Search results for: weighted sum overlay
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 647

Search results for: weighted sum overlay

47 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm

Authors: G. Singer, M. Golan

Abstract:

Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.

Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension

Procedia PDF Downloads 100
46 R&D Diffusion and Productivity in a Globalized World: Country Capabilities in an MRIO Framework

Authors: S. Jimenez, R.Duarte, J.Sanchez-Choliz, I. Villanua

Abstract:

There is a certain consensus in economic literature about the factors that have influenced in historical differences in growth rates observed between developed and developing countries. However, it is less clear what elements have marked different paths of growth in developed economies in recent decades. R&D has always been seen as one of the major sources of technological progress, and productivity growth, which is directly influenced by technological developments. Following recent literature, we can say that ‘innovation pushes the technological frontier forward’ as well as encourage future innovation through the creation of externalities. In other words, productivity benefits from innovation are not fully appropriated by innovators, but it also spread through the rest of the economies encouraging absorptive capacities, what have become especially important in a context of increasing fragmentation of production This paper aims to contribute to this literature in two ways, first, exploring alternative indexes of R&D flows embodied in inter-country, inter-sectorial flows of good and services (as approximation to technology spillovers) capturing structural and technological characteristic of countries and, second, analyzing the impact of direct and embodied R&D on the evolution of labor productivity at the country/sector level in recent decades. The traditional way of calculation through a multiregional input-output framework assumes that all countries have the same capabilities to absorb technology, but it is not, each one has different structural features and, this implies, different capabilities as part of literature, claim. In order to capture these differences, we propose to use a weight based on specialization structure indexes; one related with the specialization of countries in high-tech sectors and the other one based on a dispersion index. We propose these two measures because, as far as we understood, country capabilities can be captured through different ways; countries specialization in knowledge-intensive sectors, such as Chemicals or Electrical Equipment, or an intermediate technology effort across different sectors. Results suggest the increasing importance of country capabilities while increasing the trade openness. Besides, if we focus in the country rankings, we can observe that with high-tech weighted R&D embodied countries as China, Taiwan and Germany arose the top five despite not having the highest intensities of R&D expenditure, showing the importance of country capabilities. Additionally, through a fixed effects panel data model we show that, in fact, R&D embodied is important to explain labor productivity increases, in fact, even more that direct R&D investments. This is reflecting that globalization is more important than has been said until now. However, it is true that almost all analysis done in relation with that consider the effect of t-1 direct R&D intensity over economic growth. Nevertheless, from our point of view R&D evolve as a delayed flow and it is necessary some time to be able to see its effects on the economy, as some authors have already claimed. Our estimations tend to corroborate this hypothesis obtaining a gap between 4-5 years.

Keywords: economic growth, embodied, input-output, technology

Procedia PDF Downloads 124
45 Monitoring the Effect of Doxorubicin Liposomal in VX2 Tumor Using Magnetic Resonance Imaging

Authors: Ren-Jy Ben, Jo-Chi Jao, Chiu-Ya Liao, Ya-Ru Tsai, Lain-Chyr Hwang, Po-Chou Chen

Abstract:

Cancer is still one of the serious diseases threatening the lives of human beings. How to have an early diagnosis and effective treatment for tumors is a very important issue. The animal carcinoma model can provide a simulation tool for the study of pathogenesis, biological characteristics and therapeutic effects. Recently, drug delivery systems have been rapidly developed to effectively improve the therapeutic effects. Liposome plays an increasingly important role in clinical diagnosis and therapy for delivering a pharmaceutic or contrast agent to the targeted sites. Liposome can be absorbed and excreted by the human body, and is well known that no harm to the human body. This study aimed to compare the therapeutic effects between encapsulated (doxorubicin liposomal, LipoDox) and un-encapsulated (doxorubicin, Dox) anti-tumor drugs using Magnetic Resonance Imaging (MRI). Twenty-four New Zealand rabbits implanted with VX2 carcinoma at left thigh were classified into three groups: control group (untreated), Dox-treated group and LipoDox-treated group, 8 rabbits for each group. MRI scans were performed three days after tumor implantation. A 1.5T GE Signa HDxt whole body MRI scanner with a high resolution knee coil was used in this study. After a 3-plane localizer scan was performed, Three-Dimensional (3D) Fast Spin Echo (FSE) T2-Weighted Images (T2WI) was used for tumor volumetric quantification. And Two-Dimensional (2D) spoiled gradient recalled echo (SPGR) dynamic Contrast-enhanced (DCE) MRI was used for tumor perfusion evaluation. DCE-MRI was designed to acquire four baseline images, followed by contrast agent Gd-DOTA injection through the ear vein of rabbits. Afterwards, a series of 32 images were acquired to observe the signals change over time in the tumor and muscle. The MRI scanning was scheduled on a weekly basis for a period of four weeks to observe the tumor progression longitudinally. The Dox and LipoDox treatments were prescribed 3 times in the first week immediately after VX2 tumor implantation. ImageJ was used to quantitate tumor volume and time course signal enhancement on DCE images. The changes of tumor size showed that the growth of VX2 tumors was effectively inhibited for both LipoDox-treated and Dox-treated groups. Furthermore, the tumor volume of LipoDox-treated group was significantly lower than that of Dox-treated group, which implies that LipoDox has better therapeutic effect than Dox. The signal intensity of LipoDox-treated group is significantly lower than that of the other two groups, which implies that targeted therapeutic drug remained in the tumor tissue. This study provides a radiation-free and non-invasive MRI method for therapeutic monitoring of targeted liposome on an animal tumor model.

Keywords: doxorubicin, dynamic contrast-enhanced MRI, lipodox, magnetic resonance imaging, VX2 tumor model

Procedia PDF Downloads 457
44 A Complex Network Approach to Structural Inequality of Educational Deprivation

Authors: Harvey Sanchez-Restrepo, Jorge Louca

Abstract:

Equity and education are major focus of government policies around the world due to its relevance for addressing the sustainable development goals launched by Unesco. In this research, we developed a primary analysis of a data set of more than one hundred educational and non-educational factors associated with learning, coming from a census-based large-scale assessment carried on in Ecuador for 1.038.328 students, their families, teachers, and school directors, throughout 2014-2018. Each participating student was assessed by a standardized computer-based test. Learning outcomes were calibrated through item response theory with two-parameters logistic model for getting raw scores that were re-scaled and synthetized by a learning index (LI). Our objective was to develop a network for modelling educational deprivation and analyze the structure of inequality gaps, as well as their relationship with socioeconomic status, school financing, and student's ethnicity. Results from the model show that 348 270 students did not develop the minimum skills (prevalence rate=0.215) and that Afro-Ecuadorian, Montuvios and Indigenous students exhibited the highest prevalence with 0.312, 0.278 and 0.226, respectively. Regarding the socioeconomic status of students (SES), modularity class shows clearly that the system is out of equilibrium: the first decile (the poorest) exhibits a prevalence rate of 0.386 while rate for decile ten (the richest) is 0.080, showing an intense negative relationship between learning and SES given by R= –0.58 (p < 0.001). Another interesting and unexpected result is the average-weighted degree (426.9) for both private and public schools attending Afro-Ecuadorian students, groups that got the highest PageRank (0.426) and pointing out that they suffer the highest educational deprivation due to discrimination, even belonging to the richest decile. The model also found the factors which explain deprivation through the highest PageRank and the greatest degree of connectivity for the first decile, they are: financial bonus for attending school, computer access, internet access, number of children, living with at least one parent, books access, read books, phone access, time for homework, teachers arriving late, paid work, positive expectations about schooling, and mother education. These results provide very accurate and clear knowledge about the variables affecting poorest students and the inequalities that it produces, from which it might be defined needs profiles, as well as actions on the factors in which it is possible to influence. Finally, these results confirm that network analysis is fundamental for educational policy, especially linking reliable microdata with social macro-parameters because it allows us to infer how gaps in educational achievements are driven by students’ context at the time of assigning resources.

Keywords: complex network, educational deprivation, evidence-based policy, large-scale assessments, policy informatics

Procedia PDF Downloads 124
43 A Quality Index Optimization Method for Non-Invasive Fetal ECG Extraction

Authors: Lucia Billeci, Gennaro Tartarisco, Maurizio Varanini

Abstract:

Fetal cardiac monitoring by fetal electrocardiogram (fECG) can provide significant clinical information about the healthy condition of the fetus. Despite this potentiality till now the use of fECG in clinical practice has been quite limited due to the difficulties in its measuring. The recovery of fECG from the signals acquired non-invasively by using electrodes placed on the maternal abdomen is a challenging task because abdominal signals are a mixture of several components and the fetal one is very weak. This paper presents an approach for fECG extraction from abdominal maternal recordings, which exploits the characteristics of pseudo-periodicity of fetal ECG. It consists of devising a quality index (fQI) for fECG and of finding the linear combinations of preprocessed abdominal signals, which maximize these fQI (quality index optimization - QIO). It aims at improving the performances of the most commonly adopted methods for fECG extraction, usually based on maternal ECG (mECG) estimating and canceling. The procedure for the fECG extraction and fetal QRS (fQRS) detection is completely unsupervised and based on the following steps: signal pre-processing; maternal ECG (mECG) extraction and maternal QRS detection; mECG component approximation and canceling by weighted principal component analysis; fECG extraction by fQI maximization and fetal QRS detection. The proposed method was compared with our previously developed procedure, which obtained the highest at the Physionet/Computing in Cardiology Challenge 2013. That procedure was based on removing the mECG from abdominal signals estimated by a principal component analysis (PCA) and applying the Independent component Analysis (ICA) on the residual signals. Both methods were developed and tuned using 69, 1 min long, abdominal measurements with fetal QRS annotation of the dataset A provided by PhysioNet/Computing in Cardiology Challenge 2013. The QIO-based and the ICA-based methods were compared in analyzing two databases of abdominal maternal ECG available on the Physionet site. The first is the Abdominal and Direct Fetal Electrocardiogram Database (ADdb) which contains the fetal QRS annotations thus allowing a quantitative performance comparison, the second is the Non-Invasive Fetal Electrocardiogram Database (NIdb), which does not contain the fetal QRS annotations so that the comparison between the two methods can be only qualitative. In particular, the comparison on NIdb was performed defining an index of quality for the fetal RR series. On the annotated database ADdb the QIO method, provided the performance indexes Sens=0.9988, PPA=0.9991, F1=0.9989 overcoming the ICA-based one, which provided Sens=0.9966, PPA=0.9972, F1=0.9969. The comparison on NIdb was performed defining an index of quality for the fetal RR series. The index of quality resulted higher for the QIO-based method compared to the ICA-based one in 35 records out 55 cases of the NIdb. The QIO-based method gave very high performances with both the databases. The results of this study foresees the application of the algorithm in a fully unsupervised way for the implementation in wearable devices for self-monitoring of fetal health.

Keywords: fetal electrocardiography, fetal QRS detection, independent component analysis (ICA), optimization, wearable

Procedia PDF Downloads 280
42 A Column Generation Based Algorithm for Airline Cabin Crew Rostering Problem

Authors: Nan Xu

Abstract:

In airlines, the crew scheduling problem is usually decomposed into two stages: crew pairing and crew rostering. In the crew pairing stage, pairings are generated such that each flight is covered by exactly one pairing and the overall cost is minimized. In the crew rostering stage, the pairings generated in the crew pairing stage are combined with off days, training and other breaks to create individual work schedules. The paper focuses on cabin crew rostering problem, which is challenging due to the extremely large size and the complex working rules involved. In our approach, the objective of rostering consists of two major components. The first is to minimize the number of unassigned pairings and the second is to ensure the fairness to crew members. There are two measures of fairness to crew members, the number of overnight duties and the total fly-hour over a given period. Pairings should be assigned to each crew member so that their actual overnight duties and fly hours are as close to the expected average as possible. Deviations from the expected average are penalized in the objective function. Since several small deviations are preferred than a large deviation, the penalization is quadratic. Our model of the airline crew rostering problem is based on column generation. The problem is decomposed into a master problem and subproblems. The mater problem is modeled as a set partition problem and exactly one roster for each crew is picked up such that the pairings are covered. The restricted linear master problem (RLMP) is considered. The current subproblem tries to find columns with negative reduced costs and add them to the RLMP for the next iteration. When no column with negative reduced cost can be found or a stop criteria is met, the procedure ends. The subproblem is to generate feasible crew rosters for each crew member. A separate acyclic weighted graph is constructed for each crew member and the subproblem is modeled as resource constrained shortest path problems in the graph. Labeling algorithm is used to solve it. Since the penalization is quadratic, a method to deal with non-additive shortest path problem using labeling algorithm is proposed and corresponding domination condition is defined. The major contribution of our model is: 1) We propose a method to deal with non-additive shortest path problem; 2) Operation to allow relaxing some soft rules is allowed in our algorithm, which can improve the coverage rate; 3) Multi-thread techniques are used to improve the efficiency of the algorithm when generating Line-of-Work for crew members. Here a column generation based algorithm for the airline cabin crew rostering problem is proposed. The objective is to assign a personalized roster to crew member which minimize the number of unassigned pairings and ensure the fairness to crew members. The algorithm we propose in this paper has been put into production in a major airline in China and numerical experiments show that it has a good performance.

Keywords: aircrew rostering, aircrew scheduling, column generation, SPPRC

Procedia PDF Downloads 146
41 Multivariate Ecoregion Analysis of Nutrient Runoff From Agricultural Land Uses in North America

Authors: Austin P. Hopkins, R. Daren Harmel, Jim A Ippolito, P. J. A. Kleinman, D. Sahoo

Abstract:

Field-scale runoff and water quality data are critical to understanding the fate and transport of nutrients applied to agricultural lands and minimizing their off-site transport because it is at that scale that agricultural management decisions are typically made based on hydrologic, soil, and land use factors. However, regional influences such as precipitation, temperature, and prevailing cropping systems and land use patterns also impact nutrient runoff. In the present study, the recently-updated MANAGE (Measured Annual Nutrient loads from Agricultural Environments) database was used to conduct an ecoregion-level analysis of nitrogen and phosphorus runoff from agricultural lands in the North America. Specifically, annual N and P runoff loads for cropland and grasslands in North American Level II EPA ecoregions were presented, and the impact of factors such as land use, tillage, and fertilizer timing and placement on N and P runoff were analyzed. Specifically we compiled annual N and P runoff load data (i.e., dissolved, particulate, and total N and P, kg/ha/yr) for each Level 2 EPA ecoregion and for various agricultural management practices (i.e., land use, tillage, fertilizer timing, fertilizer placement) within each ecoregion to showcase the analyses possible with the data in MANAGE. Potential differences in N and P runoff loads were evaluated between and within ecoregions with statistical and graphical approaches. Non-parametric analyses, mainly Mann-Whitney tests were conducted on median values weighted by the site years of data utilizing R because the data were not normally distributed, and we used Dunn tests and box and whisker plots to visually and statistically evaluate significant differences. Out of the 50 total North American Ecoregions, 11 were found that had significant data and site years to be utilized in the analysis. When examining ecoregions alone, it was observed that ER 9.2 temperate prairies had a significantly higher total N at 11.7 kg/ha/yr than ER 9.4 South Central Semi Arid Prairies with a total N of 2.4. When examining total P it was observed that ER 8.5 Mississippi Alluvial and Southeast USA Coastal Plains had a higher load at 3.0 kg/ha/yr than ER 8.2 Southeastern USA Plains with a load of 0.25 kg/ha/yr. Tillage and Land Use had severe impacts on nutrient loads. In ER 9.2 Temperate Prairies, conventional tillage had a total N load of 36.0 kg/ha/yr while conservation tillage had a total N load of 4.8 kg/ha/yr. In all relevant ecoregions, when corn was the predominant land use, total N levels significantly increased compared to grassland or other grains. In ER 8.4 Ozark-Ouachita, Corn had a total N of 22.1 kg/ha/yr while grazed grassland had a total N of 2.9 kg/ha/yr. There are further intricacies of the interactions that agricultural management practices have on one another combined with ecological conditions and their impacts on the continental aquatic nutrient loads that still need to be explored. This research provides a stepping stone to further understanding of land and resource stewardship and best management practices.

Keywords: water quality, ecoregions, nitrogen, phosphorus, agriculture, best management practices, land use

Procedia PDF Downloads 79
40 Linking Enhanced Resting-State Brain Connectivity with the Benefit of Desirable Difficulty to Motor Learning: A Functional Magnetic Resonance Imaging Study

Authors: Chien-Ho Lin, Ho-Ching Yang, Barbara Knowlton, Shin-Leh Huang, Ming-Chang Chiang

Abstract:

Practicing motor tasks arranged in an interleaved order (interleaved practice, or IP) generally leads to better learning than practicing tasks in a repetitive order (repetitive practice, or RP), an example of how desirable difficulty during practice benefits learning. Greater difficulty during practice, e.g. IP, is associated with greater brain activity measured by higher blood-oxygen-level dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) in the sensorimotor areas of the brain. In this study resting-state fMRI was applied to investigate whether increase in resting-state brain connectivity immediately after practice predicts the benefit of desirable difficulty to motor learning. 26 healthy adults (11M/15F, age = 23.3±1.3 years) practiced two sets of three sequences arranged in a repetitive or an interleaved order over 2 days, followed by a retention test on Day 5 to evaluate learning. On each practice day, fMRI data were acquired in a resting state after practice. The resting-state fMRI data was decomposed using a group-level spatial independent component analysis (ICA), yielding 9 independent components (IC) matched to the precuneus network, primary visual networks (two ICs, denoted by I and II respectively), sensorimotor networks (two ICs, denoted by I and II respectively), the right and the left frontoparietal networks, occipito-temporal network, and the frontal network. A weighted resting-state functional connectivity (wRSFC) was then defined to incorporate information from within- and between-network brain connectivity. The within-network functional connectivity between a voxel and an IC was gauged by a z-score derived from the Fisher transformation of the IC map. The between-network connectivity was derived from the cross-correlation of time courses across all possible pairs of ICs, leading to a symmetric nc x nc matrix of cross-correlation coefficients, denoted by C = (pᵢⱼ). Here pᵢⱼ is the extremum of cross-correlation between ICs i and j; nc = 9 is the number of ICs. This component-wise cross-correlation matrix C was then projected to the voxel space, with the weights for each voxel set to the z-score that represents the above within-network functional connectivity. The wRSFC map incorporates the global characteristics of brain networks measured by the between-network connectivity, and the spatial information contained in the IC maps measured by the within-network connectivity. Pearson correlation analysis revealed that greater IP-minus-RP difference in wRSFC was positively correlated with the RP-minus-IP difference in the response time on Day 5, particularly in brain regions crucial for motor learning, such as the right dorsolateral prefrontal cortex (DLPFC), and the right premotor and supplementary motor cortices. This indicates that enhanced resting brain connectivity during the early phase of memory consolidation is associated with enhanced learning following interleaved practice, and as such wRSFC could be applied as a biomarker that measures the beneficial effects of desirable difficulty on motor sequence learning.

Keywords: desirable difficulty, functional magnetic resonance imaging, independent component analysis, resting-state networks

Procedia PDF Downloads 203
39 Evaluation of Cryoablation Procedures in Treatment of Atrial Fibrillation from 3 Years' Experiences in a Single Heart Center

Authors: J. Yan, B. Pieper, B. Bucsky, B. Nasseri, S. Klotz, H. H. Sievers, S. Mohamed

Abstract:

Cryoablation is evermore applied for interventional treatment of paroxysmal (PAAF) or persistent atrial fibrillation (PEAF). In the cardiac surgery, this procedure is often combined with coronary arterial bypass graft (CABG) and valve operations. Three different methods are feasible in this sense in respect to practicing extents and mechanisms such as lone left atrial cryoablation, Cox-Maze IV and III in our heart center. 415 patients (68 ± 0.8ys, male 68.2%) with predisposed atrial fibrillation who initially required either coronary or valve operations were enrolled and divided into 3 matched groups according to deployed procedures: CryoLA-group (cryoablation of lone left atrium, n=94); Cox-Maze-IV-group (n=93) and Cox-Maze-III-group (n=8). All patients additionally received closure of the left atrial appendage (LAA) and regularly underwent three-year ambulant follow-up assessments (3, 6, 9, 12, 18, 24, 30 and 36 months). Burdens of atrial fibrillation were assessed directly by means of cardiac monitor (Reveal XT, Medtronic) or of 3-day Holter electrocardiogram. Herewith, attacks frequencies of AF and their circadian patterns were systemically analyzed. Furthermore, anticoagulants and regular rate-/rhythm-controlling medications were evaluated and listed in terms of anti-rate and anti-rhythm regimens. Concerning PAAF treatment, Cox Maze IV procedure provided therapeutically acceptable effect as lone left atrium (LA) cryoablation did (5.25 ± 5.25% vs. 10.39 ± 9.96% AF-burden, p > 0.05). Interestingly, Cox Maze III method presented a better short-term effect in the PEAF therapy in comparison to lone cryoablation of LA and Cox Maze IV (0.25 ± 0.23% vs. 15.31 ± 5.99% and 9.10 ± 3.73% AF-burden within the first year, p < 0.05). But this therapeutic advantage went lost during ongoing follow-ups (26.65 ± 24.50% vs. 8.33 ± 8.06% and 15.73 ± 5.88% in 3rd follow-up year). In this way, lone LA-cryoablation established its antiarrhythmic efficacy and 69.5% patients were released from the Vit-K-antagonists, while Cox Maze IV liberated 67.2% patients from continuous anticoagulant medication. The AF-recurrences mostly performed such attacks property as less than 60min duration for all 3 procedures (p > 0.05). In the sense of the circadian distribution of the recurrence attacks, weighted by ongoing follow-ups, lone LA cryoablation achieved and stabilized the antiarrhythmic effects over time, which was especially observed in the treatment of PEAF, while Cox Maze IV and III had their antiarrhythmic effects weakened progressively. This phenomenon was likewise evaluable in the therapy of circadian rhythm of reverting AF-attacks. Furthermore, the strategy of rate control was much more often applied to support and maintain therapeutic successes obtained than the one of rhythm control. Derived from experiences in our heart center, lone LA cryoablation presented equivalent effects in the treatment of AF in comparison to Cox Maze IV and III procedures. These therapeutic successes were especially investigable in the patients suffering from persistent AF (PEAF). Additional supportive strategies such as rate control regime should be initialized and implemented to improve the therapeutic effects of the cryoablations according to appropriate criteria.

Keywords: AF-burden, atrial fibrillation, cardiac monitor, COX MAZE, cryoablation, Holter, LAA

Procedia PDF Downloads 204
38 Identification of Hub Genes in the Development of Atherosclerosis

Authors: Jie Lin, Yiwen Pan, Li Zhang, Zhangyong Xia

Abstract:

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, immune cells, and extracellular matrix in the arterial walls. This pathological process can lead to the formation of plaques that can obstruct blood flow and trigger various cardiovascular diseases such as heart attack and stroke. The underlying molecular mechanisms still remain unclear, although many studies revealed the dysfunction of endothelial cells, recruitment and activation of monocytes and macrophages, and the production of pro-inflammatory cytokines and chemokines in atherosclerosis. This study aimed to identify hub genes involved in the progression of atherosclerosis and to analyze their biological function in silico, thereby enhancing our understanding of the disease’s molecular mechanisms. Through the analysis of microarray data, we examined the gene expression in media and neo-intima from plaques, as well as distant macroscopically intact tissue, across a cohort of 32 hypertensive patients. Initially, 112 differentially expressed genes (DEGs) were identified. Subsequent immune infiltration analysis indicated a predominant presence of 27 immune cell types in the atherosclerosis group, particularly noting an increase in monocytes and macrophages. In the Weighted gene co-expression network analysis (WGCNA), 10 modules with a minimum of 30 genes were defined as key modules, with blue, dark, Oliver green and sky-blue modules being the most significant. These modules corresponded respectively to monocyte, activated B cell, and activated CD4 T cell gene patterns, revealing a strong morphological-genetic correlation. From these three gene patterns (modules morphology), a total of 2509 key genes (Gene Significance >0.2, module membership>0.8) were extracted. Six hub genes (CD36, DPP4, HMOX1, PLA2G7, PLN2, and ACADL) were then identified by intersecting 2509 key genes, 102 DEGs with lipid-related genes from the Genecard database. The bio-functional analysis of six hub genes was estimated by a robust classifier with an area under the curve (AUC) of 0.873 in the ROC plot, indicating excellent efficacy in differentiating between the disease and control group. Moreover, PCA visualization demonstrated clear separation between the groups based on these six hub genes, suggesting their potential utility as classification features in predictive models. Protein-protein interaction (PPI) analysis highlighted DPP4 as the most interconnected gene. Within the constructed key gene-drug network, 462 drugs were predicted, with ursodeoxycholic acid (UDCA) being identified as a potential therapeutic agent for modulating DPP4 expression. In summary, our study identified critical hub genes implicated in the progression of atherosclerosis through comprehensive bioinformatic analyses. These findings not only advance our understanding of the disease but also pave the way for applying similar analytical frameworks and predictive models to other diseases, thereby broadening the potential for clinical applications and therapeutic discoveries.

Keywords: atherosclerosis, hub genes, drug prediction, bioinformatics

Procedia PDF Downloads 66
37 Empowering Indigenous Epistemologies in Geothermal Development

Authors: Te Kīpa Kēpa B. Morgan, Oliver W. Mcmillan, Dylan N. Taute, Tumanako N. Fa'aui

Abstract:

Epistemologies are ways of knowing. Indigenous Peoples are aware that they do not perceive and experience the world in the same way as others. So it is important when empowering Indigenous epistemologies, such as that of the New Zealand Māori, to also be able to represent a scientific understanding within the same analysis. A geothermal development assessment tool has been developed by adapting the Mauri Model Decision Making Framework. Mauri is a metric that is capable of representing the change in the life-supporting capacity of things and collections of things. The Mauri Model is a method of grouping mauri indicators as dimension averages in order to allow holistic assessment and also to conduct sensitivity analyses for the effect of worldview bias. R-shiny is the coding platform used for this Vision Mātauranga research which has created an expert decision support tool (DST) that combines a stakeholder assessment of worldview bias with an impact assessment of mauri-based indicators to determine the sustainability of proposed geothermal development. The initial intention was to develop guidelines for quantifying mātauranga Māori impacts related to geothermal resources. To do this, three typical scenarios were considered: a resource owner wishing to assess the potential for new geothermal development; another party wishing to assess the environmental and cultural impacts of the proposed development; an assessment that focuses on the holistic sustainability of the resource, including its surface features. Indicator sets and measurement thresholds were developed that are considered necessary considerations for each assessment context and these have been grouped to represent four mauri dimensions that mirror the four well-being criteria used for resource management in Aotearoa, New Zealand. Two case studies have been conducted to test the DST suitability for quantifying mātauranga Māori and other biophysical factors related to a geothermal system. This involved estimating mauri0meter values for physical features such as temperature, flow rate, frequency, colour, and developing indicators to also quantify qualitative observations about the geothermal system made by Māori. A retrospective analysis has then been conducted to verify different understandings of the geothermal system. The case studies found that the expert DST is useful for geothermal development assessment, especially where hapū (indigenous sub-tribal grouping) are conflicted regarding the benefits and disadvantages of their’ and others’ geothermal developments. These results have been supplemented with evaluations for the cumulative impacts of geothermal developments experienced by different parties using integration techniques applied to the time history curve of the expert DST worldview bias weighted plotted against the mauri0meter score. Cumulative impacts represent the change in resilience or potential of geothermal systems, which directly assists with the holistic interpretation of change from an Indigenous Peoples’ perspective.

Keywords: decision support tool, holistic geothermal assessment, indigenous knowledge, mauri model decision-making framework

Procedia PDF Downloads 187
36 Sensory Integration for Standing Postural Control Among Children and Adolescents with Autistic Spectrum Disorder Compared with Typically Developing Children and Adolescents

Authors: Eglal Y. Ali, Smita Rao, Anat Lubetzky, Wen Ling

Abstract:

Background: Postural abnormalities, rigidity, clumsiness, and frequent falls are common among children with autism spectrum disorders (ASD). The central nervous system’s ability to process all reliable sensory inputs (weighting) and disregard potentially perturbing sensory input (reweighting) is critical for successfully maintaining standing postural control. This study examined how sensory inputs (visual and somatosensory) are weighted and reweighted to maintain standing postural control in children with ASD compared with typically developing (TD) children. Subjects: Forty (20 (TD) and 20 ASD) children and adolescents participated in this study. The groups were matched for age, weight, and height. Participants had normal somatosensory (no somatosensory hypersensitivity), visual, and vestibular perception. Participants with ASD were categorized with severity level 1 according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) and Social Responsiveness Scale. Methods: Using one force platform, the center of pressure (COP) was measured during quiet standing for 30 seconds, 3 times first standing on stable surface with eyes open (Condition 1), followed by randomization of the following 3 conditions: Condition 2 standing on stable surface with eyes closed, (visual input perturbed); Condition 3 standing on compliant foam surface with eyes open, (somatosensory input perturbed); and Condition 4 standing on compliant foam surface with eyes closed, (both visual and somatosensory inputs perturbed). Standing postural control was measured by three outcome measures: COP sway area, COP anterior-posterior (AP), and mediolateral (ML) path length (PL). A repeated measure mixed model Analysis of Variance was conducted to determine whether there was a significant difference between the two groups in the mean of the three outcome measures across the four conditions. Results: According to all three outcome measures, both groups showed a gradual increase in postural sway from condition 1 to condition 4. However, TD participants showed a larger postural sway than those with ASD. There was a significant main effect of condition on three outcome measures (p< 0.05). Only the COP AP PL showed a significant main effect of the group (p<0.05) and a significant group by condition interaction (p<0.05). In COP AP PL, TD participants showed a significant difference between condition 2 and the baseline (p<0.05), whereas the ASD group did not. This suggests that the ASD group did not weight visual input as much as the TD group. A significant difference between conditions for the ASD group was seen only when participants stood on foam regardless of the visual condition, suggesting that the ASD group relied more on the somatosensory inputs to maintain the standing postural control. Furthermore, the ASD group exhibited significantly smaller postural sway compared with TD participants during standing on the stable surface, whereas the postural sway of the ASD group was close to that of the TD group on foam. Conclusion: These results suggest that participants with high functioning ASD (level 1, no somatosensory hypersensitivity in ankles and feet) over-rely on somatosensory inputs and use a stiffening strategy for standing postural control. This deviation in the reweighting mechanism might explain the postural abnormalities mentioned above among children with ASD.

Keywords: autism spectrum disorders, postural sway, sensory weighting and reweighting, standing postural control

Procedia PDF Downloads 54
35 Sensory Weighting and Reweighting for Standing Postural Control among Children and Adolescents with Autistic Spectrum Disorder Compared with Typically Developing Children and Adolescents

Authors: Eglal Y. Ali, Smita Rao, Anat Lubetzky, Wen Ling

Abstract:

Background: Postural abnormalities, rigidity, clumsiness, and frequent falls are common among children with autism spectrum disorders (ASD). The central nervous system’s ability to process all reliable sensory inputs (weighting) and disregard potentially perturbing sensory input (reweighting) is critical for successfully maintaining standing postural control. This study examined how sensory inputs (visual and somatosensory) are weighted and reweighted to maintain standing postural control in children with ASD compared with typically developing (TD) children. Subjects: Forty (20 (TD) and 20 ASD) children and adolescents participated in this study. The groups were matched for age, weight, and height. Participants had normal somatosensory (no somatosensory hypersensitivity), visual, and vestibular perception. Participants with ASD were categorized with severity level 1 according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) and Social Responsiveness Scale. Methods: Using one force platform, the center of pressure (COP) was measured during quiet standing for 30 seconds, 3 times first standing on stable surface with eyes open (Condition 1), followed by randomization of the following 3 conditions: Condition 2 standing on stable surface with eyes closed, (visual input perturbed); Condition 3 standing on a compliant foam surface with eyes open, (somatosensory input perturbed); and Condition 4 standing on a compliant foam surface with eyes closed, (both visual and somatosensory inputs perturbed). Standing postural control was measured by three outcome measures: COP sway area, COP anterior-posterior (AP), and mediolateral (ML) path length (PL). A repeated measure mixed model analysis of variance was conducted to determine whether there was a significant difference between the two groups in the mean of the three outcome measures across the four conditions. Results: According to all three outcome measures, both groups showed a gradual increase in postural sway from condition 1 to condition 4. However, TD participants showed a larger postural sway than those with ASD. There was a significant main effect of the condition on three outcome measures (p< 0.05). Only the COP AP PL showed a significant main effect of the group (p<0.05) and a significant group by condition interaction (p<0.05). In COP AP PL, TD participants showed a significant difference between condition 2 and the baseline (p<0.05), whereas the ASD group did not. This suggests that the ASD group did not weigh visual input as much as the TD group. A significant difference between conditions for the ASD group was seen only when participants stood on foam regardless of the visual condition, suggesting that the ASD group relied more on the somatosensory inputs to maintain the standing postural control. Furthermore, the ASD group exhibited significantly smaller postural sway compared with TD participants during standing on a stable surface, whereas the postural sway of the ASD group was close to that of the TD group on foam. Conclusion: These results suggest that participants with high-functioning ASD (level 1, no somatosensory hypersensitivity in ankles and feet) over-rely on somatosensory inputs and use a stiffening strategy for standing postural control. This deviation in the reweighting mechanism might explain the postural abnormalities mentioned above among children with ASD.

Keywords: autism spectrum disorders, postural sway, sensory weighting and reweighting, standing postural control

Procedia PDF Downloads 117
34 Assessing Spatial Associations of Mortality Patterns in Municipalities of the Czech Republic

Authors: Jitka Rychtarikova

Abstract:

Regional differences in mortality in the Czech Republic (CR) may be moderate from a broader European perspective, but important discrepancies in life expectancy can be found between smaller territorial units. In this study territorial units are based on Administrative Districts of Municipalities with Extended Powers (MEP). This definition came into force January 1, 2003. There are 205 units and the city of Prague. MEP represents the smallest unit for which mortality patterns based on life tables can be investigated and the Czech Statistical Office has been calculating such life tables (every five-years) since 2004. MEP life tables from 2009-2013 for males and females allowed the investigation of three main life cycles with the use of temporary life expectancies between the exact ages of 0 and 35; 35 and 65; and the life expectancy at exact age 65. The results showed regional survival inequalities primarily in adult and older ages. Consequently, only mortality indicators for adult and elderly population were related to census 2011 unlinked data for the same age groups. The most relevant socio-economic factors taken from the census are: having a partner, educational level and unemployment rate. The unemployment rate was measured for adults aged 35-64 completed years. Exploratory spatial data analysis methods were used to detect regional patterns in spatially contiguous units of MEP. The presence of spatial non-stationarity (spatial autocorrelation) of mortality levels for male and female adults (35-64), and elderly males and females (65+) was tested using global Moran’s I. Spatial autocorrelation of mortality patterns was mapped using local Moran’s I with the intention to depict clusters of low or high mortality and spatial outliers for two age groups (35-64 and 65+). The highest Moran’s I was observed for male temporary life expectancy between exact ages 35 and 65 (0.52) and the lowest was among women with life expectancy of 65 (0.26). Generally, men showed stronger spatial autocorrelation compared to women. The relationship between mortality indicators such as life expectancies and socio-economic factors like the percentage of males/females having a partner; percentage of males/females with at least higher secondary education; and percentage of unemployed males/females from economically active population aged 35-64 years, was evaluated using multiple regression (OLS). The results were then compared to outputs from geographically weighted regression (GWR). In the Czech Republic, there are two broader territories North-West Bohemia (NWB) and North Moravia (NM), in which excess mortality is well established. Results of the t-test of spatial regression showed that for males aged 30-64 the association between mortality and unemployment (when adjusted for education and partnership) was stronger in NM compared to NWB, while educational level impacted the length of survival more in NWB. Geographic variation and relationships in mortality of the CR MEP will also be tested using the spatial Durbin approach. The calculations were conducted by means of ArcGIS 10.6 and SAS 9.4.

Keywords: Czech Republic, mortality, municipality, socio-economic factors, spatial analysis

Procedia PDF Downloads 118
33 Effect of Noise at Different Frequencies on Heart Rate Variability - Experimental Study Protocol

Authors: A. Bortkiewcz, A. Dudarewicz, P. Małecki, M. Kłaczyński, T. Wszołek, Małgorzata Pawlaczyk-Łuszczyńska

Abstract:

Low-frequency noise (LFN) has been recognized as a special environmental pollutant. It is usually considered a broadband noise with the dominant content of low frequencies from 10 Hz to 250 Hz. A growing body of data shows that LFN differs in nature from other environmental noises, which are at comparable levels but not dominated by low-frequency components. The primary and most frequent adverse effect of LFN exposure is annoyance. Moreover, some recent investigations showed that LFN at relatively low A-weighted sound pressure levels (40−45 dB) occurring in office-like areas could adversely affect the mental performance, especially of high-sensitive subjects. It is well documented that high-frequency noise disturbs various types of human functions; however, there is very little data on the impact of LFN on well-being and health, including the cardiovascular system. Heart rate variability (HRV) is a sensitive marker of autonomic regulation of the circulatory system. Walker and co-workers found that LFN has a significantly more negative impact on cardiovascular response than exposure to high-frequency noise and that changes in HRV parameters resulting from LFN exposure tend to persist over time. The negative reactions of the cardiovascular system in response to LFN generated by wind turbines (20-200 Hz) were confirmed by Chiu. The scientific aim of the study is to assess the relationship between the spectral-temporal characteristics of LFN and the activity of the autonomic nervous system, considering the subjective assessment of annoyance, sensitivity to this type of noise, and cognitive and general health status. The study will be conducted in 20 male students in a special, acoustically prepared, constantly supervised room. Each person will be tested 4 times (4 sessions), under conditions of non-exposure (sham) and exposure to noise of wind turbines recorded at a distance of 250 meters from the turbine with different frequencies and frequency ranges: acoustic band 20 Hz-20 kHz, infrasound band 5-20 Hz, acoustic band + infrasound band. The order of sessions of the experiment will be randomly selected. Each session will last 1 h. There will be a 2-3 days break between sessions to exclude the possibility of the earlier session influencing the results of the next one. Before the first exposure, a questionnaire will be conducted on noise sensitivity, general health status using the GHQ questionnaire, hearing organ status and sociodemographic data. Before each of the 4 exposures, subjects will complete a brief questionnaire on their mood and sleep quality the night before the test. After the test, the subjects will be asked about any discomfort and subjective symptoms during the exposure. Before the test begins, Holter ECG monitoring equipment will be installed. HRV will be analyzed from the ECG recordings, including time and frequency domain parameters. The tests will always be performed in the morning (9-12) to avoid the influence of diurnal rhythm on HRV results. Students will perform psychological tests 15 minutes before the end of the test (Vienna Test System).

Keywords: neurovegetative control, heart rate variability (HRV), cognitive processes, low frequency noise

Procedia PDF Downloads 80
32 Estimating Multidimensional Water Poverty Index in India: The Alkire Foster Approach

Authors: Rida Wanbha Nongbri, Sabuj Kumar Mandal

Abstract:

The Sustainable Development Goals (SDGs) for 2016-2030 were adopted in response to Millennium Development Goals (MDGs) which focused on access to sustainable water and sanitations. For over a decade, water has been a significant subject that is explored in various facets of life. Our day-to-day life is significantly impacted by water poverty at the socio-economic level. Reducing water poverty is an important policy challenge, particularly in emerging economies like India, owing to its population growth, huge variation in topology and climatic factors. To design appropriate water policies and its effectiveness, a proper measurement of water poverty is essential. In this backdrop, this study uses the Alkire Foster (AF) methodology to estimate a multidimensional water poverty index for India at the household level. The methodology captures several attributes to understand the complex issues related to households’ water deprivation. The study employs two rounds of Indian Human Development Survey data (IHDS 2005 and 2012) which focuses on 4 dimensions of water poverty including water access, water quantity, water quality, and water capacity, and seven indicators capturing these four dimensions. In order to quantify water deprivation at the household level, an AF dual cut-off counting method is applied and Multidimensional Water Poverty Index (MWPI) is calculated as the product of Headcount Ratio (Incidence) and average share of weighted dimension (Intensity). The results identify deprivation across all dimensions at the country level and show that a large proportion of household in India is deprived of quality water and suffers from water access in both 2005 and 2012 survey rounds. The comparison between the rural and urban households shows that higher ratio of the rural households are multidimensionally water poor as compared to their urban counterparts. Among the four dimensions of water poverty, water quality is found to be the most significant one for both rural and urban households. In 2005 round, almost 99.3% of households are water poor for at least one of the four dimensions, and among the water poor households, the intensity of water poverty is 54.7%. These values do not change significantly in 2012 round, but we could observe significance differences across the dimensions. States like Bihar, Tamil Nadu, and Andhra Pradesh are ranked the most in terms of MWPI, whereas Sikkim, Arunachal Pradesh and Chandigarh are ranked the lowest in 2005 round. Similarly, in 2012 round, Bihar, Uttar Pradesh and Orissa rank the highest in terms of MWPI, whereas Goa, Nagaland and Arunachal Pradesh rank the lowest. The policy implications of this study can be multifaceted. It can urge the policy makers to focus either on the impoverished households with lower intensity levels of water poverty to minimize total number of water poor households or can focus on those household with high intensity of water poverty to achieve an overall reduction in MWPI.

Keywords: .alkire-foster (AF) methodology, deprivation, dual cut-off, multidimensional water poverty index (MWPI)

Procedia PDF Downloads 70
31 Determination of Gross Alpha and Gross Beta Activity in Water Samples by iSolo Alpha/Beta Counting System

Authors: Thiwanka Weerakkody, Lakmali Handagiripathira, Poshitha Dabare, Thisari Guruge

Abstract:

The determination of gross alpha and beta activity in water is important in a wide array of environmental studies and these parameters are considered in international legislations on the quality of water. This technique is commonly applied as screening method in radioecology, environmental monitoring, industrial applications, etc. Measuring of Gross Alpha and Beta emitters by using iSolo alpha beta counting system is an adequate nuclear technique to assess radioactivity levels in natural and waste water samples due to its simplicity and low cost compared with the other methods. Twelve water samples (Six samples of commercially available bottled drinking water and six samples of industrial waste water) were measured by standard method EPA 900.0 consisting of the gas-less, firm wear based, single sample, manual iSolo alpha beta counter (Model: SOLO300G) with solid state silicon PIPS detector. Am-241 and Sr90/ Y90 calibration standards were used to calibrate the detector. The minimum detectable activities are 2.32mBq/L and 406mBq/L, for alpha and beta activity, respectively. Each of the 2L water samples was evaporated (at low heat) to a small volume and transferred into 50mm stainless steel counting planchet evenly (for homogenization) and heated by IR lamp and the constant weighted residue was obtained. Then the samples were counted for gross alpha and beta. Sample density on the planchet area was maintained below 5mg/cm. Large quantities of solid wastes sludges and waste water are generated every year due to various industries. This water can be reused for different applications. Therefore implementation of water treatment plants and measuring water quality parameters in industrial waste water discharge is very important before releasing them into the environment. This waste may contain different types of pollutants, including radioactive substances. All these measured waste water samples having gross alpha and beta activities, lower than the maximum tolerance limits for industrial waste water discharge of industrial waste in to inland surface water, that is 10-9µCi/mL and 10-8µCi/mL for gross alpha and beta respectively (National Environmental Act, No. 47 of 1980). This is according to extraordinary gazette of the democratic socialist republic of Sri Lanka in February 2008. The measured water samples were below the recommended radioactivity levels and do not pose any radiological hazard when releasing the environment. Drinking water is an essential requirement of life. All the drinking water samples were below the permissible levels of 0.5Bq/L for gross alpha activity and 1Bq/L for gross beta activity. The values have been proposed by World Health Organization in 2011; therefore the water is acceptable for consumption of humans without any further clarification with respect to their radioactivity. As these screening levels are very low, the individual dose criterion (IDC) would usually not be exceeded (0.1mSv y⁻¹). IDC is a criterion for evaluating health risks from long term exposure to radionuclides in drinking water. Recommended level of 0.1mSv/y expressed a very low level of health risk. This monitoring work will be continued further for environmental protection purposes.

Keywords: drinking water, gross alpha, gross beta, waste water

Procedia PDF Downloads 198
30 Flood Risk Assessment, Mapping Finding the Vulnerability to Flood Level of the Study Area and Prioritizing the Study Area of Khinch District Using and Multi-Criteria Decision-Making Model

Authors: Muhammad Karim Ahmadzai

Abstract:

Floods are natural phenomena and are an integral part of the water cycle. The majority of them are the result of climatic conditions, but are also affected by the geology and geomorphology of the area, topography and hydrology, the water permeability of the soil and the vegetation cover, as well as by all kinds of human activities and structures. However, from the moment that human lives are at risk and significant economic impact is recorded, this natural phenomenon becomes a natural disaster. Flood management is now a key issue at regional and local levels around the world, affecting human lives and activities. The majority of floods are unlikely to be fully predicted, but it is feasible to reduce their risks through appropriate management plans and constructions. The aim of this Case Study is to identify, and map areas of flood risk in the Khinch District of Panjshir Province, Afghanistan specifically in the area of Peshghore, causing numerous damages. The main purpose of this study is to evaluate the contribution of remote sensing technology and Geographic Information Systems (GIS) in assessing the susceptibility of this region to flood events. Panjsher is facing Seasonal floods and human interventions on streams caused floods. The beds of which have been trampled to build houses and hotels or have been converted into roads, are causing flooding after every heavy rainfall. The streams crossing settlements and areas with high touristic development have been intensively modified by humans, as the pressure for real estate development land is growing. In particular, several areas in Khinch are facing a high risk of extensive flood occurrence. This study concentrates on the construction of a flood susceptibility map, of the study area, by combining vulnerability elements, using the Analytical Hierarchy Process/ AHP. The Analytic Hierarchy Process, normally called AHP, is a powerful yet simple method for making decisions. It is commonly used for project prioritization and selection. AHP lets you capture your strategic goals as a set of weighted criteria that you then use to score projects. This method is used to provide weights for each criterion which Contributes to the Flood Event. After processing of a digital elevation model (DEM), important secondary data were extracted, such as the slope map, the flow direction and the flow accumulation. Together with additional thematic information (Landuse and Landcover, topographic wetness index, precipitation, Normalized Difference Vegetation Index, Elevation, River Density, Distance from River, Distance to Road, Slope), these led to the final Flood Risk Map. Finally, according to this map, the Priority Protection Areas and Villages and the structural and nonstructural measures were demonstrated to Minimize the Impacts of Floods on residential and Agricultural areas.

Keywords: flood hazard, flood risk map, flood mitigation measures, AHP analysis

Procedia PDF Downloads 118
29 The Role of Metaheuristic Approaches in Engineering Problems

Authors: Ferzat Anka

Abstract:

Many types of problems can be solved using traditional analytical methods. However, these methods take a long time and cause inefficient use of resources. In particular, different approaches may be required in solving complex and global engineering problems that we frequently encounter in real life. The bigger and more complex a problem, the harder it is to solve. Such problems are called Nondeterministic Polynomial time (NP-hard) in the literature. The main reasons for recommending different metaheuristic algorithms for various problems are the use of simple concepts, the use of simple mathematical equations and structures, the use of non-derivative mechanisms, the avoidance of local optima, and their fast convergence. They are also flexible, as they can be applied to different problems without very specific modifications. Thanks to these features, it can be easily embedded even in many hardware devices. Accordingly, this approach can also be used in trend application areas such as IoT, big data, and parallel structures. Indeed, the metaheuristic approaches are algorithms that return near-optimal results for solving large-scale optimization problems. This study is focused on the new metaheuristic method that has been merged with the chaotic approach. It is based on the chaos theorem and helps relevant algorithms to improve the diversity of the population and fast convergence. This approach is based on Chimp Optimization Algorithm (ChOA), that is a recently introduced metaheuristic algorithm inspired by nature. This algorithm identified four types of chimpanzee groups: attacker, barrier, chaser, and driver, and proposed a suitable mathematical model for them based on the various intelligence and sexual motivations of chimpanzees. However, this algorithm is not more successful in the convergence rate and escaping of the local optimum trap in solving high-dimensional problems. Although it and some of its variants use some strategies to overcome these problems, it is observed that it is not sufficient. Therefore, in this study, a newly expanded variant is described. In the algorithm called Ex-ChOA, hybrid models are proposed for position updates of search agents, and a dynamic switching mechanism is provided for transition phases. This flexible structure solves the slow convergence problem of ChOA and improves its accuracy in multidimensional problems. Therefore, it tries to achieve success in solving global, complex, and constrained problems. The main contribution of this study is 1) It improves the accuracy and solves the slow convergence problem of the ChOA. 2) It proposes new hybrid movement strategy models for position updates of search agents. 3) It provides success in solving global, complex, and constrained problems. 4) It provides a dynamic switching mechanism between phases. The performance of the Ex-ChOA algorithm is analyzed on a total of 8 benchmark functions, as well as a total of 2 classical and constrained engineering problems. The proposed algorithm is compared with the ChoA, and several well-known variants (Weighted-ChoA, Enhanced-ChoA) are used. In addition, an Improved algorithm from the Grey Wolf Optimizer (I-GWO) method is chosen for comparison since the working model is similar. The obtained results depict that the proposed algorithm performs better or equivalently to the compared algorithms.

Keywords: optimization, metaheuristic, chimp optimization algorithm, engineering constrained problems

Procedia PDF Downloads 77
28 Influence of Ride Control Systems on the Motions Response and Passenger Comfort of High-Speed Catamarans in Irregular Waves

Authors: Ehsan Javanmardemamgheisi, Javad Mehr, Jason Ali-Lavroff, Damien Holloway, Michael Davis

Abstract:

During the last decades, a growing interest in faster and more efficient waterborne transportation has led to the development of high-speed vessels for both commercial and military applications. To satisfy this global demand, a wide variety of arrangements of high-speed crafts have been proposed by designers. Among them, high-speed catamarans have proven themselves to be a suitable Roll-on/Roll-off configuration for carrying passengers and cargo due to widely spaced demi hulls, a wide deck zone, and a high ratio of deadweight to displacement. To improve passenger comfort and crew workability and enhance the operability and performance of high-speed catamarans, mitigating the severity of motions and structural loads using Ride Control Systems (RCS) is essential.In this paper, a set of towing tank tests was conducted on a 2.5 m scaled model of a 112 m Incat Tasmania high-speed catamaran in irregular head seas to investigate the effect of different ride control algorithms including linear and nonlinear versions of the heave control, pitch control, and local control on motion responses and passenger comfort of the full-scale ship. The RCS included a centre bow-fitted T-Foil and two transom-mounted stern tabs. All the experiments were conducted at the Australian Maritime College (AMC) towing tank at a model speed of 2.89 m/s (37 knots full scale), a modal period of 1.5 sec (10 sec full scale) and two significant wave heights of 60 mm and 90 mm, representing full-scale wave heights of 2.7 m and 4 m, respectively. Spectral analyses were performed using Welch’s power spectral density method on the vertical motion time records of the catamaran model to calculate heave and pitch Response Amplitude Operators (RAOs). Then, noting that passenger discomfort arises from vertical accelerations and that the vertical accelerations vary at different longitudinal locations within the passenger cabin due to the variations in amplitude and relative phase of the pitch and heave motions, the vertical accelerations were calculated at three longitudinal locations (LCG, T-Foil, and stern tabs). Finally, frequency-weighted Root Mean Square (RMS) vertical accelerations were calculated to estimate Motion Sickness Dose Value (MSDV) of the ship based on ISO 2631-recommendations. It was demonstrated that in small seas, implementing a nonlinear pitch control algorithm reduces the peak pitch motions by 41%, the vertical accelerations at the forward location by 46%, and motion sickness at the forward position by around 20% which provides great potential for further improvement in passenger comfort, crew workability, and operability of high-speed catamarans.

Keywords: high-speed catamarans, ride control system, response amplitude operators, vertical accelerations, motion sickness, irregular waves, towing tank tests.

Procedia PDF Downloads 83
27 An Efficient Process Analysis and Control Method for Tire Mixing Operation

Authors: Hwang Ho Kim, Do Gyun Kim, Jin Young Choi, Sang Chul Park

Abstract:

Since tire production process is very complicated, company-wide management of it is very difficult, necessitating considerable amounts of capital and labors. Thus, productivity should be enhanced and maintained competitive by developing and applying effective production plans. Among major processes for tire manufacturing, consisting of mixing component preparation, building and curing, the mixing process is an essential and important step because the main component of tire, called compound, is formed at this step. Compound as a rubber synthesis with various characteristics plays its own role required for a tire as a finished product. Meanwhile, scheduling tire mixing process is similar to flexible job shop scheduling problem (FJSSP) because various kinds of compounds have their unique orders of operations, and a set of alternative machines can be used to process each operation. In addition, setup time required for different operations may differ due to alteration of additives. In other words, each operation of mixing processes requires different setup time depending on the previous one, and this kind of feature, called sequence dependent setup time (SDST), is a very important issue in traditional scheduling problems such as flexible job shop scheduling problems. However, despite of its importance, there exist few research works dealing with the tire mixing process. Thus, in this paper, we consider the scheduling problem for tire mixing process and suggest an efficient particle swarm optimization (PSO) algorithm to minimize the makespan for completing all the required jobs belonging to the process. Specifically, we design a particle encoding scheme for the considered scheduling problem, including a processing sequence for compounds and machine allocation information for each job operation, and a method for generating a tire mixing schedule from a given particle. At each iteration, the coordination and velocity of particles are updated, and the current solution is compared with new solution. This procedure is repeated until a stopping condition is satisfied. The performance of the proposed algorithm is validated through a numerical experiment by using some small-sized problem instances expressing the tire mixing process. Furthermore, we compare the solution of the proposed algorithm with it obtained by solving a mixed integer linear programming (MILP) model developed in previous research work. As for performance measure, we define an error rate which can evaluate the difference between two solutions. As a result, we show that PSO algorithm proposed in this paper outperforms MILP model with respect to the effectiveness and efficiency. As the direction for future work, we plan to consider scheduling problems in other processes such as building, curing. We can also extend our current work by considering other performance measures such as weighted makespan or processing times affected by aging or learning effects.

Keywords: compound, error rate, flexible job shop scheduling problem, makespan, particle encoding scheme, particle swarm optimization, sequence dependent setup time, tire mixing process

Procedia PDF Downloads 265
26 Performance and Limitations of Likelihood Based Information Criteria and Leave-One-Out Cross-Validation Approximation Methods

Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer

Abstract:

Model assessment, in the Bayesian context, involves evaluation of the goodness-of-fit and the comparison of several alternative candidate models for predictive accuracy and improvements. In posterior predictive checks, the data simulated under the fitted model is compared with the actual data. Predictive model accuracy is estimated using information criteria such as the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the Deviance information criterion (DIC), and the Watanabe-Akaike information criterion (WAIC). The goal of an information criterion is to obtain an unbiased measure of out-of-sample prediction error. Since posterior checks use the data twice; once for model estimation and once for testing, a bias correction which penalises the model complexity is incorporated in these criteria. Cross-validation (CV) is another method used for examining out-of-sample prediction accuracy. Leave-one-out cross-validation (LOO-CV) is the most computationally expensive variant among the other CV methods, as it fits as many models as the number of observations. Importance sampling (IS), truncated importance sampling (TIS) and Pareto-smoothed importance sampling (PSIS) are generally used as approximations to the exact LOO-CV and utilise the existing MCMC results avoiding expensive computational issues. The reciprocals of the predictive densities calculated over posterior draws for each observation are treated as the raw importance weights. These are in turn used to calculate the approximate LOO-CV of the observation as a weighted average of posterior densities. In IS-LOO, the raw weights are directly used. In contrast, the larger weights are replaced by their modified truncated weights in calculating TIS-LOO and PSIS-LOO. Although, information criteria and LOO-CV are unable to reflect the goodness-of-fit in absolute sense, the differences can be used to measure the relative performance of the models of interest. However, the use of these measures is only valid under specific circumstances. This study has developed 11 models using normal, log-normal, gamma, and student’s t distributions to improve the PCR stutter prediction with forensic data. These models are comprised of four with profile-wide variances, four with locus specific variances, and three which are two-component mixture models. The mean stutter ratio in each model is modeled as a locus specific simple linear regression against a feature of the alleles under study known as the longest uninterrupted sequence (LUS). The use of AIC, BIC, DIC, and WAIC in model comparison has some practical limitations. Even though, IS-LOO, TIS-LOO, and PSIS-LOO are considered to be approximations of the exact LOO-CV, the study observed some drastic deviations in the results. However, there are some interesting relationships among the logarithms of pointwise predictive densities (lppd) calculated under WAIC and the LOO approximation methods. The estimated overall lppd is a relative measure that reflects the overall goodness-of-fit of the model. Parallel log-likelihood profiles for the models conditional on equal posterior variances in lppds were observed. This study illustrates the limitations of the information criteria in practical model comparison problems. In addition, the relationships among LOO-CV approximation methods and WAIC with their limitations are discussed. Finally, useful recommendations that may help in practical model comparisons with these methods are provided.

Keywords: cross-validation, importance sampling, information criteria, predictive accuracy

Procedia PDF Downloads 392
25 Momentum Profits and Investor Behavior

Authors: Aditya Sharma

Abstract:

Profits earned from relative strength strategy of zero-cost portfolio i.e. taking long position in winner stocks and short position in loser stocks from recent past are termed as momentum profits. In recent times, there has been lot of controversy and concern about sources of momentum profits, since the existence of these profits acts as an evidence of earning non-normal returns from publicly available information directly contradicting Efficient Market Hypothesis. Literature review reveals conflicting theories and differing evidences on sources of momentum profits. This paper aims at re-examining the sources of momentum profits in Indian capital markets. The study focuses on assessing the effect of fundamental as well as behavioral sources in order to understand the role of investor behavior in stock returns and suggest (if any) improvements to existing behavioral asset pricing models. This Paper adopts calendar time methodology to calculate momentum profits for 6 different strategies with and without skipping a month between ranking and holding period. For each J/K strategy, under this methodology, at the beginning of each month t stocks are ranked on past j month’s average returns and sorted in descending order. Stocks in upper decile are termed winners and bottom decile as losers. After ranking long and short positions are taken in winner and loser stocks respectively and both portfolios are held for next k months, in such manner that at any given point of time we have K overlapping long and short portfolios each, ranked from t-1 month to t-K month. At the end of period, returns of both long and short portfolios are calculated by taking equally weighted average across all months. Long minus short returns (LMS) are momentum profits for each strategy. Post testing for momentum profits, to study the role market risk plays in momentum profits, CAPM and Fama French three factor model adjusted LMS returns are calculated. In the final phase of studying sources, decomposing methodology has been used for breaking up the profits into unconditional means, serial correlations, and cross-serial correlations. This methodology is unbiased, can be used with the decile-based methodology and helps to test the effect of behavioral and fundamental sources altogether. From all the analysis, it was found that momentum profits do exist in Indian capital markets with market risk playing little role in defining them. Also, it was observed that though momentum profits have multiple sources (risk, serial correlations, and cross-serial correlations), cross-serial correlations plays a major role in defining these profits. The study revealed that momentum profits do have multiple sources however, cross-serial correlations i.e. the effect of returns of other stocks play a major role. This means that in addition to studying the investors` reactions to the information of the same firm it is also important to study how they react to the information of other firms. The analysis confirms that investor behavior does play an important role in stock returns and incorporating both the aspects of investors’ reactions in behavioral asset pricing models help make then better.

Keywords: investor behavior, momentum effect, sources of momentum, stock returns

Procedia PDF Downloads 304
24 Assessment of Potential Chemical Exposure to Betamethasone Valerate and Clobetasol Propionate in Pharmaceutical Manufacturing Laboratories

Authors: Nadeen Felemban, Hamsa Banjer, Rabaah Jaafari

Abstract:

One of the most common hazards in the pharmaceutical industry is the chemical hazard, which can cause harm or develop occupational health diseases/illnesses due to chronic exposures to hazardous substances. Therefore, a chemical agent management system is required, including hazard identification, risk assessment, controls for specific hazards and inspections, to keep your workplace healthy and safe. However, routine management monitoring is also required to verify the effectiveness of the control measures. Moreover, Betamethasone Valerate and Clobetasol Propionate are some of the APIs (Active Pharmaceutical Ingredients) with highly hazardous classification-Occupational Hazard Category (OHC 4), which requires a full containment (ECA-D) during handling to avoid chemical exposure. According to Safety Data Sheet, those chemicals are reproductive toxicants (reprotoxicant H360D), which may affect female workers’ health and cause fatal damage to an unborn child, or impair fertility. In this study, qualitative (chemical Risk assessment-qCRA) was conducted to assess the chemical exposure during handling of Betamethasone Valerate and Clobetasol Propionate in pharmaceutical laboratories. The outcomes of qCRA identified that there is a risk of potential chemical exposure (risk rating 8 Amber risk). Therefore, immediate actions were taken to ensure interim controls (according to the Hierarchy of controls) are in place and in use to minimize the risk of chemical exposure. No open handlings should be done out of the Steroid Glove Box Isolator (SGB) with the required Personal Protective Equipment (PPEs). The PPEs include coverall, nitrile hand gloves, safety shoes and powered air-purifying respirators (PAPR). Furthermore, a quantitative assessment (personal air sampling) was conducted to verify the effectiveness of the engineering controls (SGB Isolator) and to confirm if there is chemical exposure, as indicated earlier by qCRA. Three personal air samples were collected using an air sampling pump and filter (IOM2 filters, 25mm glass fiber media). The collected samples were analyzed by HPLC in the BV lab, and the measured concentrations were reported in (ug/m3) with reference to Occupation Exposure Limits, 8hr OELs (8hr TWA) for each analytic. The analytical results are needed in 8hr TWA (8hr Time-weighted Average) to be analyzed using Bayesian statistics (IHDataAnalyst). The results of the Bayesian Likelihood Graph indicate (category 0), which means Exposures are de "minimus," trivial, or non-existent Employees have little to no exposure. Also, these results indicate that the 3 samplings are representative samplings with very low variations (SD=0.0014). In conclusion, the engineering controls were effective in protecting the operators from such exposure. However, routine chemical monitoring is required every 3 years unless there is a change in the processor type of chemicals. Also, frequent management monitoring (daily, weekly, and monthly) is required to ensure the control measures are in place and in use. Furthermore, a Similar Exposure Group (SEG) was identified in this activity and included in the annual health surveillance for health monitoring.

Keywords: occupational health and safety, risk assessment, chemical exposure, hierarchy of control, reproductive

Procedia PDF Downloads 173
23 Sustainable Strategies for Managing Rural Tourism in Abyaneh Village, Isfahan

Authors: Hoda Manafian, Stephen Holland

Abstract:

Problem statement: Rural areas in Iran are one of the most popular tourism destinations. Abyaneh Village is one of them with a long history behind it (more than 1500 years) which is a national heritage site and also is nominated as a world heritage site in UNESCO tentative list from 2007. There is a considerable foundation of religious-cultural heritage and also agricultural history and activities. However, this heritage site suffers from mass tourism which is beyond its social and physical carrying capacity, since the annual number of tourists exceed 500,000. While there are four adjacent villages around Abyaneh which can benefit from advantages of tourism. Local managers also can at the same time prorate the tourists’ flux of Abyaneh on those other villages especially in high-season. The other villages have some cultural and natural tourism attractions as well. Goal: The main goal of this study is to identify a feasible development strategy according to the current strengths, weaknesses, opportunities and threats of rural tourism in this area (Abyaneh Village and four adjacent villages). This development strategy can lead to sustainable management of these destinations. Method: To this end, we used SWOT analysis as a well-established tool for conducting a situational analysis to define a sustainable development strategy. The procedures included following steps: 1) Extracting variables of SWOT chart based on interviewing tourism experts (n=13), local elites (n=17) and personal observations of researcher. 2) Ranking the extracted variables from 1-5 by 13 tourism experts in Isfahan Cultural Heritage, Handcrafts and Tourism Organization (ICHTO). 3) Assigning weights to the ranked variables using Expert Choice Software and the method of Analytical Hierarchical Process (AHP). 4) Defining the Total Weighted Score (TWS) for each part of SWOT chart. 5) Identifying the strategic position according to the TWS 6) Selecting the best development strategy based on the defined position using the Strategic Position and Action Evaluation (SPACE) matrix. 7) Assessing the Probability of Strategic Success (PSS) for the preferred strategy using relevant formulas. 8) Defining two feasible alternatives for sustainable development. Results and recommendations: Cultural heritage attractions were first-ranked variable in strength chart and also lack of sufficient amenities for one-day tourists (catering, restrooms, parking, and accommodation) was firs-ranked weakness. The strategic position was in ST (Strength-Threat) quadrant which is a maxi-mini position. According this position we would suggest ‘Competitive Strategy’ as a development strategy which means relying on strengths in order to neutralization threats. The result of Probability of Strategic Success assessment which was 0.6 shows that this strategy could be successful. The preferred approach for competitive strategy could be rebranding the market of tourism in this area. Rebranding the market can be achieved by two main alternatives which are based on the current strengths and threats: 1) Defining a ‘Heritage Corridor’ from first adjacent village to Abyaneh as a final destination. 2) Focus on ‘educational tourism’ versus mass tourism and also green tourism by developing agritourism in that corridor.

Keywords: Abyaneh village, rural tourism, SWOT analysis, sustainable strategies

Procedia PDF Downloads 384
22 The Effect of Students’ Social and Scholastic Background and Environmental Impact on Shaping Their Pattern of Digital Learning in Academia: A Pre- and Post-COVID Comparative View

Authors: Nitza Davidovitch, Yael Yossel-Eisenbach

Abstract:

The purpose of the study was to inquire whether there was a change in the shaping of undergraduate students’ digitally-oriented study pattern in the pre-Covid (2016-2017) versus post-Covid period (2022-2023), as affected by three factors: social background characteristics, high school, and academic background characteristics. These two-time points were cauterized by dramatic changes in teaching and learning at institutions of higher education. The data were collected via cross-sectional surveys at two-time points, in the 2016-2017 academic school year (N=443) and in the 2022-2023 school year (N=326). The questionnaire was distributed on social media and it includes questions on demographic background characteristics, previous studies in high school and present academic studies, and questions on learning and reading habits. Method of analysis: A. Statistical descriptive analysis, B. Mean comparison tests were conducted to analyze the variations in the mean score for the digitally-oriented learning pattern variable at two-time points (pre- and post-Covid) in relation to each of the independent variables. C. Analysis of variance was performed to test the main effects and the interactions. D. Applying linear regression, the research aimed to examine the combined effect of the independent variables on shaping students' digitally-oriented learning habits. The analysis includes four models. In all four models, the dependent variable is students’ perception of digitally oriented learning. The first model included social background variables; the second model included scholastic background as well. In the third model, the academic background variables were added, and the fourth model includes all the independent variables together with the variable of period (pre- and post-COVID). E. Factor analysis confirms using the principal component method with varimax rotation; the variables were constructed by a weighted mean of all the relevant statements merged to form a single variable denoting a shared content world. The research findings indicate a significant rise in students’ perceptions of digitally-oriented learning in the post-COVID period. From a gender perspective, the impact of COVID on shaping a digital learning pattern was much more significant for female students. The socioeconomic status perspective is eliminated when controlling for the period, and the student’s job is affected - more than all other variables. It may be assumed that the student’s work pattern mediates effects related to the convenience offered by digital learning regarding distance and time. The significant effect of scholastic background on shaping students’ digital learning patterns remained stable, even when controlling for all explanatory variables. The advantage that universities had over colleges in shaping a digital learning pattern in the pre-COVID period dissipated. Therefore, it can be said that after COVID, there was a change in how colleges shape students’ digital learning patterns in such a way that no institutional differences are evident with regard to shaping the digital learning pattern. The study shows that period has a significant independent effect on shaping students’ digital learning patterns when controlling for the explanatory variables.

Keywords: learning pattern, COVID, socioeconomic status, digital learning

Procedia PDF Downloads 62
21 Challenging Convections: Rethinking Literature Review Beyond Citations

Authors: Hassan Younis

Abstract:

Purpose: The objective of this study is to review influential papers in the sustainability and supply chain studies domain, leveraging insights from this review to develop a structured framework for academics and researchers. This framework aims to assist scholars in identifying the most impactful publications for their scholarly pursuits. Subsequently, the study will apply and trial the developed framework on selected scholarly articles within the sustainability and supply chain studies domain to evaluate its efficacy, practicality, and reliability. Design/Methodology/Approach: Utilizing the "Publish or Perish" tool, a search was conducted to locate papers incorporating "sustainability" and "supply chain" in their titles. After rigorous filtering steps, a panel of university professors identified five crucial criteria for evaluating research robustness: average yearly citation counts (25%), scholarly contribution (25%), alignment of findings with objectives (15%), methodological rigor (20%), and journal impact factor (15%). These five evaluation criteria are abbreviated as “ACMAJ" framework. Each paper then received a tiered score (1-3) for each criterion, normalized within its category, and summed using weighted averages to calculate a Final Normalized Score (FNS). This systematic approach allows for objective comparison and ranking of the research based on its impact, novelty, rigor, and publication venue. Findings: The study's findings highlight the lack of structured frameworks for assessing influential sustainability research in supply chain management, which often results in a dependence on citation counts. A complete model that incorporates five essential criteria has been suggested as a response. By conducting a methodical trial on specific academic articles in the field of sustainability and supply chain studies, the model demonstrated its effectiveness as a tool for identifying and selecting influential research papers that warrant additional attention. This work aims to fill a significant deficiency in existing techniques by providing a more comprehensive approach to identifying and ranking influential papers in the field. Practical Implications: The developed framework helps scholars identify the most influential sustainability and supply chain publications. Its validation serves the academic community by offering a credible tool and helping researchers, students, and practitioners find and choose influential papers. This approach aids field literature reviews and study suggestions. Analysis of major trends and topics deepens our grasp of this critical study area's changing terrain. Originality/Value: The framework stands as a unique contribution to academia, offering scholars an important and new tool to identify and validate influential publications. Its distinctive capacity to efficiently guide scholars, learners, and professionals in selecting noteworthy publications, coupled with the examination of key patterns and themes, adds depth to our understanding of the evolving landscape in this critical field of study.

Keywords: supply chain management, sustainability, framework, model

Procedia PDF Downloads 52
20 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 74
19 Subcontractor Development Practices and Processes: A Conceptual Model for LEED Projects

Authors: Andrea N. Ofori-Boadu

Abstract:

The purpose is to develop a conceptual model of subcontractor development practices and processes that strengthen the integration of subcontractors into construction supply chain systems for improved subcontractor performance on Leadership in Energy and Environmental Design (LEED) certified building projects. The construction management of a LEED project has an important objective of meeting sustainability certification requirements. This is in addition to the typical project management objectives of cost, time, quality, and safety for traditional projects; and, therefore increases the complexity of LEED projects. Considering that construction management organizations rely heavily on subcontractors, poor performance on complex projects such as LEED projects has been largely attributed to the unsatisfactory preparation of subcontractors. Furthermore, the extensive use of unique and non-repetitive short term contracts limits the full integration of subcontractors into construction supply chains and hinders long-term cooperation and benefits that could enhance performance on construction projects. Improved subcontractor development practices are needed to better prepare and manage subcontractors, so that complex objectives can be met or exceeded. While supplier development and supply chain theories and practices for the manufacturing sector have been extensively investigated to address similar challenges, investigations in the construction sector are not that obvious. Consequently, the objective of this research is to investigate effective subcontractor development practices and processes to guide construction management organizations in their development of a strong network of high performing subcontractors. Drawing from foundational supply chain and supplier development theories in the manufacturing sector, a mixed interpretivist and empirical methodology is utilized to assess the body of knowledge within literature for conceptual model development. A self-reporting survey with five-point Likert scale items and open-ended questions is administered to 30 construction professionals to estimate their perceptions of the effectiveness of 37 practices, classified into five subcontractor development categories. Data analysis includes descriptive statistics, weighted means, and t-tests that guide the effectiveness ranking of practices and categories. The results inform the proposed three-phased LEED subcontractor development program model which focuses on preparation, development and implementation, and monitoring. Highly ranked LEED subcontractor pre-qualification, commitment, incentives, evaluation, and feedback practices are perceived as more effective, when compared to practices requiring more direct involvement and linkages between subcontractors and construction management organizations. This is attributed to unfamiliarity, conflicting interests, lack of trust, and resource sharing challenges. With strategic modifications, the recommended practices can be extended to other non-LEED complex projects. Additional research is needed to guide the development of subcontractor development programs that strengthen direct involvement between construction management organizations and their network of high performing subcontractors. Insights from this present research strengthen theoretical foundations to support future research towards more integrated construction supply chains. In the long-term, this would lead to increased performance, profits and client satisfaction.

Keywords: construction management, general contractor, supply chain, sustainable construction

Procedia PDF Downloads 110
18 Protocol for Dynamic Load Distributed Low Latency Web-Based Augmented Reality and Virtual Reality

Authors: Rohit T. P., Sahil Athrij, Sasi Gopalan

Abstract:

Currently, the content entertainment industry is dominated by mobile devices. As the trends slowly shift towards Augmented/Virtual Reality applications the computational demands on these devices are increasing exponentially and we are already reaching the limits of hardware optimizations. This paper proposes a software solution to this problem. By leveraging the capabilities of cloud computing we can offload the work from mobile devices to dedicated rendering servers that are way more powerful. But this introduces the problem of latency. This paper introduces a protocol that can achieve high-performance low latency Augmented/Virtual Reality experience. There are two parts to the protocol, 1) In-flight compression The main cause of latency in the system is the time required to transmit the camera frame from client to server. The round trip time is directly proportional to the amount of data transmitted. This can therefore be reduced by compressing the frames before sending. Using some standard compression algorithms like JPEG can result in minor size reduction only. Since the images to be compressed are consecutive camera frames there won't be a lot of changes between two consecutive images. So inter-frame compression is preferred. Inter-frame compression can be implemented efficiently using WebGL but the implementation of WebGL limits the precision of floating point numbers to 16bit in most devices. This can introduce noise to the image due to rounding errors, which will add up eventually. This can be solved using an improved interframe compression algorithm. The algorithm detects changes between frames and reuses unchanged pixels from the previous frame. This eliminates the need for floating point subtraction thereby cutting down on noise. The change detection is also improved drastically by taking the weighted average difference of pixels instead of the absolute difference. The kernel weights for this comparison can be fine-tuned to match the type of image to be compressed. 2) Dynamic Load distribution Conventional cloud computing architectures work by offloading as much work as possible to the servers, but this approach can cause a hit on bandwidth and server costs. The most optimal solution is obtained when the device utilizes 100% of its resources and the rest is done by the server. The protocol balances the load between the server and the client by doing a fraction of the computing on the device depending on the power of the device and network conditions. The protocol will be responsible for dynamically partitioning the tasks. Special flags will be used to communicate the workload fraction between the client and the server and will be updated in a constant interval of time ( or frames ). The whole of the protocol is designed so that it can be client agnostic. Flags are available to the client for resetting the frame, indicating latency, switching mode, etc. The server can react to client-side changes on the fly and adapt accordingly by switching to different pipelines. The server is designed to effectively spread the load and thereby scale horizontally. This is achieved by isolating client connections into different processes.

Keywords: 2D kernelling, augmented reality, cloud computing, dynamic load distribution, immersive experience, mobile computing, motion tracking, protocols, real-time systems, web-based augmented reality application

Procedia PDF Downloads 74