Search results for: linear parameter varying (LPV)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6747

Search results for: linear parameter varying (LPV)

387 Discrete PID and Discrete State Feedback Control of a Brushed DC Motor

Authors: I. Valdez, J. Perdomo, M. Colindres, N. Castro

Abstract:

Today, digital servo systems are extensively used in industrial manufacturing processes, robotic applications, vehicles and other areas. In such control systems, control action is provided by digital controllers with different compensation algorithms, which are designed to meet specific requirements for a given application. Due to the constant search for optimization in industrial processes, it is of interest to design digital controllers that offer ease of realization, improved computational efficiency, affordable return rates, and ease of tuning that ultimately improve the performance of the controlled actuators. There is a vast range of options of compensation algorithms that could be used, although in the industry, most controllers used are based on a PID structure. This research article compares different types of digital compensators implemented in a servo system for DC motor position control. PID compensation is evaluated on its two most common architectures: PID position form (1 DOF), and PID speed form (2 DOF). State feedback algorithms are also evaluated, testing two modern control theory techniques: discrete state observer for non-measurable variables tracking, and a linear quadratic method which allows a compromise between the theoretical optimal control and the realization that most closely matches it. The compared control systems’ performance is evaluated through simulations in the Simulink platform, in which it is attempted to model accurately each of the system’s hardware components. The criteria by which the control systems are compared are reference tracking and disturbance rejection. In this investigation, it is considered that the accurate tracking of the reference signal for a position control system is particularly important because of the frequency and the suddenness in which the control signal could change in position control applications, while disturbance rejection is considered essential because the torque applied to the motor shaft due to sudden load changes can be modeled as a disturbance that must be rejected, ensuring reference tracking. Results show that 2 DOF PID controllers exhibit high performance in terms of the benchmarks mentioned, as long as they are properly tuned. As for controllers based on state feedback, due to the nature and the advantage which state space provides for modelling MIMO, it is expected that such controllers evince ease of tuning for disturbance rejection, assuming that the designer of such controllers is experienced. An in-depth multi-dimensional analysis of preliminary research results indicate that state feedback control method is more satisfactory, but PID control method exhibits easier implementation in most control applications.

Keywords: control, DC motor, discrete PID, discrete state feedback

Procedia PDF Downloads 262
386 Evaluation of the Weight-Based and Fat-Based Indices in Relation to Basal Metabolic Rate-to-Weight Ratio

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Basal metabolic rate is questioned as a risk factor for weight gain. The relations between basal metabolic rate and body composition have not been cleared yet. The impact of fat mass on basal metabolic rate is also uncertain. Within this context, indices based upon total body mass as well as total body fat mass are available. In this study, the aim is to investigate the potential clinical utility of these indices in the adult population. 287 individuals, aged from 18 to 79 years, were included into the scope of the study. Based upon body mass index values, 10 underweight, 88 normal, 88 overweight, 81 obese, and 20 morbid obese individuals participated. Anthropometric measurements including height (m), and weight (kg) were performed. Body mass index, diagnostic obesity notation model assessment index I, diagnostic obesity notation model assessment index II, basal metabolic rate-to-weight ratio were calculated. Total body fat mass (kg), fat percent (%), basal metabolic rate, metabolic age, visceral adiposity, fat mass of upper as well as lower extremities and trunk, obesity degree were measured by TANITA body composition monitor using bioelectrical impedance analysis technology. Statistical evaluations were performed by statistical package (SPSS) for Windows Version 16.0. Scatterplots of individual measurements for the parameters concerning correlations were drawn. Linear regression lines were displayed. The statistical significance degree was accepted as p < 0.05. The strong correlations between body mass index and diagnostic obesity notation model assessment index I as well as diagnostic obesity notation model assessment index II were obtained (p < 0.001). A much stronger correlation was detected between basal metabolic rate and diagnostic obesity notation model assessment index I in comparison with that calculated for basal metabolic rate and body mass index (p < 0.001). Upon consideration of the associations between basal metabolic rate-to-weight ratio and these three indices, the best association was observed between basal metabolic rate-to-weight and diagnostic obesity notation model assessment index II. In a similar manner, this index was highly correlated with fat percent (p < 0.001). Being independent of the indices, a strong correlation was found between fat percent and basal metabolic rate-to-weight ratio (p < 0.001). Visceral adiposity was much strongly correlated with metabolic age when compared to that with chronological age (p < 0.001). In conclusion, all three indices were associated with metabolic age, but not with chronological age. Diagnostic obesity notation model assessment index II values were highly correlated with body mass index values throughout all ranges starting with underweight going towards morbid obesity. This index is the best in terms of its association with basal metabolic rate-to-weight ratio, which can be interpreted as basal metabolic rate unit.

Keywords: basal metabolic rate, body mass index, children, diagnostic obesity notation model assessment index, obesity

Procedia PDF Downloads 143
385 User Experience in Relation to Eye Tracking Behaviour in VR Gallery

Authors: Veslava Osinska, Adam Szalach, Dominik Piotrowski

Abstract:

Contemporary VR technologies allow users to explore virtual 3D spaces where they can work, socialize, learn, and play. User's interaction with GUI and the pictures displayed implicate perceptual and also cognitive processes which can be monitored due to neuroadaptive technologies. These modalities provide valuable information about the users' intentions, situational interpretations, and emotional states, to adapt an application or interface accordingly. Virtual galleries outfitted by specialized assets have been designed using the Unity engine BITSCOPE project in the frame of CHIST-ERA IV program. Users interaction with gallery objects implies the questions about his/her visual interests in art works and styles. Moreover, an attention, curiosity, and other emotional states are possible to be monitored and analyzed. Natural gaze behavior data and eye position were recorded by built-in eye-tracking module within HTC Vive headset gogle for VR. Eye gaze results are grouped due to various users’ behavior schemes and the appropriate perpetual-cognitive styles are recognized. Parallelly usability tests and surveys were adapted to identify the basic features of a user-centered interface for the virtual environments across most of the timeline of the project. A total of sixty participants were selected from the distinct faculties of University and secondary schools. Users’ primary knowledge about art and was evaluated during pretest and this way the level of art sensitivity was described. Data were collected during two months. Each participant gave written informed consent before participation. In data analysis reducing the high-dimensional data into a relatively low-dimensional subspace ta non linear algorithms were used such as multidimensional scaling and novel technique technique t-Stochastic Neighbor Embedding. This way it can classify digital art objects by multi modal time characteristics of eye tracking measures and reveal signatures describing selected artworks. Current research establishes the optimal place on aesthetic-utility scale because contemporary interfaces of most applications require to be designed in both functional and aesthetical ways. The study concerns also an analysis of visual experience for subsamples of visitors, differentiated, e.g., in terms of frequency of museum visits, cultural interests. Eye tracking data may also show how to better allocate artefacts and paintings or increase their visibility when possible.

Keywords: eye tracking, VR, UX, visual art, virtual gallery, visual communication

Procedia PDF Downloads 34
384 Cognitive Control Moderates the Concurrent Effect of Autistic and Schizotypal Traits on Divergent Thinking

Authors: Julie Ramain, Christine Mohr, Ahmad Abu-Akel

Abstract:

Divergent thinking—a cognitive component of creativity—and particularly the ability to generate unique and novel ideas, has been linked to both autistic and schizotypal traits. However, to our knowledge, the concurrent effect of these trait dimensions on divergent thinking has not been investigated. Moreover, it has been suggested that creativity is associated with different types of attention and cognitive control, and consequently how information is processed in a given context. Intriguingly, consistent with the diametric model, autistic and schizotypal traits have been associated with contrasting attentional and cognitive control styles. Positive schizotypal traits have been associated with reactive cognitive control and attentional flexibility, while autistic traits have been associated with proactive cognitive control and the increased focus of attention. The current study investigated the relationship between divergent thinking, autistic and schizotypal traits and cognitive control in a non-clinical sample of 83 individuals (Males = 42%; Mean age = 22.37, SD = 2.93), sufficient to detect a medium effect size. Divergent thinking was evaluated in an adapted version of-of the Figural Torrance Test of Creative Thinking. Crucially, since we were interested in testing divergent thinking productivity across contexts, participants were asked to generate items from basic shapes in four different contexts. The variance of the proportion of unique to total responses across contexts represented a measure of context adaptability, with lower variance indicating increased context adaptability. Cognitive control was estimated with the Behavioral Proactive Index of the AX-CPT task, with higher scores representing the ability to actively maintain goal-relevant information in a sustained/anticipatory manner. Autistic and schizotypal traits were assessed with the Autism Quotient (AQ) and the Community Assessment of Psychic Experiences (CAPE-42). Generalized linear models revealed a 3-way interaction of autistic and positive schizotypal traits, and proactive cognitive control, associated with increased context adaptability. Specifically, the concurrent effect of autistic and positive schizotypal traits on increased context adaptability was moderated by the level of proactive control and was only significant when proactive cognitive control was high. Our study reveals that autistic and positive schizotypal traits interactively facilitate the capacity to generate unique ideas across various contexts. However, this effect depends on cognitive control mechanisms indicative of the ability to proactively maintain attention when needed. The current results point to a unique profile of divergent thinkers who have the ability to respectively tap both systematic and flexible processing modes within and across contexts. This is particularly intriguing as such combination of phenotypes has been proposed to explain the genius of Beethoven, Nash, and Newton.

Keywords: autism, schizotypy, creativity, cognitive control

Procedia PDF Downloads 133
383 Additive Manufacturing of Microstructured Optical Waveguides Using Two-Photon Polymerization

Authors: Leonnel Mhuka

Abstract:

Background: The field of photonics has witnessed substantial growth, with an increasing demand for miniaturized and high-performance optical components. Microstructured optical waveguides have gained significant attention due to their ability to confine and manipulate light at the subwavelength scale. Conventional fabrication methods, however, face limitations in achieving intricate and customizable waveguide structures. Two-photon polymerization (TPP) emerges as a promising additive manufacturing technique, enabling the fabrication of complex 3D microstructures with submicron resolution. Objectives: This experiment aimed to utilize two-photon polymerization to fabricate microstructured optical waveguides with precise control over geometry and dimensions. The objective was to demonstrate the feasibility of TPP as an additive manufacturing method for producing functional waveguide devices with enhanced performance. Methods: A femtosecond laser system operating at a wavelength of 800 nm was employed for two-photon polymerization. A custom-designed CAD model of the microstructured waveguide was converted into G-code, which guided the laser focus through a photosensitive polymer material. The waveguide structures were fabricated using a layer-by-layer approach, with each layer formed by localized polymerization induced by non-linear absorption of the laser light. Characterization of the fabricated waveguides included optical microscopy, scanning electron microscopy, and optical transmission measurements. The optical properties, such as mode confinement and propagation losses, were evaluated to assess the performance of the additive manufactured waveguides. Conclusion: The experiment successfully demonstrated the additive manufacturing of microstructured optical waveguides using two-photon polymerization. Optical microscopy and scanning electron microscopy revealed the intricate 3D structures with submicron resolution. The measured optical transmission indicated efficient light propagation through the fabricated waveguides. The waveguides exhibited well-defined mode confinement and relatively low propagation losses, showcasing the potential of TPP-based additive manufacturing for photonics applications. The experiment highlighted the advantages of TPP in achieving high-resolution, customized, and functional microstructured optical waveguides. Conclusion: his experiment substantiates the viability of two-photon polymerization as an innovative additive manufacturing technique for producing complex microstructured optical waveguides. The successful fabrication and characterization of these waveguides open doors to further advancements in the field of photonics, enabling the development of high-performance integrated optical devices for various applications

Keywords: Additive Manufacturing, Microstructured Optical Waveguides, Two-Photon Polymerization, Photonics Applications

Procedia PDF Downloads 91
382 Biosynthesis of a Nanoparticle-Antibody Phthalocyanine Photosensitizer for Use in Targeted Photodynamic Therapy of Cervical Cancer

Authors: Elvin P. Chizenga, Heidi Abrahamse

Abstract:

Cancer cell resistance to therapy is the main cause of treatment failures and the poor prognosis of cancer convalescence. The progression of cervical cancer to other parts of the genitourinary system and the reported recurrence rates are overwhelming. Current treatments, including surgery, chemo and radiation have been inefficient in eradicating the tumor cells. These treatments are also associated with poor prognosis and reduced quality of life, including fertility loss. This has inspired the need for the development of new treatment modalities to eradicate cervical cancer successfully. Photodynamic Therapy (PDT) is a modern treatment modality that induces cell death by photochemical interactions of light and a photosensitizer, which in the presence of molecular oxygen, yields a set of chemical reactions that generate Reactive Oxygen Species (ROS) and other free radical species causing cell damage. Enhancing PDT using modified drug delivery can increase the concentration of the photosensitizer in the tumor cells, and this has the potential to maximize its therapeutic efficacy. In cervical cancer, all infected cells constitutively express genes of the E6 and E7 HPV viral oncoproteins, resulting in high concentrations of E6 and E7 in the cytoplasm. This provides an opportunity for active targeting of cervical cancer cells using immune-mediated drug delivery to maximize therapeutic efficacy. The use of nanoparticles in PDT has also proven effective in enhancing therapeutic efficacy. Gold nanoparticles (AuNps) in particular, are explored for their use in biomedicine due to their biocompatibility, low toxicity, and enhancement of drug uptake by tumor cells. In this present study, a biomolecule comprising of AuNPs, anti-E6 monoclonal antibodies, and Aluminium Phthalocyanine photosensitizer was synthesized for use in targeted PDT of cervical cancer. The AuNp-Anti-E6-Sulfonated Aluminium Phthalocyanine mix (AlPcSmix) photosensitizing biomolecule was synthesized by coupling AuNps and anti-E6 monoclonal antibodies to the AlPcSmix via Polyethylene Glycol (PEG) chemical links. The final product was characterized using Transmission Electron Microscope (TEM), Zeta Potential, Uv-Vis Spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), and X-ray diffraction (XRD), to confirm its chemical structure and functionality. To observe its therapeutic role in treating cervical cancer, cervical cancer cells, HeLa cells were seeded in 3.4 cm² diameter culture dishes at a concentration of 5x10⁵ cells/ml, in vitro. The cells were treated with varying concentrations of the photosensitizing biomolecule and irradiated using a 673.2 nm wavelength of laser light. Post irradiation cellular responses were performed to observe changes in morphology, viability, proliferation, cytotoxicity, and cell death pathways induced. Dose-Dependent response of the cells to treatment was demonstrated as significant morphologic changes, increased cytotoxicity, and decreased cell viability and proliferation This study presented a synthetic biomolecule for targeted PDT of cervical cancer. The study suggested that PDT using this AuNp- Anti-E6- AlPcSmix photosensitizing biomolecule is a very effective treatment method for the eradication of cervical cancer cells, in vitro. Further studies in vivo need to be conducted to support the use of this biomolecule in treating cervical cancer in clinical settings.

Keywords: anti-E6 monoclonal antibody, cervical cancer, gold nanoparticles, photodynamic therapy

Procedia PDF Downloads 118
381 Analysis of Short Counter-Flow Heat Exchanger (SCFHE) Using Non-Circular Micro-Tubes Operated on Water-CuO Nanofluid

Authors: Avdhesh K. Sharma

Abstract:

Key, in the development of energy-efficient micro-scale heat exchanger devices, is to select large heat transfer surface to volume ratio without much expanse on re-circulated pumps. The increased interest in short heat exchanger (SHE) is due to accessibility of advanced technologies for manufacturing of micro-tubes in range of 1 micron m - 1 mm. Such SHE using micro-tubes are highly effective for high flux heat transfer technologies. Nanofluids, are used to enhance the thermal conductivity of re-circulated coolant and thus enhances heat transfer rate further. Higher viscosity associated with nanofluid expands more pumping power. Thus, there is a trade-off between heat transfer rate and pressure drop with geometry of micro-tubes. Herein, a novel design of short counter flow heat exchanger (SCFHE) using non-circular micro-tubes flooded with CuO-water nanofluid is conceptualized by varying the ratio of surface area to cross-sectional area of micro-tubes. A framework for comparative analysis of SCFHE using micro-tubes non-circular shape flooded by CuO-water nanofluid is presented. In SCFHE concept, micro-tubes having various geometrical shapes (viz., triangular, rectangular and trapezoidal) has been arranged row-wise to facilitate two aspects: (1) allowing easy flow distribution for cold and hot stream, and (2) maximizing the thermal interactions with neighboring channels. Adequate distribution of rows for cold and hot flow streams enables above two aspects. For comparative analysis, a specific volume or cross-section area is assigned to each elemental cell (which includes flow area and area corresponds to half wall thickness). A specific volume or cross-section area is assumed to be constant for each elemental cell (which includes flow area and half wall thickness area) and variation in surface area is allowed by selecting different geometry of micro-tubes in SCFHE. Effective thermal conductivity model for CuO-water nanofluid has been adopted, while the viscosity values for water based nanofluids are obtained empirically. Correlations for Nusselt number (Nu) and Poiseuille number (Po) for micro-tubes have been derived or adopted. Entrance effect is accounted for. Thermal and hydrodynamic performances of SCFHE are defined in terms of effectiveness and pressure drop or pumping power, respectively. For defining the overall performance index of SCFHE, two links are employed. First one relates heat transfer between the fluid streams q and pumping power PP as (=qj/PPj); while another link relates effectiveness eff and pressure drop dP as (=effj/dPj). For analysis, the inlet temperatures of hot and cold streams are varied in usual range of 20dC-65dC. Fully turbulent regime is seldom encountered in micro-tubes and transition of flow regime occurs much early (i.e., ~Re=1000). Thus, Re is fixed at 900, however, the uncertainty in Re due to addition of nanoparticles in base fluid is quantified by averaging of Re. Moreover, for minimizing error, volumetric concentration is limited to range 0% to ≤4% only. Such framework may be helpful in utilizing maximum peripheral surface area of SCFHE without any serious severity on pumping power and towards developing advanced short heat exchangers.

Keywords: CuO-water nanofluid, non-circular micro-tubes, performance index, short counter flow heat exchanger

Procedia PDF Downloads 207
380 A Study on the Quantitative Evaluation Method of Asphalt Pavement Condition through the Visual Investigation

Authors: Sungho Kim, Jaechoul Shin, Yujin Baek

Abstract:

In recent years, due to the environmental impacts and time factor, etc., various type of pavement deterioration is increasing rapidly such as crack, pothole, rutting and roughness degradation. The Ministry of Land, Infrastructure and Transport maintains regular pavement condition of the highway and the national highway using the pavement condition survey equipment and structural survey equipment in Korea. Local governments that maintain local roads, farm roads, etc. are difficult to maintain the pavement condition using the pavement condition survey equipment depending on economic conditions, skills shortages and local conditions such as narrow roads. This study presents a quantitative evaluation method of the pavement condition through the visual inspection to overcome these problems of roads managed by local governments. It is difficult to evaluate rutting and roughness with the naked eye. However, the condition of cracks can be evaluated with the naked eye. Linear cracks (m), area cracks (m²) and potholes (number, m²) were investigated with the naked eye every 100 meters for survey the cracks. In this paper, crack ratio was calculated using the results of the condition of cracks and pavement condition was evaluated by calculated crack ratio. The pavement condition survey equipment also investigated the pavement condition in the same section in order to evaluate the reliability of pavement condition evaluation by the calculated crack ratio. The pavement condition was evaluated through the SPI (Seoul Pavement Index) and calculated crack ratio using results of field survey. The results of a comparison between 'the SPI considering only crack ratio' and 'the SPI considering rutting and roughness either' using the equipment survey data showed a margin of error below 5% when the SPI is less than 5. The SPI 5 is considered the base point to determine whether to maintain the pavement condition. It showed that the pavement condition can be evaluated using only the crack ratio. According to the analysis results of the crack ratio between the visual inspection and the equipment survey, it has an average error of 1.86%(minimum 0.03%, maximum 9.58%). Economically, the visual inspection costs only 10% of the equipment survey and will also help the economy by creating new jobs. This paper advises that local governments maintain the pavement condition through the visual investigations. However, more research is needed to improve reliability. Acknowledgment: The author would like to thank the MOLIT (Ministry of Land, Infrastructure, and Transport). This work was carried out through the project funded by the MOLIT. The project name is 'development of 20mm grade for road surface detecting roadway condition and rapid detection automation system for removal of pothole'.

Keywords: asphalt pavement maintenance, crack ratio, evaluation of asphalt pavement condition, SPI (Seoul Pavement Index), visual investigation

Procedia PDF Downloads 162
379 Bioanalytical Method Development and Validation of Aminophylline in Rat Plasma Using Reverse Phase High Performance Liquid Chromatography: An Application to Preclinical Pharmacokinetics

Authors: S. G. Vasantharaju, Viswanath Guptha, Raghavendra Shetty

Abstract:

Introduction: Aminophylline is a methylxanthine derivative belonging to the class bronchodilator. From the literature survey, reported methods reveals the solid phase extraction and liquid liquid extraction which is highly variable, time consuming, costly and laborious analysis. Present work aims to develop a simple, highly sensitive, precise and accurate high-performance liquid chromatography method for the quantification of Aminophylline in rat plasma samples which can be utilized for preclinical studies. Method: Reverse Phase high-performance liquid chromatography method. Results: Selectivity: Aminophylline and the internal standard were well separated from the co-eluted components and there was no interference from the endogenous material at the retention time of analyte and the internal standard. The LLOQ measurable with acceptable accuracy and precision for the analyte was 0.5 µg/mL. Linearity: The developed and validated method is linear over the range of 0.5-40.0 µg/mL. The coefficient of determination was found to be greater than 0.9967, indicating the linearity of this method. Accuracy and precision: The accuracy and precision values for intra and inter day studies at low, medium and high quality control samples concentrations of aminophylline in the plasma were within the acceptable limits Extraction recovery: The method produced consistent extraction recovery at all 3 QC levels. The mean extraction recovery of aminophylline was 93.57 ± 1.28% while that of internal standard was 90.70 ± 1.30%. Stability: The results show that aminophylline is stable in rat plasma under the studied stability conditions and that it is also stable for about 30 days when stored at -80˚C. Pharmacokinetic studies: The method was successfully applied to the quantitative estimation of aminophylline rat plasma following its oral administration to rats. Discussion: Preclinical studies require a rapid and sensitive method for estimating the drug concentration in the rat plasma. The method described in our article includes a simple protein precipitation extraction technique with ultraviolet detection for quantification. The present method is simple and robust for fast high-throughput sample analysis with less analysis cost for analyzing aminophylline in biological samples. In this proposed method, no interfering peaks were observed at the elution times of aminophylline and the internal standard. The method also had sufficient selectivity, specificity, precision and accuracy over the concentration range of 0.5 - 40.0 µg/mL. An isocratic separation technique was used underlining the simplicity of the presented method.

Keywords: Aminophyllin, preclinical pharmacokinetics, rat plasma, RPHPLC

Procedia PDF Downloads 213
378 Assessment of Cytogenetic Damage as a Function of Radiofrequency Electromagnetic Radiations Exposure Measured by Electric Field Strength: A Gender Based Study

Authors: Ramanpreet, Gursatej Gandhi

Abstract:

Background: Dependence on electromagnetic radiations involved in communication and information technologies has incredibly increased in the personal and professional world. Among the numerous radiations, sources are fixed site transmitters, mobile phone base stations, and power lines beside indoor devices like cordless phones, WiFi, Bluetooth, TV, radio, microwave ovens, etc. Rather there is the continuous emittance of radiofrequency radiations (RFR) even to those not using the devices from mobile phone base stations. The consistent and widespread usage of wireless devices has build-up electromagnetic fields everywhere. In fact, the radiofrequency electromagnetic field (RF-EMF) has insidiously become a part of the environment and like any contaminant may pose to be health-hazardous requiring assessment. Materials and Methods: In the present study, cytogenetic damage was assessed using the Buccal Micronucleus Cytome (BMCyt) assay as a function of radiation exposure after Institutional Ethics Committee clearance of the study and written voluntary informed consent from the participants. On a pre-designed questionnaire, general information lifestyle patterns (diet, physical activity, smoking, drinking, use of mobile phones, internet, Wi-Fi usage, etc.) genetic, reproductive (pedigrees) and medical histories were recorded. For this, 24 hour-personal exposimeter measurements (PEM) were recorded for unrelated 60 healthy adults (40 cases residing in the vicinity of mobile phone base stations since their installation and 20 controls residing in areas with no base stations). The personal exposimeter collects information from all the sources generating EMF (TETRA, GSM, UMTS, DECT, and WLAN) as total RF-EMF uplink and downlink. Findings: The cases (n=40; 23-90 years) and the controls (n=20; 19-65 years) matched for alcohol drinking, smoking habits, and mobile and cordless phone usage. The PEM in cases (149.28 ± 8.98 mV/m) revealed significantly higher (p=0.000) electric field strength compared to the recorded value (80.40 ± 0.30 mV/m) in controls. The GSM 900 uplink (p=0.000), GSM 1800 downlink (p=0.000),UMTS (both uplink; p=0.013 and downlink; p=0.001) and DECT (p=0.000) electric field strength were significantly elevated in the cases as compared to controls. The electric field strength in the cases was significantly from GSM1800 (52.26 ± 4.49mV/m) followed by GSM900 (45.69 ± 4.98mV/m), UMTS (25.03 ± 3.33mV/m), DECT (18.02 ± 2.14mV/m) and was least from WLAN (8.26 ± 2.35mV/m). The higher significantly (p=0.000) increased exposure to the cases was from GSM (97.96 ± 6.97mV/m) in comparison to UMTS, DECT, and WLAN. The frequencies of micronuclei (1.86X, p=0.007), nuclear buds (2.95X, p=0.002) and cell death parameter (condensed chromatin cells) were significantly (1.75X, p=0.007) elevated in cases compared to that in controls probably as a function of radiofrequency radiation exposure. Conclusion: In the absence of other exposure(s), any cytogenetic damage if unrepaired is a cause of concern as it can cause malignancy. Larger sample size with the clinical assessment will prove more insightful of such an effect.

Keywords: Buccal micronucleus cytome assay, cytogenetic damage, electric field strength, personal exposimeter

Procedia PDF Downloads 154
377 Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

This study is an attempt to obtain reliable data on the natural history of breast cancer growth. We analyze the opportunities for using classical mathematical models (exponential and logistic tumor growth models, Gompertz and von Bertalanffy tumor growth models) to try to describe growth of the primary tumor and the secondary distant metastases of human breast cancer. The research aim is to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoMPaS and corresponding software. We are interested in: 1) modelling the whole natural history of the primary tumor and the secondary distant metastases; 2) developing adequate and precise CoMPaS which reflects relations between the primary tumor and the secondary distant metastases; 3) analyzing the CoMPaS scope of application; 4) implementing the model as a software tool. The foundation of the CoMPaS is the exponential tumor growth model, which is described by determinate nonlinear and linear equations. The CoMPaS corresponds to TNM classification. It allows to calculate different growth periods of the primary tumor and the secondary distant metastases: 1) ‘non-visible period’ for the primary tumor; 2) ‘non-visible period’ for the secondary distant metastases; 3) ‘visible period’ for the secondary distant metastases. The CoMPaS is validated on clinical data of 10-years and 15-years survival depending on the tumor stage and diameter of the primary tumor. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer growth models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. The CoMPaS model and predictive software: a) fit to clinical trials data; b) detect different growth periods of the primary tumor and the secondary distant metastases; c) make forecast of the period of the secondary distant metastases appearance; d) have higher average prediction accuracy than the other tools; e) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoMPaS: the number of doublings for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of the secondary distant metastases. The CoMPaS enables, for the first time, to predict ‘whole natural history’ of the primary tumor and the secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on the primary tumor sizes. Summarizing: a) CoMPaS describes correctly the primary tumor growth of IA, IIA, IIB, IIIB (T1-4N0M0) stages without metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and inception of the secondary distant metastases.

Keywords: breast cancer, exponential growth model, mathematical model, metastases in lymph nodes, primary tumor, survival

Procedia PDF Downloads 336
376 Confidence Envelopes for Parametric Model Selection Inference and Post-Model Selection Inference

Authors: I. M. L. Nadeesha Jayaweera, Adao Alex Trindade

Abstract:

In choosing a candidate model in likelihood-based modeling via an information criterion, the practitioner is often faced with the difficult task of deciding just how far up the ranked list to look. Motivated by this pragmatic necessity, we construct an uncertainty band for a generalized (model selection) information criterion (GIC), defined as a criterion for which the limit in probability is identical to that of the normalized log-likelihood. This includes common special cases such as AIC & BIC. The method starts from the asymptotic normality of the GIC for the joint distribution of the candidate models in an independent and identically distributed (IID) data framework and proceeds by deriving the (asymptotically) exact distribution of the minimum. The calculation of an upper quantile for its distribution then involves the computation of multivariate Gaussian integrals, which is amenable to efficient implementation via the R package "mvtnorm". The performance of the methodology is tested on simulated data by checking the coverage probability of nominal upper quantiles and compared to the bootstrap. Both methods give coverages close to nominal for large samples, but the bootstrap is two orders of magnitude slower. The methodology is subsequently extended to two other commonly used model structures: regression and time series. In the regression case, we derive the corresponding asymptotically exact distribution of the minimum GIC invoking Lindeberg-Feller type conditions for triangular arrays and are thus able to similarly calculate upper quantiles for its distribution via multivariate Gaussian integration. The bootstrap once again provides a default competing procedure, and we find that similar comparison performance metrics hold as for the IID case. The time series case is complicated by far more intricate asymptotic regime for the joint distribution of the model GIC statistics. Under a Gaussian likelihood, the default in most packages, one needs to derive the limiting distribution of a normalized quadratic form for a realization from a stationary series. Under conditions on the process satisfied by ARMA models, a multivariate normal limit is once again achieved. The bootstrap can, however, be employed for its computation, whence we are once again in the multivariate Gaussian integration paradigm for upper quantile evaluation. Comparisons of this bootstrap-aided semi-exact method with the full-blown bootstrap once again reveal a similar performance but faster computation speeds. One of the most difficult problems in contemporary statistical methodological research is to be able to account for the extra variability introduced by model selection uncertainty, the so-called post-model selection inference (PMSI). We explore ways in which the GIC uncertainty band can be inverted to make inferences on the parameters. This is being attempted in the IID case by pivoting the CDF of the asymptotically exact distribution of the minimum GIC. For inference one parameter at a time and a small number of candidate models, this works well, whence the attained PMSI confidence intervals are wider than the MLE-based Wald, as expected.

Keywords: model selection inference, generalized information criteria, post model selection, Asymptotic Theory

Procedia PDF Downloads 82
375 Exploring Participatory Research Approaches in Agricultural Settings: Analyzing Pathways to Enhance Innovation in Production

Authors: Michele Paleologo, Marta Acampora, Serena Barello, Guendalina Graffigna

Abstract:

Introduction: In the face of increasing demands for higher agricultural productivity with minimal environmental impact, participatory research approaches emerge as promising means to promote innovation. However, the complexities and ambiguities surrounding these approaches in both theory and practice present challenges. This Scoping Review seeks to bridge these gaps by mapping participatory approaches in agricultural contexts, analyzing their characteristics, and identifying indicators of success. Methods: Following PRISMA guidelines, we conducted a systematic Scoping Review, searching Scopus and Web of Science databases. Our review encompassed 34 projects from diverse geographical regions and farming contexts. Thematic analysis was employed to explore the types of innovation promoted and the categories of participants involved. Results: The identified innovation types encompass technological advancements, sustainable farming practices, and market integration, forming 5 main themes: climate change, cultivar, irrigation, pest and herbicide, and technical improvement. These themes represent critical areas where participatory research drives innovation to address pressing agricultural challenges. Participants were categorized as citizens, experts, NGOs, private companies, and public bodies. Understanding their roles is vital for designing effective participatory initiatives that embrace diverse stakeholders. The review also highlighted 27 theoretical frameworks underpinning participatory projects. Clearer guidelines and reporting standards are crucial for facilitating the comparison and synthesis of findings across studies, thereby enhancing the robustness of future participatory endeavors. Furthermore, we identified three main categories of barriers and facilitators: pragmatic/behavioral, emotional/relational, and cognitive. These insights underscore the significance of participant engagement and collaborative decision-making for project success beyond theoretical considerations. Regarding participation, projects were classified as contributory (5 cases), where stakeholders contributed insights; collaborative (10 cases), with active co-designing of solutions; and co-created (19 cases), featuring deep stakeholder involvement from ideation to implementation, resulting in joint ownership of outcomes. Such diverse participation modes highlight the adaptability of participatory approaches to varying agricultural contexts. Discussion: In conclusion, this Scoping Review demonstrates the potential of participatory research in driving transformative changes in farmers' practices, fostering sustainability and innovation in agriculture. Understanding the diverse landscape of participatory approaches, theoretical frameworks, and participant engagement strategies is essential for designing effective and context-specific interventions. Collaborative efforts among researchers, practitioners, and stakeholders are pivotal in harnessing the full potential of participatory approaches and driving positive change in agricultural settings worldwide. The identified themes of innovation and participation modes provide valuable insights for future research and targeted interventions in agricultural innovation.

Keywords: participatory research, co-creation, agricultural innovation, stakeholders' engagement

Procedia PDF Downloads 51
374 Changes of Mitochondrial Potential in the Midgut Epithelium of Lithobius forficatus (Myriapoda, Chilopoda) Exposed to Cadmium Concentrated in Soil

Authors: Magdalena Rost-Roszkowska, Izabela Poprawa, Alina Chachulska-Zymelka, Lukasz Chajec, Grazyna Wilczek, Piotr Wilczek, Malgorzata Lesniewska

Abstract:

Lithobius forficatus, commonly known as the brown centipede, is a widespread European species, which lives in the upper layers of soil, under stones, litter, rocks, and leaves. As the soil organism, it is exposed to numerous stressors such as xenobiotics, including heavy metals, temperature, starvation, pathogens, etc. Heavy metals are treated as the environmental pollutants of the soil because of their toxic effects on plants, animals and human being. One of the heavy metals which is xenobiotic and can be taken up by plants or animals from the soil is cadmium. The digestive system of centipedes is composed of three distinct regions: fore-, mid- and hindgut. The salivary glands of centipedes are the organs which belong to the anterior region of the digestive system and take part in the synthesis, accumulation, and secretion of many substances. The middle region having contact with the food masses is treated as one of the barriers which protect the organism against any stressors which originate from the external environment, e.g., toxic metals. As the material for our studies, we chose two organs of the digestive system in brown centipede, the organs which take part in homeostasis maintenance: the salivary glands and the midgut. The main purpose of the project was to investigate the relationship between the percentage of depolarized mitochondria, mitophagy and ATP level in cells of mentioned above organs. The animals were divided into experimental groups: K – the control group, the animals cultured in a laboratory conditions in a horticultural soil and fed with Acheta domesticus larvae; Cd1 – the animals cultured in a horticultural soil supplemented with 80 mg/kg (dry weight) of CdCl2, fed with A. domesticus larvae maintained in tap water, 12 days – short-term exposure; Cd2 – the animals cultured in a horticultural soil supplemented with 80 mg/kg (dry weight) of CdCl2, fed with A. domesticus larvae maintained in tap water, 45 days – long-term exposure. The studies were conducted using transmission electron microscopy (TEM), flow cytometry and confocal microscopy. Quantitative analysis revealed that regardless of the organ, a progressive increase in the percentage of cells with depolarized mitochondria was registered, but only in the salivary glands. These were statistically significant changes from the control. In both organs, there were no differences in the level of the analyzed parameter depending on the duration of exposure of individuals to cadmium. Changes in the ultrastructure of mitochondria have been observed. With the extension of the body's exposure time to metal, an increase in the ADP/ATP index was recorded. However, changes statistically significant to the control were demonstrated in the intestine and salivary glands. The size of this intestinal index and salivary glands in the Cd2 group was about thirty and twenty times higher, respectively than in control. Acknowledgment: The study has been financed by the National Science Centre, Poland, grant no 2017/25/B/NZ4/00420.

Keywords: cadmium, digestive system, ultrastructure, centipede

Procedia PDF Downloads 130
373 Concept of a Pseudo-Lower Bound Solution for Reinforced Concrete Slabs

Authors: M. De Filippo, J. S. Kuang

Abstract:

In construction industry, reinforced concrete (RC) slabs represent fundamental elements of buildings and bridges. Different methods are available for analysing the structural behaviour of slabs. In the early ages of last century, the yield-line method has been proposed to attempt to solve such problem. Simple geometry problems could easily be solved by using traditional hand analyses which include plasticity theories. Nowadays, advanced finite element (FE) analyses have mainly found their way into applications of many engineering fields due to the wide range of geometries to which they can be applied. In such cases, the application of an elastic or a plastic constitutive model would completely change the approach of the analysis itself. Elastic methods are popular due to their easy applicability to automated computations. However, elastic analyses are limited since they do not consider any aspect of the material behaviour beyond its yield limit, which turns to be an essential aspect of RC structural performance. Furthermore, their applicability to non-linear analysis for modeling plastic behaviour gives very reliable results. Per contra, this type of analysis is computationally quite expensive, i.e. not well suited for solving daily engineering problems. In the past years, many researchers have worked on filling this gap between easy-to-implement elastic methods and computationally complex plastic analyses. This paper aims at proposing a numerical procedure, through which a pseudo-lower bound solution, not violating the yield criterion, is achieved. The advantages of moment distribution are taken into account, hence the increase in strength provided by plastic behaviour is considered. The lower bound solution is improved by detecting over-yielded moments, which are used to artificially rule the moment distribution among the rest of the non-yielded elements. The proposed technique obeys Nielsen’s yield criterion. The outcome of this analysis provides a simple, yet accurate, and non-time-consuming tool of predicting the lower-bound solution of the collapse load of RC slabs. By using this method, structural engineers can find the fracture patterns and ultimate load bearing capacity. The collapse triggering mechanism is found by detecting yield-lines. An application to the simple case of a square clamped slab is shown, and a good match was found with the exact values of collapse load.

Keywords: computational mechanics, lower bound method, reinforced concrete slabs, yield-line

Procedia PDF Downloads 174
372 A Grid Synchronization Method Based On Adaptive Notch Filter for SPV System with Modified MPPT

Authors: Priyanka Chaudhary, M. Rizwan

Abstract:

This paper presents a grid synchronization technique based on adaptive notch filter for SPV (Solar Photovoltaic) system along with MPPT (Maximum Power Point Tracking) techniques. An efficient grid synchronization technique offers proficient detection of various components of grid signal like phase and frequency. It also acts as a barrier for harmonics and other disturbances in grid signal. A reference phase signal synchronized with the grid voltage is provided by the grid synchronization technique to standardize the system with grid codes and power quality standards. Hence, grid synchronization unit plays important role for grid connected SPV systems. As the output of the PV array is fluctuating in nature with the meteorological parameters like irradiance, temperature, wind etc. In order to maintain a constant DC voltage at VSC (Voltage Source Converter) input, MPPT control is required to track the maximum power point from PV array. In this work, a variable step size P & O (Perturb and Observe) MPPT technique with DC/DC boost converter has been used at first stage of the system. This algorithm divides the dPpv/dVpv curve of PV panel into three separate zones i.e. zone 0, zone 1 and zone 2. A fine value of tracking step size is used in zone 0 while zone 1 and zone 2 requires a large value of step size in order to obtain a high tracking speed. Further, adaptive notch filter based control technique is proposed for VSC in PV generation system. Adaptive notch filter (ANF) approach is used to synchronize the interfaced PV system with grid to maintain the amplitude, phase and frequency parameters as well as power quality improvement. This technique offers the compensation of harmonics current and reactive power with both linear and nonlinear loads. To maintain constant DC link voltage a PI controller is also implemented and presented in this paper. The complete system has been designed, developed and simulated using SimPower System and Simulink toolbox of MATLAB. The performance analysis of three phase grid connected solar photovoltaic system has been carried out on the basis of various parameters like PV output power, PV voltage, PV current, DC link voltage, PCC (Point of Common Coupling) voltage, grid voltage, grid current, voltage source converter current, power supplied by the voltage source converter etc. The results obtained from the proposed system are found satisfactory.

Keywords: solar photovoltaic systems, MPPT, voltage source converter, grid synchronization technique

Procedia PDF Downloads 587
371 Automatic Differentiation of Ultrasonic Images of Cystic and Solid Breast Lesions

Authors: Dmitry V. Pasynkov, Ivan A. Egoshin, Alexey A. Kolchev, Ivan V. Kliouchkin

Abstract:

In most cases, typical cysts are easily recognized at ultrasonography. The specificity of this method for typical cysts reaches 98%, and it is usually considered as gold standard for typical cyst diagnosis. However, it is necessary to have all the following features to conclude the typical cyst: clear margin, the absence of internal echoes and dorsal acoustic enhancement. At the same time, not every breast cyst is typical. It is especially characteristic for protein-contained cysts that may have significant internal echoes. On the other hand, some solid lesions (predominantly malignant) may have cystic appearance and may be falsely accepted as cysts. Therefore we tried to develop the automatic method of cystic and solid breast lesions differentiation. Materials and methods. The input data were the ultrasonography digital images with the 256-gradations of gray color (Medison SA8000SE, Siemens X150, Esaote MyLab C). Identification of the lesion on these images was performed in two steps. On the first one, the region of interest (or contour of lesion) was searched and selected. Selection of such region is carried out using the sigmoid filter where the threshold is calculated according to the empirical distribution function of the image brightness and, if necessary, it was corrected according to the average brightness of the image points which have the highest gradient of brightness. At the second step, the identification of the selected region to one of lesion groups by its statistical characteristics of brightness distribution was made. The following characteristics were used: entropy, coefficients of the linear and polynomial regression, quantiles of different orders, an average gradient of brightness, etc. For determination of decisive criterion of belonging to one of lesion groups (cystic or solid) the training set of these characteristics of brightness distribution separately for benign and malignant lesions were received. To test our approach we used a set of 217 ultrasonic images of 107 cystic (including 53 atypical, difficult for bare eye differentiation) and 110 solid lesions. All lesions were cytologically and/or histologically confirmed. Visual identification was performed by trained specialist in breast ultrasonography. Results. Our system correctly distinguished all (107, 100%) typical cysts, 107 of 110 (97.3%) solid lesions and 50 of 53 (94.3%) atypical cysts. On the contrary, with the bare eye it was possible to identify correctly all (107, 100%) typical cysts, 96 of 110 (87.3%) solid lesions and 32 of 53 (60.4%) atypical cysts. Conclusion. Automatic approach significantly surpasses the visual assessment performed by trained specialist. The difference is especially large for atypical cysts and hypoechoic solid lesions with the clear margin. This data may have a clinical significance.

Keywords: breast cyst, breast solid lesion, differentiation, ultrasonography

Procedia PDF Downloads 262
370 Digital Survey to Detect Factors That Determine Successful Implementation of Cooperative Learning in Physical Education

Authors: Carolin Schulze

Abstract:

Characterized by a positive interdependence of learners, cooperative learning (CL) is one possibility of successfully dealing with the increasing heterogeneity of students. Various positive effects of CL on the mental, physical and social health of students have already been documented. However, this structure is still rarely used in physical education (PE). Moreover, there is a lack of information about factors that determine the successful implementation of CL in PE. Therefore, the objective of the current study was to find out factors that determine the successful implementation of CL in PE using a digital questionnaire that was conducted from November to December 2022. In addition to socio-demographic data (age, gender, teaching experience, and education level), frequency of using CL, implementation strategies (theory-led, student-centred), and positive and negative effects of CL were measured. Furthermore, teachers were asked to rate the success of implementation on a 6-point rating scale (1-very successful to 6-not successful at all). For statistical analysis, multiple linear regression was performed, setting the success of implementation as the dependent variable. A total of 224 teachers (mean age=44.81±10.60 years; 58% male) took part in the current study. Overall, 39% of participants stated that they never use CL in their PE classes. Main reasons against the implementations of CL in PE were no time for preparation (74%) or for implementation (61%) and high heterogeneity of students (55%). When using CL, most of the reported difficulties are related to uncertainties about the correct procedure (54%) and the heterogeneous performance of students (54%). The most frequently mentioned positive effect was increased motivation of students (42%) followed by an improvement of psychological abilities (e.g. self-esteem, self-concept; 36%) and improved class cohesion (31%). Reported negative effects were unpredictability (29%), restlessness (24%), confusion (24%), and conflicts between students (17%). The successful use of CL is related to a theory-based preparation (e.g., heterogeneous formation of groups, use of rules and rituals) and a flexible implementation tailored to the needs and conditions of students (e.g., the possibility of individual work, omission of CL phases). Compared to teachers who solely implemented CL theory-led or student-adapted, teachers who switched from theory-led preparation to student-centred implementation of CL reported more successful implementation (t=5.312; p<.001). Neither frequency of using CL in PE nor the gender, age, the teaching experience, or the education level of the teacher showed a significant connection with the successful use of CL. Corresponding to the results of the current study, it is advisable that teachers gather enough knowledge about CL during their education and to point out the need to adapt the learning structure according to the diversity of their students. In order to analyse implementation strategies of teachers more deeply, qualitative methods and guided interviews with teachers are needed.

Keywords: diversity, educational technology, physical education, teaching styles

Procedia PDF Downloads 76
369 Nondestructive Inspection of Reagents under High Attenuated Cardboard Box Using Injection-Seeded THz-Wave Parametric Generator

Authors: Shin Yoneda, Mikiya Kato, Kosuke Murate, Kodo Kawase

Abstract:

In recent years, there have been numerous attempts to smuggle narcotic drugs and chemicals by concealing them in international mail. Combatting this requires a non-destructive technique that can identify such illicit substances in mail. Terahertz (THz) waves can pass through a wide variety of materials, and many chemicals show specific frequency-dependent absorption, known as a spectral fingerprint, in the THz range. Therefore, it is reasonable to investigate non-destructive mail inspection techniques that use THz waves. For this reason, in this work, we tried to identify reagents under high attenuation shielding materials using injection-seeded THz-wave parametric generator (is-TPG). Our THz spectroscopic imaging system using is-TPG consisted of two non-linear crystals for emission and detection of THz waves. A micro-chip Nd:YAG laser and a continuous wave tunable external cavity diode laser were used as the pump and seed source, respectively. The pump beam and seed beam were injected to the LiNbO₃ crystal satisfying the noncollinear phase matching condition in order to generate high power THz-wave. The emitted THz wave was irradiated to the sample which was raster scanned by the x-z stage while changing the frequencies, and we obtained multispectral images. Then the transmitted THz wave was focused onto another crystal for detection and up-converted to the near infrared detection beam based on nonlinear optical parametric effects, wherein the detection beam intensity was measured using an infrared pyroelectric detector. It was difficult to identify reagents in a cardboard box because of high noise levels. In this work, we introduce improvements for noise reduction and image clarification, and the intensity of the near infrared detection beam was converted correctly to the intensity of the THz wave. A Gaussian spatial filter is also introduced for a clearer THz image. Through these improvements, we succeeded in identification of reagents hidden in a 42-mm thick cardboard box filled with several obstacles, which attenuate 56 dB at 1.3 THz, by improving analysis methods. Using this system, THz spectroscopic imaging was possible for saccharides and may also be applied to cases where illicit drugs are hidden in the box, and multiple reagents are mixed together. Moreover, THz spectroscopic imaging can be achieved through even thicker obstacles by introducing an NIR detector with higher sensitivity.

Keywords: nondestructive inspection, principal component analysis, terahertz parametric source, THz spectroscopic imaging

Procedia PDF Downloads 171
368 Household Water Practices in a Rapidly Urbanizing City and Its Implications for the Future of Potable Water: A Case Study of Abuja Nigeria

Authors: Emmanuel Maiyanga

Abstract:

Access to sufficiently good quality freshwater has been a global challenge, but more notably in low-income countries, particularly in the Sub-Saharan countries, which Nigeria is one. Urban population is soaring, especially in many low-income countries, the existing centralised water supply infrastructures are ageing and inadequate, moreover in households peoples’ lifestyles have become more water-demanding. So, people mostly device coping strategies where municipal supply is perceived to have failed. This development threatens the futures of groundwater and calls for a review of management strategy and research approach. The various issues associated with water demand management in low-income countries and Nigeria, in particular, are well documented in the literature. However, the way people use water daily in households and the reasons they do so, and how the situation is constructing demand among the middle-class population in Abuja Nigeria is poorly understood. This is what this research aims to unpack. This is achieved by using the social practices research approach (which is based on the Theory of Practices) to understand how this situation impacts on the shared groundwater resource. A qualitative method was used for data gathering. This involved audio-recorded interviews of householders and water professionals in the private and public sectors. It also involved observation, note-taking, and document study. The data were analysed thematically using NVIVO software. The research reveals the major household practices that draw on the water on a domestic scale, and they include water sourcing, body hygiene and sanitation, laundry, kitchen, and outdoor practices (car washing, domestic livestock farming, and gardening). Among all the practices, water sourcing, body hygiene, kitchen, and laundry practices, are identified to impact most on groundwater, with impact scale varying with household peculiarities. Water sourcing practices involve people sourcing mostly from personal boreholes because the municipal water supply is perceived inadequate and unreliable in terms of service delivery and water quality, and people prefer easier and unlimited access and control using boreholes. Body hygiene practices reveal that every respondent prefers bucket bathing at least once daily, and the majority bathe twice or more every day. Frequency is determined by the feeling of hotness and dirt on the skin. Thus, people bathe to cool down, stay clean, and satisfy perceived social, religious, and hygiene demand. Kitchen practice consumes water significantly as people run the tap for vegetable washing in daily food preparation and dishwashing after each meal. Laundry practice reveals that most people wash clothes most frequently (twice in a week) during hot and dusty weather, and washing with hands in basins and buckets is the most prevalent and water wasting due to soap overdose. The research also reveals poor water governance as a major cause of current inadequate municipal water delivery. The implication poor governance and widespread use of boreholes is an uncontrolled abstraction of groundwater to satisfy desired household practices, thereby putting the future of the shared aquifer at great risk of total depletion with attendant multiplying effects on the people and the environment and population continues to soar.

Keywords: boreholes, groundwater, household water practices, self-supply

Procedia PDF Downloads 120
367 Trends in Preoperative Self-Disclosure of Cannabis Use in Adult and Adolescent Orthopedic Surgical Patients: An Institutional Retrospective Study

Authors: Spencer Liu, William Chan, Marlena Komatz, Tommy Ramos, Mark Trentalange, Faye Rim, Dae Kim, Mary Kelly, Samuel Schuessler, Roberta Stack, Justas Lauzadis, Kathryn DelPizzo, Seth Waldman, Alexandra Sideris

Abstract:

Background & Significance: The increasing prevalence of cannabis use in the United States has important safety considerations in the perioperative setting, as chronic or heavy preoperative cannabis use may increase the risk of intraoperative complications, postoperative nausea and vomiting (PONV), increased postoperative pain levels, and acute side effects associated with cannabis use cessation. In this retrospective chart review study, we sought to determine the prevalence of self-reported cannabis use in the past 5-years at a single institution in New York City. We hypothesized that there is an increasing prevalence of preoperative self-reported cannabis use among adult and adolescent patients undergoing orthopedic surgery. Methods: After IRB approval for this retrospective study, surgical cases performed on patients 12 years of age and older at the hospital’s main campus and two ambulatory surgery centers between January 1st, 2018, and December 31st, 2023, with preoperatively self-disclosed cannabis use entered in the social history intake form were identified using the tool SlicerDicer in Epic. Case and patient characteristics were extracted, and trends in utilization over time were assessed by the Cochran-Armitage trend test. Results: Overall, the prevalence of self-reported cannabis use increased from 6.6% in 2018 to 10.6% in 2023. By age group, the prevalence of self-reported cannabis use among adolescents remained consistently low (2018: 2.6%, 2023: 2.6%) but increased with significant evidence for a linear trend (p < 0.05) within every adult age group. Among adults, patients who were 18-24 years old (2018: 18%, 2023: 20.5%) and 25-34 years old (2018: 15.9%, 2023: 24.2%) had the highest prevalences of disclosure, whereas patients who were 75 years of age or older had the lowest prevalence of disclosure (2018: 1.9%, 2023: 4.6%). Patients who were 25-34 years old had the highest percent difference in disclosure rates of 8.3%, which corresponded to a 52.2% increase from 2018 to 2023. The adult age group with the highest percent change was patients who were 75 years of age or older, with a difference of 2.7%, which corresponded to a 142.1% increase from 2018 to 2023. Conclusions: These trends in preoperative self-reported cannabis use among patients undergoing orthopedic surgery have important implications for perioperative care and clinical outcomes. Efforts are underway to refine and standardize cannabis use data capture at our institution.

Keywords: orthopedic surgery, cannabis, postoperative pain, postoperative nausea

Procedia PDF Downloads 36
366 Host Preference, Impact of Host Transfer and Insecticide Susceptibility among Aphis gossypii Group (Order: Hemiptera) in Jamaica

Authors: Desireina Delancy, Tannice Hall, Eric Garraway, Dwight Robinson

Abstract:

Aphis gossypii, as a pest, directly damages its host plant by extracting phloem sap (sucking) and indirectly damages it by the transmission of viruses, ultimately affecting the yield of the host. Due to its polyphagous nature, this species affects a wide range of host plants, some of which may serve as a reservoir for colonisation of important crops. In Jamaica, there have been outbreaks of viral plant pathogens that were transmitted by Aphis gossypii. Three such examples are Citrus tristeza virus, the Watermelon mosaic virus, and Papaya ringspot virus. Aphis gossypii also heavily colonized economically significant host plants, including pepper, eggplant, watermelon, cucumber, and hibiscus. To facilitate integrated pest management, it is imperative to understand the biology of the aphid and its host preference. Preliminary work in Jamaica has indicated differences in biology and host preference, as well as host variety within the species. However, specific details of fecundity, colony growth, host preference, distribution, and insecticide resistance of Aphis gossypii were unknown to the best of our knowledge. The aim was to investigate the following in relation to Aphis gossypii: influence of the host plant on colonization, life span, fecundity, population size, and morphology; the impact of host transfer on fecundity and population size as a measure of host preference and host transfer success and susceptibility to four commonly used insecticides. Fecundity and colony size were documented daily from aphids acclimatized on Capsicum chinense Jacquin 1776, Cucumis sativus Linnaeus 1630, Gossypium hirsutum Linnaeus 1751 and Abelmoschus esculentus (L.) Moench 1794 for three generations. The same measures were used after third instar aphids were transferred among the hosts as a measure of suitability and success. Mortality, and fecundity of survivors, were determined after aphids were exposed to varying concentrations of Actara®, Diazinon™, Karate Zeon®, and Pegasus®. Host preference results indicated that, over a 24-day period, Aphis gossypii reached its largest colony size on G. hirsutum (x̄ 381.80), with January – February being the most fecund period. Host transfer experiments were all significantly different, with the most significant occurring between transfers from C. chinense to C. sativus (p < 0.05). Colony sizes were found to increase significantly every 5 days, which has implications for regimes implemented to monitor and evaluate plots. Insecticides ranked on lethality are Karate Zeon®> Actara®> Pegasus® > Diazinon™. The highest LC50 values were obtained for aphids on G. hirsutum and C. chinense was with Pegasus® and for those on C. sativus with Diazinon™. Survivors of insecticide treatments had colony sizes on average that were 98 % less than untreated aphids. Cotton was preferred both in the field and in the glasshouse. It is on cotton the aphids settled first, had the highest fecundity, and the lowest mortality. Cotton can serve as reservoir for (re)populating other cotton or different host species based on migration due to overcrowding, heavy showers, high wind, or ant attendance. Host transfer success between all three hosts is highly probable within an intercropping system. Survivors of insecticide treatments can successfully repopulate host plants.

Keywords: Aphis gossypii, host-plant preference, colonization sequence, host transfers, insecticide susceptibility

Procedia PDF Downloads 89
365 Effects of Potential Chloride-Free Admixtures on Selected Mechanical Properties of Kenya Clay-Based Cement Mortars

Authors: Joseph Mwiti Marangu, Joseph Karanja Thiong'o, Jackson Muthengia Wachira

Abstract:

The mechanical performance of hydrated cements mortars mainly depends on its compressive strength and setting time. These properties are crucial in the construction industry. Pozzolana based cements are mostly characterized by low 28 day compressive strength and long setting times. These are some of the major impediments to their production and diverse uses despite numerous technological and environmental benefits associated with them. The study investigated the effects of potential chemical activators on calcined clay- Portland cement blends with an aim to achieve high early compressive strength and shorter setting times in cement mortar. In addition, standard consistency, soundness and insoluble residue of all cement categories was determined. The test cement was made by blending calcined clays with Ordinary Portland Cement (OPC) at replacement levels from 35 to 50 percent by mass of the OPC to make test cement labeled PCC for the purposes of this study. Mortar prisms measuring 40mmx40mmx160mm were prepared and cured in accordance with KS EAS 148-3:2000 standard. Solutions of Na2SO4, NaOH, Na2SiO3 and Na2CO3 containing 0.5- 2.5M were separately added during casting. Compressive strength was determined at 2rd, 7th, 28th and 90th day of curing. For comparison purposes, commercial Portland Pozzolana cement (PPC) and Ordinary Portland Cement (OPC) were also investigated without activators under similar conditions. X-Ray Florescence (XRF) was used for chemical analysis while X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were used for mineralogical analysis of the test samples. The results indicated that addition of activators significantly increased the 2nd and 7th day compressive strength but minimal increase on the 28th and 90th day compressive strength. A relatively linear relationship was observed between compressive strength and concentration of activator solutions up to 28th of curing. Addition of the said activators significantly reduced both initial and final setting time. Standard consistency and soundness varied with increased amount of clay in the test cement and concentration of activators. Amount of insoluble residues increased with increased replacement of OPC with calcined clays. Mineralogical studies showed that N-A-S-H is formed in addition to C-S-H. In conclusion, the concentration of 2 molar for all activator solutions produced the optimum compressive strength and greatly reduced the setting times for all cement mortars.

Keywords: activators, admixture, cement, clay, pozzolana

Procedia PDF Downloads 253
364 Presenting Research-Based Mindfulness Tools for Corporate Wellness

Authors: Dana Zelicha

Abstract:

The objective of this paper is to present innovative mindfulness tools specifically designed by OWBA—The Well Being Agency for organisations and corporate wellness programmes. The OWBA Mindfulness Tools (OWBA-MT) consist of practical mindfulness exercises to educate and train employees and business leaders to think, feel, and act more mindfully. Among these cutting-edge interventions are Mindful Meetings, Mindful Decision Making and Unitasking activities, intended to cultivate mindful communication and compassion in the workplace and transform organisational culture. In addition to targeting CEO’s and leaders within large corporations, OWBA-MT is also directed at the needs of specific populations such as entrepreneurs’ resilience and women empowerment. The goals of the OWBA-MT are threefold: to inform, inspire and implement. The first goal is to inform participants about the relationship between workplace stress, distractibility and miscommunication in the framework of mindfulness. The second goal is for the audience to be inspired to share those practices with other members of their organisation. The final objective is to equip participants with the tools to foster a compassionate, mindful and well-balanced work environment. To assess these tools, a 6-week case study was conducted as part of an employee wellness programme for a large international corporation. The OWBA-MT were introduced in a workshop forum once-a-week, with participants practicing these tools both in the office and at home. The workshops occurred 1 day a week (2 hours each), with themes and exercises varying weekly. To reinforce practice at home, participants received reflection forms and guided meditations online. Materials were sent via-email at the same time each day to ensure consistency and participation. To evaluate the effectiveness of the mindfulness intervention, improvements in four categories were measured: listening skills, mindfulness levels, prioritising skills and happiness levels. These factors were assessed using online self-reported questionnaires administered at the start of the intervention, and then again 4-weeks following completion. The measures included the Mindfulness Attention Awareness Scale (MAAS), Listening Skills Inventory (LSI), Time Management Behaviour Scale (TMBS) and a modified version of the Oxford Happiness Questionnaire (OHQ). All four parameters showed significant improvements from the start of the programme to the 4-week follow-up. Participant testimonials exhibited high levels of satisfaction and the overall results indicate that the OWBA-MT intervention substantially impacted the corporation in a positive way. The implications of these results suggest that OWBA-MT can improve employees’ capacities to listen and work well with others, to manage time effectively, and to experience enhanced satisfaction both at work and in life. Although corporate mindfulness programmes have proven to be effective, the challenge remains the low engagement levels at home in between training sessions and to implement the tools beyond the scope of the intervention. OWBA-MT has offered an innovative approach to enforce engagement levels at home by sending daily online materials outside the workshop forum with a personalised response. The limitations also noteworthy to consider for future research include the afterglow effect and lack of generalisability, as this study was conducted on a small and fairly homogenous sample.

Keywords: corporate mindfulness, listening skills, mindful leadership, mindfulness tools, organisational well being

Procedia PDF Downloads 238
363 Multicollinearity and MRA in Sustainability: Application of the Raise Regression

Authors: Claudia García-García, Catalina B. García-García, Román Salmerón-Gómez

Abstract:

Much economic-environmental research includes the analysis of possible interactions by using Moderated Regression Analysis (MRA), which is a specific application of multiple linear regression analysis. This methodology allows analyzing how the effect of one of the independent variables is moderated by a second independent variable by adding a cross-product term between them as an additional explanatory variable. Due to the very specification of the methodology, the moderated factor is often highly correlated with the constitutive terms. Thus, great multicollinearity problems arise. The appearance of strong multicollinearity in a model has important consequences. Inflated variances of the estimators may appear, there is a tendency to consider non-significant regressors that they probably are together with a very high coefficient of determination, incorrect signs of our coefficients may appear and also the high sensibility of the results to small changes in the dataset. Finally, the high relationship among explanatory variables implies difficulties in fixing the individual effects of each one on the model under study. These consequences shifted to the moderated analysis may imply that it is not worth including an interaction term that may be distorting the model. Thus, it is important to manage the problem with some methodology that allows for obtaining reliable results. After a review of those works that applied the MRA among the ten top journals of the field, it is clear that multicollinearity is mostly disregarded. Less than 15% of the reviewed works take into account potential multicollinearity problems. To overcome the issue, this work studies the possible application of recent methodologies to MRA. Particularly, the raised regression is analyzed. This methodology mitigates collinearity from a geometrical point of view: the collinearity problem arises because the variables under study are very close geometrically, so by separating both variables, the problem can be mitigated. Raise regression maintains the available information and modifies the problematic variables instead of deleting variables, for example. Furthermore, the global characteristics of the initial model are also maintained (sum of squared residuals, estimated variance, coefficient of determination, global significance test and prediction). The proposal is implemented to data from countries of the European Union during the last year available regarding greenhouse gas emissions, per capita GDP and a dummy variable that represents the topography of the country. The use of a dummy variable as the moderator is a special variant of MRA, sometimes called “subgroup regression analysis.” The main conclusion of this work is that applying new techniques to the field can improve in a substantial way the results of the analysis. Particularly, the use of raised regression mitigates great multicollinearity problems, so the researcher is able to rely on the interaction term when interpreting the results of a particular study.

Keywords: multicollinearity, MRA, interaction, raise

Procedia PDF Downloads 99
362 Real-Time Quantitative Polymerase Chain Reaction Assay for the Detection of microRNAs Using Bi-Directional Extension Sequences

Authors: Kyung Jin Kim, Jiwon Kwak, Jae-Hoon Lee, Soo Suk Lee

Abstract:

MicroRNAs (miRNA) are a class of endogenous, single-stranded, small, and non-protein coding RNA molecules typically 20-25 nucleotides long. They are thought to regulate the expression of other genes in a broad range by binding to 3’- untranslated regions (3’-UTRs) of specific mRNAs. The detection of miRNAs is very important for understanding of the function of these molecules and in the diagnosis of variety of human diseases. However, detection of miRNAs is very challenging because of their short length and high sequence similarities within miRNA families. So, a simple-to-use, low-cost, and highly sensitive method for the detection of miRNAs is desirable. In this study, we demonstrate a novel bi-directional extension (BDE) assay. In the first step, a specific linear RT primer is hybridized to 6-10 base pairs from the 3’-end of a target miRNA molecule and then reverse transcribed to generate a cDNA strand. After reverse transcription, the cDNA was hybridized to the 3’-end which is BDE sequence; it played role as the PCR template. The PCR template was amplified in an SYBR green-based quantitative real-time PCR. To prove the concept, we used human brain total RNA. It could be detected quantitatively in the range of seven orders of magnitude with excellent linearity and reproducibility. To evaluate the performance of BDE assay, we contrasted sensitivity and specificity of the BDE assay against a commercially available poly (A) tailing method using miRNAs for let-7e extracted from A549 human epithelial lung cancer cells. The BDE assay displayed good performance compared with a poly (A) tailing method in terms of specificity and sensitivity; the CT values differed by 2.5 and the melting curve showed a sharper than poly (A) tailing methods. We have demonstrated an innovative, cost-effective BDE assay that allows improved sensitivity and specificity in detection of miRNAs. Dynamic range of the SYBR green-based RT-qPCR for miR-145 could be represented quantitatively over a range of 7 orders of magnitude from 0.1 pg to 1.0 μg of human brain total RNA. Finally, the BDE assay for detection of miRNA species such as let-7e shows good performance compared with a poly (A) tailing method in terms of specificity and sensitivity. Thus BDE proves a simple, low cost, and highly sensitive assay for various miRNAs and should provide significant contributions in research on miRNA biology and application of disease diagnostics with miRNAs as targets.

Keywords: bi-directional extension (BDE), microRNA (miRNA), poly (A) tailing assay, reverse transcription, RT-qPCR

Procedia PDF Downloads 160
361 An Experimental Study on the Coupled Heat Source and Heat Sink Effects on Solid Rockets

Authors: Vinayak Malhotra, Samanyu Raina, Ajinkya Vajurkar

Abstract:

Enhancing the rocket efficiency by controlling the external factors in solid rockets motors has been an active area of research for most of the terrestrial and extra-terrestrial system operations. Appreciable work has been done, but the complexity of the problem has prevented thorough understanding due to heterogenous heat and mass transfer. On record, severe issues have surfaced amounting to irreplaceable loss of mankind, instruments, facilities, and huge amount of money being invested every year. The coupled effect of an external heat source and external heat sink is an aspect yet to be articulated in combustion. Better understanding of this coupled phenomenon will induce higher safety standards, efficient missions, reduced hazard risks, with better designing, validation, and testing. The experiment will help in understanding the coupled effect of an external heat sink and heat source on the burning process, contributing in better combustion and fire safety, which are very important for efficient and safer rocket flights and space missions. Safety is the most prevalent issue in rockets, which assisted by poor combustion efficiency, emphasizes research efforts to evolve superior rockets. This signifies real, engineering, scientific, practical, systems and applications. One potential application is Solid Rocket Motors (S.R.M). The study may help in: (i) Understanding the effect on efficiency of core engines due to the primary boosters if considered as source, (ii) Choosing suitable heat sink materials for space missions so as to vary the efficiency of the solid rocket depending on the mission, (iii) Giving an idea about how the preheating of the successive stage due to previous stage acting as a source may affect the mission. The present work governs the temperature (resultant) and thus the heat transfer which is expected to be non-linear because of heterogeneous heat and mass transfer. The study will deepen the understanding of controlled inter-energy conversions and the coupled effect of external source/sink(s) surrounding the burning fuel eventually leading to better combustion thus, better propulsion. The work is motivated by the need to have enhanced fire safety and better rocket efficiency. The specific objective of the work is to understand the coupled effect of external heat source and sink on propellant burning and to investigate the role of key controlling parameters. Results as of now indicate that there exists a singularity in the coupled effect. The dominance of the external heat sink and heat source decides the relative rocket flight in Solid Rocket Motors (S.R.M).

Keywords: coupled effect, heat transfer, sink, solid rocket motors, source

Procedia PDF Downloads 217
360 Informed Urban Design: Minimizing Urban Heat Island Intensity via Stochastic Optimization

Authors: Luis Guilherme Resende Santos, Ido Nevat, Leslie Norford

Abstract:

The Urban Heat Island (UHI) is characterized by increased air temperatures in urban areas compared to undeveloped rural surrounding environments. With urbanization and densification, the intensity of UHI increases, bringing negative impacts on livability, health and economy. In order to reduce those effects, it is required to take into consideration design factors when planning future developments. Given design constraints such as population size and availability of area for development, non-trivial decisions regarding the buildings’ dimensions and their spatial distribution are required. We develop a framework for optimization of urban design in order to jointly minimize UHI intensity and buildings’ energy consumption. First, the design constraints are defined according to spatial and population limits in order to establish realistic boundaries that would be applicable in real life decisions. Second, the tools Urban Weather Generator (UWG) and EnergyPlus are used to generate outputs of UHI intensity and total buildings’ energy consumption, respectively. Those outputs are changed based on a set of variable inputs related to urban morphology aspects, such as building height, urban canyon width and population density. Lastly, an optimization problem is cast where the utility function quantifies the performance of each design candidate (e.g. minimizing a linear combination of UHI and energy consumption), and a set of constraints to be met is set. Solving this optimization problem is difficult, since there is no simple analytic form which represents the UWG and EnergyPlus models. We therefore cannot use any direct optimization techniques, but instead, develop an indirect “black box” optimization algorithm. To this end we develop a solution that is based on stochastic optimization method, known as the Cross Entropy method (CEM). The CEM translates the deterministic optimization problem into an associated stochastic optimization problem which is simple to solve analytically. We illustrate our model on a typical residential area in Singapore. Due to fast growth in population and built area and land availability generated by land reclamation, urban planning decisions are of the most importance for the country. Furthermore, the hot and humid climate in the country raises the concern for the impact of UHI. The problem presented is highly relevant to early urban design stages and the objective of such framework is to guide decision makers and assist them to include and evaluate urban microclimate and energy aspects in the process of urban planning.

Keywords: building energy consumption, stochastic optimization, urban design, urban heat island, urban weather generator

Procedia PDF Downloads 126
359 The Relationship between Violence against Women and Levels of Self-Esteem in Urban Informal Settlements of Mumbai, India: A Cross-Sectional Study

Authors: A. Bentley, A. Prost, N. Daruwalla, D. Osrin

Abstract:

Background: This study aims to investigate the relationship between experiences of violence against women in the family, and levels of self-esteem in women residing in informal settlement (slum) areas of Mumbai, India. The authors hypothesise that violence against women in Indian households extends beyond that of intimate partner violence (IPV), to include other members of the family and that experiences of violence are associated with lower levels of self-esteem. Methods: Experiences of violence were assessed through a cross-sectional survey of 598 women, including questions about specific acts of emotional, economic, physical and sexual violence across different time points, and the main perpetrator of each. Self-esteem was assessed using the Rosenberg self-esteem questionnaire. A global score for self-esteem was calculated and the relationship between violence in the past year and Rosenberg self-esteem score was assessed using multivariable linear regression models, adjusted for years of education completed, and clustering using robust standard errors. Results: 482 (81%) women consented to interview. On average, they were 28.5 years old, had completed 6 years of education and had been married 9.5 years. 88% were Muslim and 46% lived in joint families. 44% of women had experienced at least one act of violence in their lifetime (33% emotional, 22% economic, 24% physical, 12% sexual). Of the women who experienced violence after marriage, 70% cited a perpetrator other than the husband for at least one of the acts. 5% had low self-esteem (Rosenberg score < 15). For women who experienced emotional violence in the past year, the Rosenberg score was 2.6 points lower (p < 0.001). It was 1.2 points lower (p = 0.03) for women who experienced economic violence. For physical or sexual violence in the past year, no statistically significant relationship with Rosenberg score was seen. However, for a one-unit increase in the number of different acts of each type of violence experienced in the past year, a decrease in Rosenberg score was seen (-0.62 for emotional, -0.76 for economic, -0.53 for physical and -0.47 for sexual; p < 0.05 for all). Discussion: The high prevalence of violence experiences across the lifetime was likely due to the detailed assessment of violence and the inclusion of perpetrators within the family other than the husband. Experiences of emotional or economic violence in the past year were associated with lower Rosenberg scores and therefore lower self-esteem, but no relationship was seen between experiences of physical or sexual violence and Rosenberg score overall. For all types of violence in the past year, a greater number of different acts were associated with a decrease in Rosenberg score. Emotional violence showed the strongest relationship with self-esteem, but for all types of violence the more complex the pattern of perpetration with different methods used, the lower the levels of self-esteem. Due to the cross-sectional nature of the study causal directionality cannot be attributed. Further work to investigate the relationship between severity of violence and self-esteem and whether self-esteem mediates relationships between violence and poorer mental health would be beneficial.

Keywords: family violence, India, informal settlements, Rosenberg self-esteem scale, self-esteem, violence against women

Procedia PDF Downloads 123
358 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing

Authors: Saqib Aziz, Brad Alexander, Christoph Gengnagel, Stefan Weinzierl

Abstract:

This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full-scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the building information modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit, the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models, which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.

Keywords: acoustical design, additive manufacturing, computational design, multimodal optimization

Procedia PDF Downloads 153