Search results for: Imbalanced dataset
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1213

Search results for: Imbalanced dataset

583 The Effectiveness of National Fiscal Rules in the Asia-Pacific Countries

Authors: Chiung-Ju Huang, Yuan-Hong Ho

Abstract:

This study utilizes the International Monetary Fund (IMF) Fiscal Rules Dataset focusing on four specific fiscal rules such as expenditure rule, revenue rule, budget balance rule, and debt rule and five main characteristics of each fiscal rule those are monitoring, enforcement, coverage, legal basis, and escape clause to construct the Fiscal Rule Index for nine countries in the Asia-Pacific region from 1996 to 2015. After constructing the fiscal rule index for each country, we utilize the Panel Generalized Method of Moments (Panel GMM) by using the constructed fiscal rule index to examine the effectiveness of fiscal rules in reducing procyclicality. Empirical results show that national fiscal rules have a significantly negative impact on procyclicality of government expenditure. Additionally, stricter fiscal rules combined with high government effectiveness are effective in reducing procyclicality of government expenditure. Results of this study indicate that for nine Asia-Pacific countries, policymakers’ use of fiscal rules and government effectiveness to reducing procyclicality of fiscal policy are effective.

Keywords: counter-cyclical policy, fiscal rules, government efficiency, procyclical policy

Procedia PDF Downloads 279
582 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG

Procedia PDF Downloads 181
581 Exploring Digital Media’s Impact on Sports Sponsorship: A Global Perspective

Authors: Sylvia Chan-Olmsted, Lisa-Charlotte Wolter

Abstract:

With the continuous proliferation of media platforms, there have been tremendous changes in media consumption behaviors. From the perspective of sports sponsorship, while there is now a multitude of platforms to create brand associations, the changing media landscape and shift of message control also mean that sports sponsors will have to take into account the nature of and consumer responses toward these emerging digital media to devise effective marketing strategies. Utilizing the personal interview methodology, this study is qualitative and exploratory in nature. A total of 18 experts from European and American academics, sports marketing industry, and sports leagues/teams were interviewed to address three main research questions: 1) What are the major changes in digital technologies that are relevant to sports sponsorship; 2) How have digital media influenced the channels and platforms of sports sponsorship; and 3) How have these technologies affected the goals, strategies, and measurement of sports sponsorship. The study found that sports sponsorship has moved from consumer engagement, engagement measurement, and consequences of engagement on brand behaviors to micro-targeting one on one, engagement by context, time, and space, and activation and leveraging based on tracking and databases. From the perspective of platforms and channels, the use of mobile devices is prominent during sports content consumption. Increasing multiscreen media consumption means that sports sponsors need to optimize their investment decisions in leagues, teams, or game-related content sources, as they need to go where the fans are most engaged in. The study observed an imbalanced strategic leveraging of technology and digital infrastructure. While sports leagues have had less emphasis on brand value management via technology, sports sponsors have been much more active in utilizing technologies like mobile/LBS tools, big data/user info, real-time marketing and programmatic, and social media activation. Regardless of the new media/platforms, the study found that integration and contextualization are the two essential means of improving sports sponsorship effectiveness through technology. That is, how sponsors effectively integrate social media/mobile/second screen into their existing legacy media sponsorship plan so technology works for the experience/message instead of distracting fans. Additionally, technological advancement and attention economy amplify the importance of consumer data gathering, but sports consumer data does not mean loyalty or engagement. This study also affirms the benefit of digital media as they offer viral and pre-event activations through storytelling way before the actual event, which is critical for leveraging brand association before and after. That is, sponsors now have multiple opportunities and platforms to tell stories about their brands for longer time period. In summary, digital media facilitate fan experience, access to the brand message, multiplatform/channel presentations, storytelling, and content sharing. Nevertheless, rather than focusing on technology and media, today’s sponsors need to define what they want to focus on in terms of content themes that connect with their brands and then identify the channels/platforms. The big challenge for sponsors is to play to the venues/media’s specificity and its fit with the target audience and not uniformly deliver the same message in the same format on different platforms/channels.

Keywords: digital media, mobile media, social media, technology, sports sponsorship

Procedia PDF Downloads 293
580 SiamMask++: More Accurate Object Tracking through Layer Wise Aggregation in Visual Object Tracking

Authors: Hyunbin Choi, Jihyeon Noh, Changwon Lim

Abstract:

In this paper, we propose SiamMask++, an architecture that performs layer-wise aggregation and depth-wise cross-correlation and introduce multi-RPN module and multi-MASK module to improve EAO (Expected Average Overlap), a representative performance evaluation metric for Visual Object Tracking (VOT) challenge. The proposed architecture, SiamMask++, has two versions, namely, bi_SiamMask++, which satisfies the real time (56fps) on systems equipped with GPUs (Titan XP), and rf_SiamMask++, which combines mask refinement modules for EAO improvements. Tests are performed on VOT2016, VOT2018 and VOT2019, the representative datasets of Visual Object Tracking tasks labeled as rotated bounding boxes. SiamMask++ perform better than SiamMask on all the three datasets tested. SiamMask++ is achieved performance of 62.6% accuracy, 26.2% robustness and 39.8% EAO, especially on the VOT2018 dataset. Compared to SiamMask, this is an improvement of 4.18%, 37.17%, 23.99%, respectively. In addition, we do an experimental in-depth analysis of how much the introduction of features and multi modules extracted from the backbone affects the performance of our model in the VOT task.

Keywords: visual object tracking, video, deep learning, layer wise aggregation, Siamese network

Procedia PDF Downloads 156
579 Tax Treaties between Developed and Developing Countries: Withholding Taxes and Treaty Heterogeneity Content

Authors: Pranvera Shehaj

Abstract:

Unlike any prior analysis on the withholding tax rates negotiated in tax treaties, this study looks at the treaty heterogeneity content, by investigating the impact of the residence country’s double tax relief method and of tax-sparing agreements, on the difference between developing countries’ domestic withholding taxes on dividends on one side, and treaty negotiated withholding taxes at source on portfolio dividends on the other side. Using a dyadic panel dataset of asymmetric double tax treaties between 2005 and 2019, this study suggests first that the difference between domestic and negotiated WHTs on portfolio dividends is higher when the OECD member uses the credit method, as compared to when it uses the exemption method. Second, results suggest that the inclusion of tax-sparing provisions vanishes the positive effect of the credit method at home on the difference between domestic and negotiated WHTs on portfolio dividends, incentivizing developing countries to negotiate higher withholding taxes.

Keywords: double tax treaties, asymmetric investments, withholding tax, dividends, double tax relief method, tax sparing

Procedia PDF Downloads 61
578 DISGAN: Efficient Generative Adversarial Network-Based Method for Cyber-Intrusion Detection

Authors: Hongyu Chen, Li Jiang

Abstract:

Ubiquitous anomalies endanger the security of our system con- stantly. They may bring irreversible damages to the system and cause leakage of privacy. Thus, it is of vital importance to promptly detect these anomalies. Traditional supervised methods such as Decision Trees and Support Vector Machine (SVM) are used to classify normality and abnormality. However, in some case, the abnormal status are largely rarer than normal status, which leads to decision bias of these methods. Generative adversarial network (GAN) has been proposed to handle the case. With its strong generative ability, it only needs to learn the distribution of normal status, and identify the abnormal status through the gap between it and the learned distribution. Nevertheless, existing GAN-based models are not suitable to process data with discrete values, leading to immense degradation of detection performance. To cope with the discrete features, in this paper, we propose an efficient GAN-based model with specifically-designed loss function. Experiment results show that our model outperforms state-of-the-art models on discrete dataset and remarkably reduce the overhead.

Keywords: GAN, discrete feature, Wasserstein distance, multiple intermediate layers

Procedia PDF Downloads 128
577 Student Loan Debt among Students with Disabilities

Authors: Kaycee Bills

Abstract:

This study will determine if students with disabilities have higher student loan debt payments than other student populations. The hypothesis was that students with disabilities would have significantly higher student loan debt payments than other students due to the length of time they spend in school. Using the Bachelorette and Beyond Study Wave 2015/017 dataset, quantitative methods were employed. These data analysis methods included linear regression and a correlation matrix. Due to the exploratory nature of the study, the significance levels for the overall model and each variable were set at .05. The correlation matrix demonstrated that students with certain types of disabilities are more likely to fall under higher student loan payment brackets than students without disabilities. These results also varied among the different types of disabilities. The result of the overall linear regression model was statistically significant (p = .04). Despite the overall model being statistically significant, the majority of the significance values for the different types of disabilities were null. However, several other variables had statistically significant results, such as veterans, people of minority races, and people who attended private schools. Implications for how this impacts the economy, capitalism, and financial wellbeing of various students are discussed.

Keywords: disability, student loan debt, higher education, social work

Procedia PDF Downloads 168
576 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 240
575 A Monocular Measurement for 3D Objects Based on Distance Area Number and New Minimize Projection Error Optimization Algorithms

Authors: Feixiang Zhao, Shuangcheng Jia, Qian Li

Abstract:

High-precision measurement of the target’s position and size is one of the hotspots in the field of vision inspection. This paper proposes a three-dimensional object positioning and measurement method using a monocular camera and GPS, namely the Distance Area Number-New Minimize Projection Error (DAN-NMPE). Our algorithm contains two parts: DAN and NMPE; specifically, DAN is a picture sequence algorithm, NMPE is a relatively positive optimization algorithm, which greatly improves the measurement accuracy of the target’s position and size. Comprehensive experiments validate the effectiveness of our proposed method on a self-made traffic sign dataset. The results show that with the laser point cloud as the ground truth, the size and position errors of the traffic sign measured by this method are ± 5% and 0.48 ± 0.3m, respectively. In addition, we also compared it with the current mainstream method, which uses a monocular camera to locate and measure traffic signs. DAN-NMPE attains significant improvements compared to existing state-of-the-art methods, which improves the measurement accuracy of size and position by 50% and 15.8%, respectively.

Keywords: monocular camera, GPS, positioning, measurement

Procedia PDF Downloads 143
574 Impact of Infrastructural Development on Socio-Economic Growth: An Empirical Investigation in India

Authors: Jonardan Koner

Abstract:

The study attempts to find out the impact of infrastructural investment on state economic growth in India. It further tries to determine the magnitude of the impact of infrastructural investment on economic indicator, i.e., per-capita income (PCI) in Indian States. The study uses panel regression technique to measure the impact of infrastructural investment on per-capita income (PCI) in Indian States. Panel regression technique helps incorporate both the cross-section and time-series aspects of the dataset. In order to analyze the difference in impact of the explanatory variables on the explained variables across states, the study uses Fixed Effect Panel Regression Model. The conclusions of the study are that infrastructural investment has a desirable impact on economic development and that the impact is different for different states in India. We analyze time series data (annual frequency) ranging from 1991 to 2010. The study reveals that the infrastructural investment significantly explains the variation of economic indicators.

Keywords: infrastructural investment, multiple regression, panel regression techniques, economic development, fixed effect dummy variable model

Procedia PDF Downloads 370
573 Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys

Authors: Hexiong Liu

Abstract:

Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model.

Keywords: sintered density, machine learning, interpretable descriptors, W(Mo) alloy

Procedia PDF Downloads 79
572 Modified Form of Margin Based Angular Softmax Loss for Speaker Verification

Authors: Jamshaid ul Rahman, Akhter Ali, Adnan Manzoor

Abstract:

Learning-based systems have received increasing interest in recent years; recognition structures, including end-to-end speak recognition, are one of the hot topics in this area. A famous work on end-to-end speaker verification by using Angular Softmax Loss gained significant importance and is considered useful to directly trains a discriminative model instead of the traditional adopted i-vector approach. The margin-based strategy in angular softmax is beneficial to learn discriminative speaker embeddings where the random selection of margin values is a big issue in additive angular margin and multiplicative angular margin. As a better solution in this matter, we present an alternative approach by introducing a bit similar form of an additive parameter that was originally introduced for face recognition, and it has a capacity to adjust automatically with the corresponding margin values and is applicable to learn more discriminative features than the Softmax. Experiments are conducted on the part of Fisher dataset, where it observed that the additive parameter with angular softmax to train the front-end and probabilistic linear discriminant analysis (PLDA) in the back-end boosts the performance of the structure.

Keywords: additive parameter, angular softmax, speaker verification, PLDA

Procedia PDF Downloads 100
571 Informal Governance as Response to Institutional Paralysis

Authors: Stefanie Kasparek

Abstract:

The United Nations Security Council (UNSC) is probably the most recognized international security organization. It is also profoundly misunderstood and undervalued in its effort to promote peace and security. With the rising involvement of non-state actors and the way states fight wars, international governance has become increasingly complex. However, the formal UNSC agenda has long remained static, reflecting states' unwillingness to entertain more conflicts. Nevertheless, resolutions remain the scholarly measure of states' interests and policies, neglecting the significant share of issues the Council entertains informally. This project builds on a rational institutionalism framework. It provides a systematic analysis of how and under what conditions states use informal governance instead of, or in combination with, formal rules at the agenda-setting stage of the policy process. Data for this project comes from elite interviews and a newly created dataset on governance choices. The results show that counter existing arguments, weaker states successfully circumvent formal institutional roadblocks and use informal governance mechanisms to pursue vital interests, thereby countering institutional restrictions and power asymmetries present informal governance settings.

Keywords: agenda-setting, decision-making, international governance, UNSC

Procedia PDF Downloads 198
570 Ethics Can Enable Open Source Data Research

Authors: Dragana Calic

Abstract:

The openness, availability and the sheer volume of big data have provided, what some regard as, an invaluable and rich dataset. Researchers, businesses, advertising agencies, medical institutions, to name only a few, collect, share, and analyze this data to enable their processes and decision making. However, there are important ethical considerations associated with the use of big data. The rapidly evolving nature of online technologies has overtaken the many legislative, privacy, and ethical frameworks and principles that exist. For example, should we obtain consent to use people’s online data, and under what circumstances can privacy considerations be overridden? Current guidance on how to appropriately and ethically handle big data is inconsistent. Consequently, this paper focuses on two quite distinct but related ethical considerations that are at the core of the use of big data for research purposes. They include empowering the producers of data and empowering researchers who want to study big data. The first consideration focuses on informed consent which is at the core of empowering producers of data. In this paper, we discuss some of the complexities associated with informed consent and consider studies of producers’ perceptions to inform research ethics guidelines and practice. The second consideration focuses on the researcher. Similarly, we explore studies that focus on researchers’ perceptions and experiences.

Keywords: big data, ethics, producers’ perceptions, researchers’ perceptions

Procedia PDF Downloads 282
569 Good Banks, Bad Banks, and Public Scrutiny: The Determinants of Corporate Social Responsibility in Times of Financial Volatility

Authors: A. W. Chalmers, O. M. van den Broek

Abstract:

This article examines the relationship between the global financial crisis and corporate social responsibility activities of financial services firms. It challenges the general consensus in existing studies that firms, when faced with economic hardship, tend to jettison CSR commitments. Instead, and building on recent insights into the institutional determinants of CSR, it is argued that firms are constrained in their ability to abandon CSR by the extent to which they are subject to intense public scrutiny by regulators and the news media. This argument is tested in the context of the European sovereign debt crisis drawing on a unique dataset of 170 firms in 15 different countries over a six-year period. Controlling for a battery of alternative explanations and comparing financial service providers to firms operating in other economic sectors, results indicate considerable evidence supporting the main argument. Rather than abandoning CSR during times of economic hardship, financial industry firms ramp up their CSR commitments in order to manage their public image and foster public trust in light of intense public scrutiny.

Keywords: corporate social responsibility (CSR), public scrutiny, global financial crisis, financial services firms

Procedia PDF Downloads 304
568 Identification of Thermally Critical Zones Based on Inter Seasonal Variation in Temperature

Authors: Sakti Mandal

Abstract:

Varying distribution of land surface temperature in an urbanized environment is a globally addressed phenomenon. Usually has been noticed that criticality of surface temperature increases from the periphery to the urban centre. As the centre experiences maximum severity of heat throughout the year, it also represents most critical zone in terms of thermal condition. In this present study, an attempt has been taken to propose a quantitative approach of thermal critical zonation (TCZ) on the basis of seasonal temperature variation. Here the zonation is done by calculating thermal critical value (TCV). From the Landsat 8 thermal digital data of summer and winter seasons for the year 2014, the land surface temperature maps and thermally critical zonation has been prepared, and corresponding dataset has been computed to conduct the overall study of that particular study area. It is shown that TCZ can be clearly identified and analyzed by the help of inter-seasonal temperature range. The results of this study can be utilized effectively in future urban development and planning projects as well as a framework for implementing rules and regulations by the authorities for a sustainable urban development through an environmentally affable approach.

Keywords: thermal critical values (TCV), thermally critical zonation (TCZ), land surface temperature (LST), Landsat 8, Kolkata Municipal Corporation (KMC)

Procedia PDF Downloads 195
567 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering

Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal

Abstract:

The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.

Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease

Procedia PDF Downloads 201
566 Understanding the Influence on Drivers’ Recommendation and Review-Writing Behavior in the P2P Taxi Service

Authors: Liwen Hou

Abstract:

The booming mobile business has been penetrating the taxi industry worldwide with P2P (peer to peer) taxi services, as an emerging business model, transforming the industry. Parallel with other mobile businesses, member recommendations and online reviews are believed to be very effective with regard to acquiring new users for P2P taxi services. Based on an empirical dataset of the taxi industry in China, this study aims to reveal which factors influence users’ recommendations and review-writing behaviors. Differing from the existing literature, this paper takes the taxi driver’s perspective into consideration and hence selects a group of variables related to the drivers. We built two models to reflect the factors that influence the number of recommendations and reviews posted on the platform (i.e., the app). Our models show that all factors, except the driver’s score, significantly influence the recommendation behavior. Likewise, only one factor, passengers’ bad reviews, is insignificant in generating more drivers’ reviews. In the conclusion, we summarize the findings and limitations of the research.

Keywords: online recommendation, P2P taxi service, review-writing, word of mouth

Procedia PDF Downloads 305
565 Challenges to Developing a Trans-European Programme for Health Professionals to Recognize and Respond to Survivors of Domestic Violence and Abuse

Authors: June Keeling, Christina Athanasiades, Vaiva Hendrixson, Delyth Wyndham

Abstract:

Recognition and education in violence, abuse, and neglect for medical and healthcare practitioners (REVAMP) is a trans-European project aiming to introduce a training programme that has been specifically developed by partners across seven European countries to meet the needs of medical and healthcare practitioners. Amalgamating the knowledge and experience of clinicians, researchers, and educators from interdisciplinary and multi-professional backgrounds, REVAMP has tackled the under-resourced and underdeveloped area of domestic violence and abuse. The team designed an online training programme to support medical and healthcare practitioners to recognise and respond appropriately to survivors of domestic violence and abuse at their point of contact with a health provider. The REVAMP partner countries include Europe: France, Lithuania, Germany, Greece, Iceland, Norway, and the UK. The training is delivered through a series of interactive online modules, adapting evidence-based pedagogical approaches to learning. Capturing and addressing the complexities of the project impacted the methodological decisions and approaches to evaluation. The challenge was to find an evaluation methodology that captured valid data across all partner languages to demonstrate the extent of the change in knowledge and understanding. Co-development by all team members was a lengthy iterative process, challenged by a lack of consistency in terminology. A mixed methods approach enabled both qualitative and quantitative data to be collected, at the start, during, and at the conclusion of the training for the purposes of evaluation. The module content and evaluation instrument were accessible in each partner country's language. Collecting both types of data provided a high-level snapshot of attainment via the quantitative dataset and an in-depth understanding of the impact of the training from the qualitative dataset. The analysis was mixed methods, with integration at multiple interfaces. The primary focus of the analysis was to support the overall project evaluation for the funding agency. A key project outcome was identifying that the trans-European approach posed several challenges. Firstly, the project partners did not share a first language or a legal or professional approach to domestic abuse and neglect. This was negotiated through complex, systematic, and iterative interaction between team members so that consensus could be achieved. Secondly, the context of the data collection in several different cultural, educational, and healthcare systems across Europe challenged the development of a robust evaluation. The participants in the pilot evaluation shared that the training was contemporary, well-designed, and of great relevance to inform practice. Initial results from the evaluation indicated that the participants were drawn from more than eight partner countries due to the online nature of the training. The primary results indicated a high level of engagement with the content and achievement through the online assessment. The main finding was that the participants perceived the impact of domestic abuse and neglect in very different ways in their individual professional contexts. Most significantly, the participants recognised the need for the training and the gap that existed previously. It is notable that a mixed-methods evaluation of a trans-European project is unusual at this scale.

Keywords: domestic violence, e-learning, health professionals, trans-European

Procedia PDF Downloads 82
564 Deepnic, A Method to Transform Each Variable into Image for Deep Learning

Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.

Abstract:

Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.

Keywords: tabular data, deep learning, perfect trees, NICS

Procedia PDF Downloads 89
563 Online Yoga Asana Trainer Using Deep Learning

Authors: Venkata Narayana Chejarla, Nafisa Parvez Shaik, Gopi Vara Prasad Marabathula, Deva Kumar Bejjam

Abstract:

Yoga is an advanced, well-recognized method with roots in Indian philosophy. Yoga benefits both the body and the psyche. Yoga is a regular exercise that helps people relax and sleep better while also enhancing their balance, endurance, and concentration. Yoga can be learned in a variety of settings, including at home with the aid of books and the internet as well as in yoga studios with the guidance of an instructor. Self-learning does not teach the proper yoga poses, and doing them without the right instruction could result in significant injuries. We developed "Online Yoga Asana Trainer using Deep Learning" so that people could practice yoga without a teacher. Our project is developed using Tensorflow, Movenet, and Keras models. The system makes use of data from Kaggle that includes 25 different yoga poses. The first part of the process involves applying the movement model for extracting the 17 key points of the body from the dataset, and the next part involves preprocessing, which includes building a pose classification model using neural networks. The system scores a 98.3% accuracy rate. The system is developed to work with live videos.

Keywords: yoga, deep learning, movenet, tensorflow, keras, CNN

Procedia PDF Downloads 240
562 Evaluating Contextually Targeted Advertising with Attention Measurement

Authors: John Hawkins, Graham Burton

Abstract:

Contextual targeting is a common strategy for advertising that places marketing messages in media locations that are expected to be aligned with the target audience. There are multiple major challenges to contextual targeting: the ideal categorisation scheme needs to be known, as well as the most appropriate subsections of that scheme for a given campaign or creative. In addition, the campaign reach is typically limited when targeting becomes narrow, so a balance must be struck between requirements. Finally, refinement of the process is limited by the use of evaluation methods that are either rapid but non-specific (click through rates), or reliable but slow and costly (conversions or brand recall studies). In this study we evaluate the use of attention measurement as a technique for understanding the performance of targeting on the basis of specific contextual topics. We perform the analysis using a large scale dataset of impressions categorised using the iAB V2.0 taxonomy. We evaluate multiple levels of the categorisation hierarchy, using categories at different positions within an initial creative specific ranking. The results illustrate that measuring attention time is an affective signal for the performance of a specific creative within a specific context. Performance is sustained across a ranking of categories from one period to another.

Keywords: contextual targeting, digital advertising, attention measurement, marketing performance

Procedia PDF Downloads 104
561 Shifted Window Based Self-Attention via Swin Transformer for Zero-Shot Learning

Authors: Yasaswi Palagummi, Sareh Rowlands

Abstract:

Generalised Zero-Shot Learning, often known as GZSL, is an advanced variant of zero-shot learning in which the samples in the unseen category may be either seen or unseen. GZSL methods typically have a bias towards the seen classes because they learn a model to perform recognition for both the seen and unseen classes using data samples from the seen classes. This frequently leads to the misclassification of data from the unseen classes into the seen classes, making the task of GZSL more challenging. In this work of ours, to solve the GZSL problem, we propose an approach leveraging the Shifted Window based Self-Attention in the Swin Transformer (Swin-GZSL) to work in the inductive GSZL problem setting. We run experiments on three popular benchmark datasets: CUB, SUN, and AWA2, which are specifically used for ZSL and its other variants. The results show that our model based on Swin Transformer has achieved state-of-the-art harmonic mean for two datasets -AWA2 and SUN and near-state-of-the-art for the other dataset - CUB. More importantly, this technique has a linear computational complexity, which reduces training time significantly. We have also observed less bias than most of the existing GZSL models.

Keywords: generalised, zero-shot learning, inductive learning, shifted-window attention, Swin transformer, vision transformer

Procedia PDF Downloads 69
560 Risk Screening in Digital Insurance Distribution: Evidence and Explanations

Authors: Finbarr Murphy, Wei Xu, Xian Xu

Abstract:

The embedding of digital technologies in the global economy has attracted increasing attention from economists. With a large and detailed dataset, this study examines the specific case where consumers have a choice between offline and digital channels in the context of insurance purchases. We find that digital channels screen consumers with lower unobserved risk. For the term life, endowment, and disease insurance products, the average risk of the policies purchased through digital channels was 75%, 21%, and 31%, respectively, lower than those purchased offline. As a consequence, the lower unobserved risk leads to weaker information asymmetry and higher profitability of digital channels. We highlight three mechanisms of the risk screening effect: heterogeneous marginal influence of channel features on insurance demand, the channel features directly related to risk control, and the link between the digital divide and risk. We also find that the risk screening effect mainly comes from the extensive margin, i.e., from new consumers. This paper contributes to three connected areas in the insurance context: the heterogeneous economic impacts of digital technology adoption, insurer-side risk selection, and insurance marketing.

Keywords: digital economy, information asymmetry, insurance, mobile application, risk screening

Procedia PDF Downloads 71
559 Dynamic Interaction between Renwable Energy Consumption and Sustainable Development: Evidence from Ecowas Region

Authors: Maman Ali M. Moustapha, Qian Yu, Benjamin Adjei Danquah

Abstract:

This paper investigates the dynamic interaction between renewable energy consumption (REC) and economic growth using dataset from the Economic Community of West African States (ECOWAS) from 2002 to 2016. For this study the Autoregressive Distributed Lag- Bounds test approach (ARDL) was used to examine the long run relationship between real gross domestic product and REC, while VECM based on Granger causality has been used to examine the direction of Granger causality. Our empirical findings indicate that REC has significant and positive impact on real gross domestic product. In addition, we found that REC and the percentage of access to electricity had unidirectional Granger causality to economic growth while carbon dioxide emission has bidirectional Granger causality to economic growth. Our findings indicate also that 1 per cent increase in the REC leads to an increase in Real GDP by 0.009 in long run. Thus, REC can be a means to ensure sustainable economic growth in the ECOWAS sub-region. However, it is necessary to increase further support and investments on renewable energy production in order to speed up sustainable economic development throughout the region

Keywords: Economic Growth, Renewable Energy, Sustainable Development, Sustainable Energy

Procedia PDF Downloads 207
558 Advancing in Cricket Analytics: Novel Approaches for Pitch and Ball Detection Employing OpenCV and YOLOV8

Authors: Pratham Madnur, Prathamkumar Shetty, Sneha Varur, Gouri Parashetti

Abstract:

In order to overcome conventional obstacles, this research paper investigates novel approaches for cricket pitch and ball detection that make use of cutting-edge technologies. The research integrates OpenCV for pitch inspection and modifies the YOLOv8 model for cricket ball detection in order to overcome the shortcomings of manual pitch assessment and traditional ball detection techniques. To ensure flexibility in a range of pitch environments, the pitch detection method leverages OpenCV’s color space transformation, contour extraction, and accurate color range defining features. Regarding ball detection, the YOLOv8 model emphasizes the preservation of minor object details to improve accuracy and is specifically trained to the unique properties of cricket balls. The methods are more reliable because of the careful preparation of the datasets, which include novel ball and pitch information. These cutting-edge methods not only improve cricket analytics but also set the stage for flexible methods in more general sports technology applications.

Keywords: OpenCV, YOLOv8, cricket, custom dataset, computer vision, sports

Procedia PDF Downloads 75
557 Hyperspectral Image Classification Using Tree Search Algorithm

Authors: Shreya Pare, Parvin Akhter

Abstract:

Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.

Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm

Procedia PDF Downloads 175
556 Internationalization Strategies and Firm Productivity: Manufacturing Firm-Level Evidence from Ethiopia

Authors: Soressa Tolcha Jarra

Abstract:

Looking into firm-level internationalization strategies and their effects on firms' productivity is needed in order to understand the role of firms’ participation in trading activities on the one hand and the effects of firms’ internalization strategies on firm-level productivity on the other. Thus, this study aims to investigate firms' imports of intermediates and export strategies and their impact on firm productivity using an establishment-level panel dataset from Ethiopian manufacturing firms over the period 2011–2020. Methodologically, the joint firm’s decision to import intermediates and estimate exports is undertaken by system GMM using Wooldridge's approach. The translog-production function is used to estimate firm-level productivity by considering a general Markov process. The size of the firm is used in a mediating role. The result indicates evidence of the self-selection of more productive firms into exporting and importing intermediates, which is indicative of sizable export and import market entry costs. Furthermore, there is evidence in favor of learning by exporting (LBE) and learning by importing (LBI) hypotheses for smaller and medium Ethiopian manufacturing firms. However, for large firms, there is only evidence in support of the learning by exporting (LBE) hypothesis.

Keywords: Ethiopia, export, firm productivity, intermediate imports

Procedia PDF Downloads 34
555 Drinking Water Quality Assessment Using Fuzzy Inference System Method: A Case Study of Rome, Italy

Authors: Yas Barzegar, Atrin Barzegar

Abstract:

Drinking water quality assessment is a major issue today; technology and practices are continuously improving; Artificial Intelligence (AI) methods prove their efficiency in this domain. The current research seeks a hierarchical fuzzy model for predicting drinking water quality in Rome (Italy). The Mamdani fuzzy inference system (FIS) is applied with different defuzzification methods. The Proposed Model includes three fuzzy intermediate models and one fuzzy final model. Each fuzzy model consists of three input parameters and 27 fuzzy rules. The model is developed for water quality assessment with a dataset considering nine parameters (Alkalinity, Hardness, pH, Ca, Mg, Fluoride, Sulphate, Nitrates, and Iron). Fuzzy-logic-based methods have been demonstrated to be appropriate to address uncertainty and subjectivity in drinking water quality assessment; it is an effective method for managing complicated, uncertain water systems and predicting drinking water quality. The FIS method can provide an effective solution to complex systems; this method can be modified easily to improve performance.

Keywords: water quality, fuzzy logic, smart cities, water attribute, fuzzy inference system, membership function

Procedia PDF Downloads 75
554 Developing a Web GIS Tool for the Evaluation of Soil Erosion of a Watershed

Authors: Y. Fekir, K. Mederbal, M. A. Hamadouche, D. Anteur

Abstract:

The soil erosion by water has become one of the biggest problems of the environment in the world, threatening the majority of countries. There are several models to evaluate erosion. These models are still a simplified representation of reality. They permit the analysis of complex systems, measurements are complementary to allow an extrapolation in time and space and may combine different factors. The empirical model of soil loss proposed by Wischmeier and Smith (Universal Soil Loss Equation), is widely used in many countries. He considers that erosion is a multiplicative function of five factors: rainfall erosivity (the R factor) the soil erodibility factor (K), topography (LS), the erosion control practices (P) and vegetation cover and agricultural practices (C). In this work, we tried to develop a tool based on Web GIS functionality to evaluate soil losses caused by erosion taking into account five factors. This tool allows the user to integrate all the data needed for the evaluation (DEM, Land use, rainfall ...) in the form of digital layers to calculate the five factors taken into account in the USLE equation (R, K, C, P, LS). Accordingly, and after treatment of the integrated data set, a map of the soil losses will be achieved as a result. We tested the proposed tool on a watershed basin located in the weste of Algeria where a dataset was collected and prepared.

Keywords: USLE, erosion, web gis, Algeria

Procedia PDF Downloads 328