control of Saudi Women in the Home Environment
Authors: Ahdab H. Mahdaly, Debajyoti Pati, Sharran Parkinson, Lee S. Duemer
Abstract:
The importance of providing employed mothers with the right physical environment inside the home is not an easy task, especially when the culture is involved. This study examines the typical Saudi home as a personal, emotional, social and cultural setting, especially on the interactions between the physical design and perceived control of working mothers. However, owing to the scarcity of published literature on Saudi homes, American employed mothers were included in the study to provide a baseline. With the ongoing transformations in women’s role in Saudi Arabia, there is a perception that traditional home designs may not afford the appropriate sense of control inside the home. Saudi Arabia has numerous interacting layers of socio-cultural-religious forces that affect residential design, and understanding the moderating role of the Saudi home is vital to the ongoing national policy transition on women. The study investigated one narrow, albeit critical, influence of home design on ones sense of control – direct visual and physical accessibility between sets of rooms. Ten subjects, five Saudis and five American, examined visual and physical access between 171 room sets, and provided qualitative responses on how each access influences their sense of control. Three main themes emerged, with potential effects on control: 1- Openness, 2- Proximity, and 3- Separation. Data suggest that although the Saudi home is a substantially more complex setting than the American ones, a class of spaces that can be termed as ‘Neutral Rooms’ serving as cultural separators may represent the ideal solution for optimizing sense of control, without ignoring cultural-religious traditions, during the transition of the Saudi women.Keywords: direct physical accessibility, home environment, sense of control, visual accessibility, working mothers
Procedia PDF Downloads 3111220 An Improved OCR Algorithm on Appearance Recognition of Electronic Components Based on Self-adaptation of Multifont Template
Authors: Zhu-Qing Jia, Tao Lin, Tong Zhou
Abstract:
The recognition method of Optical Character Recognition has been expensively utilized, while it is rare to be employed specifically in recognition of electronic components. This paper suggests a high-effective algorithm on appearance identification of integrated circuit components based on the existing methods of character recognition, and analyze the pros and cons.Keywords: optical character recognition, fuzzy page identification, mutual correlation matrix, confidence self-adaptation
Procedia PDF Downloads 5401219 Determination of Vinpocetine in Tablets with the Vinpocetine-Selective Electrode and Possibilities of Application in Pharmaceutical Analysis
Authors: Faisal A. Salih
Abstract:
Vinpocetine (Vin) is an ethyl ester of apovincamic acid and is a semisynthetic derivative of vincamine, an alkaloid from plants of the genus Periwinkle (plant) vinca minor. It was found that this compound stimulates cerebral metabolism: it increases the uptake of glucose and oxygen, as well as the consumption of these substances by the brain tissue. Vinpocetine enhances the flow of blood in the brain and has a vasodilating, antihypertensive, and antiplatelet effect. Vinpocetine seems to improve the human ability to acquire new memories and restore memories that have been lost. This drug has been clinically used for the treatment of cerebrovascular disorders such as stroke and dementia memory disorders, as well as in ophthalmology and otorhinolaryngology. It has no side effects, and no toxicity has been reported when using vinpocetine for a long time. For the quantitative determination of Vin in dosage forms, the HPLC methods are generally used. A promising alternative is potentiometry with Vin- selective electrode, which does not require expensive equipment and materials. Another advantage of the potentiometric method is that the pills and solutions for injections can be used directly without separation from matrix components, which reduces both analysis time and cost. In this study, it was found that the choice of a good plasticizer an electrode with the following membrane composition: PVC (32.8 wt.%), ortho-nitrophenyl octyl ether (66.6 wt.%), tetrakis-4-chlorophenyl borate (0.6 wt.%) exhibits excellent analytical performance: lower detection limit (LDL) 1.2•10⁻⁷ M, linear response range (LRR) 1∙10⁻³–3.9∙10⁻⁶ M, the slope of the electrode function 56.2±0.2 mV/decade). Vin masses per average tablet weight determined by direct potentiometry (DP) and potentiometric titration (PT) methods for the two different sets of 10 tablets were (100.35±0.2–100.36±0.1) mg for two sets of blister packs. The mass fraction of Vin in individual tablets, determined using DP, was (9.87 ± 0.02–10.16 ±0.02) mg, while the RSD was (0.13–0.35%). The procedure has very good reproducibility, and excellent compliance with the declared amounts was observed.Keywords: vinpocetine, potentiometry, ion selective electrode, pharmaceutical analysis
Procedia PDF Downloads 741218 Exploring Socio-Economic Barriers of Green Entrepreneurship in Iran and Their Interactions Using Interpretive Structural Modeling
Authors: Younis Jabarzadeh, Rahim Sarvari, Negar Ahmadi Alghalandis
Abstract:
Entrepreneurship at both individual and organizational level is one of the most driving forces in economic development and leads to growth and competition, job generation and social development. Especially in developing countries, the role of entrepreneurship in economic and social prosperity is more emphasized. But the effect of global economic development on the environment is undeniable, especially in negative ways, and there is a need to rethink current business models and the way entrepreneurs act to introduce new businesses to address and embed environmental issues in order to achieve sustainable development. In this paper, green or sustainable entrepreneurship is addressed in Iran to identify challenges and barriers entrepreneurs in the economic and social sectors face in developing green business solutions. Sustainable or green entrepreneurship has been gaining interest among scholars in recent years and addressing its challenges and barriers need much more attention to fill the gap in the literature and facilitate the way those entrepreneurs are pursuing. This research comprised of two main phases: qualitative and quantitative. At qualitative phase, after a thorough literature review, fuzzy Delphi method is utilized to verify those challenges and barriers by gathering a panel of experts and surveying them. In this phase, several other contextually related factors were added to the list of identified barriers and challenges mentioned in the literature. Then, at the quantitative phase, Interpretive Structural Modeling is applied to construct a network of interactions among those barriers identified at the previous phase. Again, a panel of subject matter experts comprised of academic and industry experts was surveyed. The results of this study can be used by policymakers in both the public and industry sector, to introduce more systematic solutions to eliminate those barriers and help entrepreneurs overcome challenges of sustainable entrepreneurship. It also contributes to the literature as the first research in this type which deals with the barriers of sustainable entrepreneurship and explores their interaction.Keywords: green entrepreneurship, barriers, fuzzy Delphi method, interpretive structural modeling
Procedia PDF Downloads 1661217 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India
Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit
Abstract:
Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique
Procedia PDF Downloads 1271216 Orbit Determination from Two Position Vectors Using Finite Difference Method
Authors: Akhilesh Kumar, Sathyanarayan G., Nirmala S.
Abstract:
An unusual approach is developed to determine the orbit of satellites/space objects. The determination of orbits is considered a boundary value problem and has been solved using the finite difference method (FDM). Only positions of the satellites/space objects are known at two end times taken as boundary conditions. The technique of finite difference has been used to calculate the orbit between end times. In this approach, the governing equation is defined as the satellite's equation of motion with a perturbed acceleration. Using the finite difference method, the governing equations and boundary conditions are discretized. The resulting system of algebraic equations is solved using Tri Diagonal Matrix Algorithm (TDMA) until convergence is achieved. This methodology test and evaluation has been done using all GPS satellite orbits from National Geospatial-Intelligence Agency (NGA) precise product for Doy 125, 2023. Towards this, two hours of twelve sets have been taken into consideration. Only positions at the end times of each twelve sets are considered boundary conditions. This algorithm is applied to all GPS satellites. Results achieved using FDM compared with the results of NGA precise orbits. The maximum RSS error for the position is 0.48 [m] and the velocity is 0.43 [mm/sec]. Also, the present algorithm is applied on the IRNSS satellites for Doy 220, 2023. The maximum RSS error for the position is 0.49 [m], and for velocity is 0.28 [mm/sec]. Next, a simulation has been done for a Highly Elliptical orbit for DOY 63, 2023, for the duration of 6 hours. The RSS of difference in position is 0.92 [m] and velocity is 1.58 [mm/sec] for the orbital speed of more than 5km/sec. Whereas the RSS of difference in position is 0.13 [m] and velocity is 0.12 [mm/sec] for the orbital speed less than 5km/sec. Results show that the newly created method is reliable and accurate. Further applications of the developed methodology include missile and spacecraft targeting, orbit design (mission planning), space rendezvous and interception, space debris correlation, and navigation solutions.Keywords: finite difference method, grid generation, NavIC system, orbit perturbation
Procedia PDF Downloads 841215 Structural Properties, Natural Bond Orbital, Theory Functional Calculations (DFT), and Energies for Fluorous Compounds: C13H12F7ClN2O
Authors: Shahriar Ghammamy, Masomeh Shahsavary
Abstract:
In this paper, the optimized geometries and frequencies of the stationary point and the minimum energy paths of C13H12F7ClN2O are calculated by using the DFT (B3LYP) methods with LANL2DZ basis sets. B3LYP/ LANL2DZ calculation results indicated that some selected bond length and bond angles values for the C13H12F7ClN2O.Keywords: C13H12F7ClN2O, vatural bond orbital, fluorous compounds, functional calculations
Procedia PDF Downloads 3361214 Value Engineering Change Proposal Application in Construction of Road-Building Projects
Authors: Mohammad Mahdi Hajiali
Abstract:
Many of construction projects estimated in Iran have been influenced by the limitations of financial resources. As for Iran, a country that is developing, and to follow this development-oriented approach which many numbers of projects each year run in, if we can reduce the cost of projects by applying a method we will help greatly to minimize the cost of major construction projects and therefore projects will finish faster and more efficiently. One of the components of transportation infrastructure are roads that are considered to have a considerable share of the country budget. In addition, major budget of the related ministry is spending to repair, improve and maintain roads. Value Engineering is a simple and powerful methodology over the past six decades that has been successful in reducing the cost of many projects. Specific solution for using value engineering in the stage of project implementation is called value engineering change proposal (VECP). It was tried in this research to apply VECP in one of the road-building projects in Iran in order to enhance the value of this kind of projects and reduce their cost. In this case study after applying VECP, an idea was raised. It was about use of concrete pavement instead of hot mixed asphalt (HMA) and also using fiber in order to improve concrete pavement performance. VE group team made a decision that for choosing the best alternatives, get expert’s opinions in pavement systems and use Fuzzy TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) for ranking opinions of the experts. Finally, Jointed Plain Concrete Pavement (JPCP) was selected. Group also experimented concrete samples with available fibers in Iran and the results of experiments showed a significant increment in concrete specifications such as flexural strength. In the end, it was shown that by using of fiber-reinforced concrete pavement instead of asphalt pavement, we can achieve a significant saving in cost, time and also increment in quality, durability, and longevity.Keywords: road-building projects, value engineering change proposal (VECP), Jointed Plain Concrete Pavement (JPCP), Fuzzy TOPSIS, fiber-reinforced concrete
Procedia PDF Downloads 1961213 Experimental and Theoretical Study on Flexural Behaviors of Reinforced Concrete Cement (RCC) Beams by Using Carbonfiber Reinforcedpolymer (CFRP) Laminate as Retrofitting and Rehabilitation Method
Authors: Fils Olivier Kamanzi
Abstract:
This research Paper shows that materials CFRP were used to rehabilitate 9 Beams and retrofitting of 9 Beams with size (125x250x2300) mm each for M50 grade of concrete with 20% of Volume of Cement replaced by GGBS as a mineral Admixture. Superplasticizer (ForscoConplast SP430) used to reduce the water-cement ratio and maintaining good workability of fresh concrete (Slump test 57mm). Concrete Mix ratio 1:1.56:2.66 with a water-cement ratio of 0.31(ACI codebooks). A sample of 6cubes sized (150X150X150) mm, 6cylinders sized (150ФX300H) mm and 6Prisms sized (100X100X500) mm were cast, cured, and tested for 7,14&28days by compressive, tensile and flexure test; finally, mix design reaches the compressive strength of 59.84N/mm2. 21 Beams were cast and cured for up to 28 days, 3Beams were tested by a two-point loading machine as Control beams. 9 Beams were distressed in flexure by adopting failure up to final Yielding point under two-point loading conditions by taking 90% off Ultimate load. Three sets, each composed of three distressed beams, were rehabilitated by using CFRP sheets, one, two & three layers, respectively, and after being retested up to failure mode. Another three sets were freshly retrofitted also by using CFRP sheets one, two & three layers, respectively, and being tested by a two-point load method of compression strength testing machine. The aim of this study is to determine the flexural Strength & behaviors of repaired and retrofitted Beams by CFRP sheets for gaining good strength and considering economic aspects. The results show that rehabilitated beams increase its strength 47 %, 78 % & 89 %, respectively, to thickness of CFRP sheets and 41%, 51 %& 68 %, respectively too, for retrofitted Beams. The conclusion is that three layers of CFRP sheets are the best applicable in repairing and retrofitting the bonded beams method.Keywords: retrofitting, rehabilitation, cfrp, rcc beam, flexural strength and behaviors, ggbs, and epoxy resin
Procedia PDF Downloads 1081212 Using Machine Learning to Classify Different Body Parts and Determine Healthiness
Authors: Zachary Pan
Abstract:
Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.Keywords: body part, healthcare, machine learning, neural networks
Procedia PDF Downloads 1031211 Preliminary Evaluation of Maximum Intensity Projection SPECT Imaging for Whole Body Tc-99m Hydroxymethylene Diphosphonate Bone Scanning
Authors: Yasuyuki Takahashi, Hirotaka Shimada, Kyoko Saito
Abstract:
Bone scintigraphy is widely used as a screening tool for bone metastases. However, the 180 to 240 minutes (min) waiting time after the intravenous (i.v.) injection of the tracer is both long and tiresome. To solve this shortcoming, a bone scan with a shorter waiting time is needed. In this study, we applied the Maximum Intensity Projection (MIP) and triple energy window (TEW) scatter correction to a whole body bone SPECT (Merged SPECT) and investigated shortening the waiting time. Methods: In a preliminary phantom study, hot gels of 99mTc-HMDP were inserted into sets of rods with diameters ranging from 4 to 19 mm. Each rod set covered a sector of a cylindrical phantom. The activity concentration of all rods was 2.5 times that of the background in the cylindrical body of the phantom. In the human study, SPECT images were obtained from chest to abdomen at 30 to 180 min after 99mTc- hydroxymethylene diphosphonate (HMDP) injection of healthy volunteers. For both studies, MIP images were reconstructed. Planar whole body images of the patients were also obtained. These were acquired at 200 min. The image quality of the SPECT and the planar images was compared. Additionally, 36 patients with breast cancer were scanned in the same way. The delectability of uptake regions (metastases) was compared visually. Results: In the phantom study, a 4 mm size hot gel was difficult to depict on the conventional SPECT, but MIP images could recognize it clearly. For both the healthy volunteers and the clinical patients, the accumulation of 99mTc-HMDP in the SPECT was good as early as 90 min. All findings of both image sets were in agreement. Conclusion: In phantoms, images from MIP with TEW scatter correction could detect all rods down to those with a diameter of 4 mm. In patients, MIP reconstruction with TEW scatter correction could improve the detectability of hot lesions. In addition, the time between injection and imaging could be shortened from that conventionally used for whole body scans.Keywords: merged SPECT, MIP, TEW scatter correction, 99mTc-HMDP
Procedia PDF Downloads 4111210 Implementation of Algorithm K-Means for Grouping District/City in Central Java Based on Macro Economic Indicators
Authors: Nur Aziza Luxfiati
Abstract:
Clustering is partitioning data sets into sub-sets or groups in such a way that elements certain properties have shared property settings with a high level of similarity within one group and a low level of similarity between groups. . The K-Means algorithm is one of thealgorithmsclustering as a grouping tool that is most widely used in scientific and industrial applications because the basic idea of the kalgorithm is-means very simple. In this research, applying the technique of clustering using the k-means algorithm as a method of solving the problem of national development imbalances between regions in Central Java Province based on macroeconomic indicators. The data sample used is secondary data obtained from the Central Java Provincial Statistics Agency regarding macroeconomic indicator data which is part of the publication of the 2019 National Socio-Economic Survey (Susenas) data. score and determine the number of clusters (k) using the elbow method. After the clustering process is carried out, the validation is tested using themethodsBetween-Class Variation (BCV) and Within-Class Variation (WCV). The results showed that detection outlier using z-score normalization showed no outliers. In addition, the results of the clustering test obtained a ratio value that was not high, namely 0.011%. There are two district/city clusters in Central Java Province which have economic similarities based on the variables used, namely the first cluster with a high economic level consisting of 13 districts/cities and theclustersecondwith a low economic level consisting of 22 districts/cities. And in the cluster second, namely, between low economies, the authors grouped districts/cities based on similarities to macroeconomic indicators such as 20 districts of Gross Regional Domestic Product, with a Poverty Depth Index of 19 districts, with 5 districts in Human Development, and as many as Open Unemployment Rate. 10 districts.Keywords: clustering, K-Means algorithm, macroeconomic indicators, inequality, national development
Procedia PDF Downloads 1581209 Inverse Scattering for a Second-Order Discrete System via Transmission Eigenvalues
Authors: Abdon Choque-Rivero
Abstract:
The Jacobi system with the Dirichlet boundary condition is considered on a half-line lattice when the coefficients are real valued. The inverse problem of recovery of the coefficients from various data sets containing the so-called transmission eigenvalues is analyzed. The Marchenko method is utilized to solve the corresponding inverse problem.Keywords: inverse scattering, discrete system, transmission eigenvalues, Marchenko method
Procedia PDF Downloads 1441208 Constructing the Joint Mean-Variance Regions for Univariate and Bivariate Normal Distributions: Approach Based on the Measure of Cumulative Distribution Functions
Authors: Valerii Dashuk
Abstract:
The usage of the confidence intervals in economics and econometrics is widespread. To be able to investigate a random variable more thoroughly, joint tests are applied. One of such examples is joint mean-variance test. A new approach for testing such hypotheses and constructing confidence sets is introduced. Exploring both the value of the random variable and its deviation with the help of this technique allows checking simultaneously the shift and the probability of that shift (i.e., portfolio risks). Another application is based on the normal distribution, which is fully defined by mean and variance, therefore could be tested using the introduced approach. This method is based on the difference of probability density functions. The starting point is two sets of normal distribution parameters that should be compared (whether they may be considered as identical with given significance level). Then the absolute difference in probabilities at each 'point' of the domain of these distributions is calculated. This measure is transformed to a function of cumulative distribution functions and compared to the critical values. Critical values table was designed from the simulations. The approach was compared with the other techniques for the univariate case. It differs qualitatively and quantitatively in easiness of implementation, computation speed, accuracy of the critical region (theoretical vs. real significance level). Stable results when working with outliers and non-normal distributions, as well as scaling possibilities, are also strong sides of the method. The main advantage of this approach is the possibility to extend it to infinite-dimension case, which was not possible in the most of the previous works. At the moment expansion to 2-dimensional state is done and it allows to test jointly up to 5 parameters. Therefore the derived technique is equivalent to classic tests in standard situations but gives more efficient alternatives in nonstandard problems and on big amounts of data.Keywords: confidence set, cumulative distribution function, hypotheses testing, normal distribution, probability density function
Procedia PDF Downloads 1741207 Parallel Multisplitting Methods for Differential Systems
Authors: Malika El Kyal, Ahmed Machmoum
Abstract:
We prove the superlinear convergence of asynchronous multi-splitting methods applied to differential equations. This study is based on the technique of nested sets. It permits to specify kind of the convergence in the asynchronous mode.The main characteristic of an asynchronous mode is that the local algorithm not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays to be substantial and unpredictable. Note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.Keywords: parallel methods, asynchronous mode, multisplitting, ODE
Procedia PDF Downloads 5261206 Prediction of Formation Pressure Using Artificial Intelligence Techniques
Authors: Abdulmalek Ahmed
Abstract:
Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)
Procedia PDF Downloads 1491205 EcoLife and Greed Index Measurement: An Alternative Tool to Promote Sustainable Communities and Eco-Justice
Authors: Louk Aourelien Andrianos, Edward Dommen, Athena Peralta
Abstract:
Greed, as epitomized by overconsumption of natural resources, is at the root of ecological destruction and unsustainability of modern societies. Presently economies rely on unrestricted structural greed which fuels unlimited economic growth, overconsumption, and individualistic competitive behavior. Structural greed undermines the life support system on earth and threatens ecological integrity, social justice and peace. The World Council of Churches (WCC) has developed a program on ecological and economic justice (EEJ) with the aim to promote an economy of life where the economy is embedded in society and society in ecology. This paper aims at analyzing and assessing the economy of life (EcoLife) by offering an empirical tool to measure and monitor the root causes and effects of unsustainability resulting from human greed on global, national, institutional and individual levels. This holistic approach is based on the integrity of ecology and economy in a society founded on justice. The paper will discuss critical questions such as ‘what is an economy of life’ and ‘how to measure and control it from the effect of greed’. A model called GLIMS, which stands for Greed Lines and Indices Measurement System is used to clarify the concept of greed and help measuring the economy of life index by fuzzy logic reasoning. The inputs of the model are from statistical indicators of natural resources consumption, financial realities, economic performance, social welfare and ethical and political facts. The outputs are concrete measures of three primary indices of ecological, economic and socio-political greed (ECOL-GI, ECON-GI, SOCI-GI) and one overall multidimensional economy of life index (EcoLife-I). EcoLife measurement aims to build awareness of an economy life and to address the effects of greed in systemic and structural aspects. It is a tool for ethical diagnosis and policy making.Keywords: greed line, sustainability indicators, fuzzy logic, eco-justice, World Council of Churches (WCC)
Procedia PDF Downloads 3201204 Impacts on Marine Ecosystems Using a Multilayer Network Approach
Authors: Nelson F. F. Ebecken, Gilberto C. Pereira, Lucio P. de Andrade
Abstract:
Bays, estuaries and coastal ecosystems are some of the most used and threatened natural systems globally. Its deterioration is due to intense and increasing human activities. This paper aims to monitor the socio-ecological in Brazil, model and simulate it through a multilayer network representing a DPSIR structure (Drivers, Pressures, States-Impacts-Responses) considering the concept of Management based on Ecosystems to support decision-making under the National/State/Municipal Coastal Management policy. This approach considers several interferences and can represent a significant advance in several scientific aspects. The main objective of this paper is the coupling of three different types of complex networks, the first being an ecological network, the second a social network, and the third a network of economic activities, in order to model the marine ecosystem. Multilayer networks comprise two or more "layers", which may represent different types of interactions, different communities, different points in time, and so on. The dependency between layers results from processes that affect the various layers. For example, the dispersion of individuals between two patches affects the network structure of both samples. A multilayer network consists of (i) a set of physical nodes representing entities (e.g., species, people, companies); (ii) a set of layers, which may include multiple layering aspects (e.g., time dependency and multiple types of relationships); (iii) a set of state nodes, each of which corresponds to the manifestation of a given physical node in a layer-specific; and (iv) a set of edges (weighted or not) to connect the state nodes among themselves. The edge set includes the intralayer edges familiar and interlayer ones, which connect state nodes between layers. The applied methodology in an existent case uses the Flow cytometry process and the modeling of ecological relationships (trophic and non-trophic) following fuzzy theory concepts and graph visualization. The identification of subnetworks in the fuzzy graphs is carried out using a specific computational method. This methodology allows considering the influence of different factors and helps their contributions to the decision-making process.Keywords: marine ecosystems, complex systems, multilayer network, ecosystems management
Procedia PDF Downloads 1131203 Marriage Domination and Divorce Domination in Graphs
Authors: Mark L. Caay, Rodolfo E. Maza
Abstract:
In this paper, the authors define two new variants of domination in graphs: the marriage and the divorce domination. A subset S ⊆ V (G) is said to be a marriage dominating set of G if for every e ∈ E(G), there exists a u ∈ V (G) such that u is one of the end vertex of e. A marriage dominating set S ⊆ V (G) is said to be a divorce dominating set of G if G\S is a disconnected graph. In this study, the authors present conditions of graphs for which the marriage and the divorce domination will take place and for which the two sets will coincide. Furthermore, the author gives the necessary and sufficient conditions for marriage domination to avoid divorce.Keywords: domination, decomposition, marriage domination, divorce domination, marriage theorem
Procedia PDF Downloads 171202 Algebras over an Integral Domain and Immediate Neighbors
Authors: Shai Sarussi
Abstract:
Let S be an integral domain with field of fractions F and let A be an F-algebra. An S-subalgebra R of A is called S-nice if R∩F = S and the localization of R with respect to S \{0} is A. Denoting by W the set of all S-nice subalgebras of A, and defining a notion of open sets on W, one can view W as a T0-Alexandroff space. A characterization of the property of immediate neighbors in an Alexandroff topological space is given, in terms of closed and open subsets of appropriate subspaces. Moreover, two special subspaces of W are introduced, and a way in which their closed and open subsets induce W is presented.Keywords: integral domains, Alexandroff topology, immediate neighbors, valuation domains
Procedia PDF Downloads 1771201 Ischemic Stroke Detection in Computed Tomography Examinations
Authors: Allan F. F. Alves, Fernando A. Bacchim Neto, Guilherme Giacomini, Marcela de Oliveira, Ana L. M. Pavan, Maria E. D. Rosa, Diana R. Pina
Abstract:
Stroke is a worldwide concern, only in Brazil it accounts for 10% of all registered deaths. There are 2 stroke types, ischemic (87%) and hemorrhagic (13%). Early diagnosis is essential to avoid irreversible cerebral damage. Non-enhanced computed tomography (NECT) is one of the main diagnostic techniques used due to its wide availability and rapid diagnosis. Detection depends on the size and severity of lesions and the time spent between the first symptoms and examination. The Alberta Stroke Program Early CT Score (ASPECTS) is a subjective method that increases the detection rate. The aim of this work was to implement an image segmentation system to enhance ischemic stroke and to quantify the area of ischemic and hemorrhagic stroke lesions in CT scans. We evaluated 10 patients with NECT examinations diagnosed with ischemic stroke. Analyzes were performed in two axial slices, one at the level of the thalamus and basal ganglion and one adjacent to the top edge of the ganglionic structures with window width between 80 and 100 Hounsfield Units. We used different image processing techniques such as morphological filters, discrete wavelet transform and Fuzzy C-means clustering. Subjective analyzes were performed by a neuroradiologist according to the ASPECTS scale to quantify ischemic areas in the middle cerebral artery region. These subjective analysis results were compared with objective analyzes performed by the computational algorithm. Preliminary results indicate that the morphological filters actually improve the ischemic areas for subjective evaluations. The comparison in area of the ischemic region contoured by the neuroradiologist and the defined area by computational algorithm showed no deviations greater than 12% in any of the 10 examination tests. Although there is a tendency that the areas contoured by the neuroradiologist are smaller than those obtained by the algorithm. These results show the importance of a computer aided diagnosis software to assist neuroradiology decisions, especially in critical situations as the choice of treatment for ischemic stroke.Keywords: ischemic stroke, image processing, CT scans, Fuzzy C-means
Procedia PDF Downloads 366