Search results for: big data markets
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25767

Search results for: big data markets

25167 Points of View on Turkish Trade Marks by Foreigners Living in Konya

Authors: İmran Ugur, Zulfiye Acar

Abstract:

Trade marks are composed of figures, signs or symbols such as logos, colours and designs to be formed for service or products to be different from their counterparts. However, trade marks have nowadays a large meaning that defines its classical description. It has an understanding that pioneers novelties by forming the perception of quality, being emotional constituents and leading to links to their consumers. While entering different markets all over the world, Turkish trade marks are encountering a new type of consumers in Turkey migrating from different countries. Most of these new consumers meet Turkish trade marks for the first time. The present study was performed to investigate the perception of Turkish trade marks living in Konya. How these consumers look at the trade marks of clothes, food, beverages, GSM operators and whiteware appliances, and perceive these trade marks were tried to be determined. Which trade marks they chose according to their preferences, and the awareness of Turkish trade marks were evaluated in the study.

Keywords: brand, brand awareness, culture, trade marks

Procedia PDF Downloads 377
25166 Revolutionizing Traditional Farming Using Big Data/Cloud Computing: A Review on Vertical Farming

Authors: Milind Chaudhari, Suhail Balasinor

Abstract:

Due to massive deforestation and an ever-increasing population, the organic content of the soil is depleting at a much faster rate. Due to this, there is a big chance that the entire food production in the world will drop by 40% in the next two decades. Vertical farming can help in aiding food production by leveraging big data and cloud computing to ensure plants are grown naturally by providing the optimum nutrients sunlight by analyzing millions of data points. This paper outlines the most important parameters in vertical farming and how a combination of big data and AI helps in calculating and analyzing these millions of data points. Finally, the paper outlines how different organizations are controlling the indoor environment by leveraging big data in enhancing food quantity and quality.

Keywords: big data, IoT, vertical farming, indoor farming

Procedia PDF Downloads 175
25165 Value Relevance of Accounting Information: Empirical Evidence from China

Authors: Ying Guo, Miaochan Li, David Yang, Xiao-Yan Li

Abstract:

This paper examines the relevance of accounting information to stock prices at different periods using manufacturing companies listed in China’s Growth Enterprise Market (GEM). We find that both the average stock price at fiscal year-end and the average stock price one month after fiscal year-end are more relevant to the accounting information than the closing stock price four months after fiscal year-end. This implies that Chinese stock markets react before the public disclosure of accounting information, which may be due to information leak before official announcements. Our findings confirm that accounting information is relevant to stock prices for Chinese listed manufacturing companies, which is a critical question to answer for investors who have interest in Chinese companies.

Keywords: accounting information, response time, value relevance, stock price

Procedia PDF Downloads 96
25164 Housing Prices and Travel Costs: Insights from Origin-Destination Demand Estimation in Taiwan’s Science Parks

Authors: Kai-Wei Ji, Dung-Ying Lin

Abstract:

This study investigates the impact of transportation on housing prices in regions surrounding Taiwan's science parks. As these parks evolve into crucial economic and population growth centers, they attract an increasing number of residents and workers, significantly influencing local housing markets. This demographic shift raises important questions about the role of transportation in shaping real estate values. Our research examines four major science parks in Taiwan, providing a comparative analysis of how transportation conditions and population dynamics interact to affect housing price premiums. We employ an origin-destination (OD) matrix derived from pervasive traffic data to model travel patterns and their effects on real estate values. The methodology utilizes a bi-level framework: a genetic algorithm optimizes OD demand estimation at the upper level, while a user equilibrium (UE) model simulates traffic flow at the lower level. This approach enables a nuanced exploration of how population growth impacts transportation conditions and housing price premiums. By analyzing the interplay between travel costs based on OD demand estimation and housing prices, we offer valuable insights for urban planners and policymakers. These findings are crucial for informed decision-making in rapidly developing areas, where understanding the relationship between mobility and real estate values is essential for sustainable urban development.

Keywords: demand estimation, genetic algorithm, housing price, transportation

Procedia PDF Downloads 20
25163 Data Challenges Facing Implementation of Road Safety Management Systems in Egypt

Authors: A. Anis, W. Bekheet, A. El Hakim

Abstract:

Implementing a Road Safety Management System (SMS) in a crowded developing country such as Egypt is a necessity. Beginning a sustainable SMS requires a comprehensive reliable data system for all information pertinent to road crashes. In this paper, a survey for the available data in Egypt and validating it for using in an SMS in Egypt. The research provides some missing data, and refer to the unavailable data in Egypt, looking forward to the contribution of the scientific society, the authorities, and the public in solving the problem of missing or unreliable crash data. The required data for implementing an SMS in Egypt are divided into three categories; the first is available data such as fatality and injury rates and it is proven in this research that it may be inconsistent and unreliable, the second category of data is not available, but it may be estimated, an example of estimating vehicle cost is available in this research, the third is not available and can be measured case by case such as the functional and geometric properties of a facility. Some inquiries are provided in this research for the scientific society, such as how to improve the links among stakeholders of road safety in order to obtain a consistent, non-biased, and reliable data system.

Keywords: road safety management system, road crash, road fatality, road injury

Procedia PDF Downloads 148
25162 Smart Model with the DEMATEL and ANFIS Multistage to Assess the Value of the Brand

Authors: Hamed Saremi

Abstract:

One of the challenges in manufacturing and service companies to provide a product or service is recognized Brand to consumers in target markets. They provide most of their processes under the same capacity. But the constant threat of devastating internal and external resources to prevent a rise Brands and more companies are recognizing the stages are bankrupt. This paper has tried to identify and analyze effective indicators of brand equity and focuses on indicators and presents a model of intelligent create a model to prevent possible damage. In this study identified indicators of brand equity based on literature study and according to expert opinions, set of indicators By techniques DEMATEL Then to used Multi-Step Adaptive Neural-Fuzzy Inference system (ANFIS) to design a multi-stage intelligent system for assessment of brand equity.

Keywords: anfis, dematel, brand, cosmetic product, brand value

Procedia PDF Downloads 410
25161 Big Data-Driven Smart Policing: Big Data-Based Patrol Car Dispatching in Abu Dhabi, UAE

Authors: Oualid Walid Ben Ali

Abstract:

Big Data has become one of the buzzwords today. The recent explosion of digital data has led the organization, either private or public, to a new era towards a more efficient decision making. At some point, business decided to use that concept in order to learn what make their clients tick with phrases like ‘sales funnel’ analysis, ‘actionable insights’, and ‘positive business impact’. So, it stands to reason that Big Data was viewed through green (read: money) colored lenses. Somewhere along the line, however someone realized that collecting and processing data doesn’t have to be for business purpose only, but also could be used for other purposes to assist law enforcement or to improve policing or in road safety. This paper presents briefly, how Big Data have been used in the fields of policing order to improve the decision making process in the daily operation of the police. As example, we present a big-data driven system which is sued to accurately dispatch the patrol cars in a geographic environment. The system is also used to allocate, in real-time, the nearest patrol car to the location of an incident. This system has been implemented and applied in the Emirate of Abu Dhabi in the UAE.

Keywords: big data, big data analytics, patrol car allocation, dispatching, GIS, intelligent, Abu Dhabi, police, UAE

Procedia PDF Downloads 490
25160 Characteristics of the Long-Term Regional Tourism Development in Georgia

Authors: Valeri Arghutashvili, Mari Gogochuri

Abstract:

Tourism industry development is one of the key priorities in Georgia, as it has positive influence on economic activities. Its contribution is very important for the different regions, as well as for the national economy. Benefits of the tourism industry include new jobs, service development, and increasing tax revenues, etc. The main aim of this research is to review and analyze the potential of the Georgian tourism industry with its long-term strategy and current challenges. To plan activities in a long-term development, it is required to evaluate several factors on the regional and on the national level. Factors include activities, transportation, services, lodging facilities, infrastructure and institutions. The major research contributions are practical estimates about regional tourism development which plays an important role in the integration process with global markets.

Keywords: regional tourism, tourism industry, tourism in Georgia, tourism benefits

Procedia PDF Downloads 831
25159 Mining Multicity Urban Data for Sustainable Population Relocation

Authors: Xu Du, Aparna S. Varde

Abstract:

In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. Experiments so far reveal that data mining methods discover useful knowledge from the multicity urban data. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.

Keywords: data mining, environmental modeling, sustainability, urban planning

Procedia PDF Downloads 308
25158 Social Dimension of Air Transport Sustainable Development

Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki

Abstract:

Air Transport links markets and individuals, making regions more competitive and promoting social and economic development. The assessment of social contribution is the key objective of this paper, focusing on the definition of the components of social dimension and welfare metrics in the national scale. According to a top-down approach, the key dimensions that affect the social welfare are presented. Conventional wisdom is to provide estimations on added value to social issues caused by the air transport development and present the methodology framework for measuring the contribution of transport development in social value chain. Greece is the case study of this paper, providing results from the contribution of air transport infrastructures in national welfare. The application key findings are essential for managers and decision makers to support actions and plans towards economic recovery of an economy presenting strong seasonal characteristics (because of tourism) and suffering from recession.

Keywords: air transport, social coherence, resilient business development, socioeconomic impact

Procedia PDF Downloads 222
25157 Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition

Authors: Aref Ghafouri, Mohammad javad Mollakazemi, Farhad Asadi

Abstract:

In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.

Keywords: frequency response, order of model reduction, frequency matching condition, nonlinear experimental data

Procedia PDF Downloads 404
25156 Inbound Tourists' Satisfaction from Their Visiting Bangkok, Thailand

Authors: Chisakan Papapankiad

Abstract:

The purpose of this research was to study the level of satisfaction from the perspective of inbound tourists who visited Bangkok, Thailand during January to March of 2014. While the independent variables included gender, age, levels of education, occupation, and income, the dependent variables were ten reasons for their visiting Thailand. A quota sampling method was utilized to get 200 respondents with 50 percent male and 50 percent female respondents. The majority of respondents were between 30-40 years old. Most were married and had an undergraduate degree. The average income of the respondents was between $30,000-50,000 per year. The findings revealed the ranking levels of satisfaction by highest mean to lowest mean as follows: Thai food and beverage, nature-beach-mountain, spa-massage-beauty, malls-shopping places, souvenir and handcraft, festivals and activities, tradition markets, museum-art-history, night entertainment, and conference-expo. In addition, the overall means is 4.19 with 0.790 SD.

Keywords: inbound tourists, satisfaction, visiting, Thailand

Procedia PDF Downloads 384
25155 An Empirical Study of the Impacts of Big Data on Firm Performance

Authors: Thuan Nguyen

Abstract:

In the present time, data to a data-driven knowledge-based economy is the same as oil to the industrial age hundreds of years ago. Data is everywhere in vast volumes! Big data analytics is expected to help firms not only efficiently improve performance but also completely transform how they should run their business. However, employing the emergent technology successfully is not easy, and assessing the roles of big data in improving firm performance is even much harder. There was a lack of studies that have examined the impacts of big data analytics on organizational performance. This study aimed to fill the gap. The present study suggested using firms’ intellectual capital as a proxy for big data in evaluating its impact on organizational performance. The present study employed the Value Added Intellectual Coefficient method to measure firm intellectual capital, via its three main components: human capital efficiency, structural capital efficiency, and capital employed efficiency, and then used the structural equation modeling technique to model the data and test the models. The financial fundamental and market data of 100 randomly selected publicly listed firms were collected. The results of the tests showed that only human capital efficiency had a significant positive impact on firm profitability, which highlighted the prominent human role in the impact of big data technology.

Keywords: big data, big data analytics, intellectual capital, organizational performance, value added intellectual coefficient

Procedia PDF Downloads 245
25154 Automated Test Data Generation For some types of Algorithm

Authors: Hitesh Tahbildar

Abstract:

The cost of test data generation for a program is computationally very high. In general case, no algorithm to generate test data for all types of algorithms has been found. The cost of generating test data for different types of algorithm is different. Till date, people are emphasizing the need to generate test data for different types of programming constructs rather than different types of algorithms. The test data generation methods have been implemented to find heuristics for different types of algorithms. Some algorithms that includes divide and conquer, backtracking, greedy approach, dynamic programming to find the minimum cost of test data generation have been tested. Our experimental results say that some of these types of algorithm can be used as a necessary condition for selecting heuristics and programming constructs are sufficient condition for selecting our heuristics. Finally we recommend the different heuristics for test data generation to be selected for different types of algorithms.

Keywords: ongest path, saturation point, lmax, kL, kS

Procedia PDF Downloads 405
25153 The Role of European Union in Global Governance

Authors: Yrfet Shkreli

Abstract:

Despite all the wide research and literature on the subject, changing and challenging times often present themselves with new objectives, fluid politics and everlasting point of views. Much is said about the subject and the trend nowadays is watching every EU intervention as a form of neo colonialism or a form of establishing new markets. The paper will try to establish a new perspective on EU influences, policies and impacts analyzed from multidimensional point of view, not limiting itself on a narrow external dimension, focusing on a broader understanding of it diverse contribution to global governance and peace keeping. Tending to be critical, this paper, tend to fall out of extremes, nether holding a Eurocentric position, nor falling for cheap critic to the whole failures and impact of EU policies. The ambition is to show EU as a contributing factor while keeping in mind its nature as a multi layered actor and with not necessarily coinciding interests among its member states.

Keywords: European Union, global governance, globalization, normative power

Procedia PDF Downloads 303
25152 Demand and Supply Management for Electricity Markets: Econometric Analysis of Electricity Prices

Authors: Ioana Neamtu

Abstract:

This paper investigates the potential for demand-side management for the system price in the Nordic electricity market and the price effects of introducing wind-power into the system. The model proposed accounts for the micro-structure of the Nordic electricity market by modeling each hour individually, while still accounting for the relationship between the hours within a day. This flexibility allows us to explore the differences between peak and shoulder demand hours. Preliminary results show potential for demand response management, as indicated by the price elasticity of demand as well as a small but statistically significant decrease in price, given by the wind power penetration. Moreover, our study shows that these effects are stronger during day-time and peak hours,compared to night-time and shoulder hours.

Keywords: structural model, GMM estimation, system of equations, electricity market

Procedia PDF Downloads 437
25151 Tracing a Timber Breakthrough: A Qualitative Study of the Introduction of Cross-Laminated-Timber to the Student Housing Market in Norway

Authors: Marius Nygaard, Ona Flindall

Abstract:

The Palisaden student housing project was completed in August 2013 and was, with its eight floors, Norway’s tallest timber building at the time of completion. It was the first time cross-laminated-timber (CLT) was utilized at this scale in Norway. The project was the result of a concerted effort by a newly formed management company to establish CLT as a sustainable and financially competitive alternative to conventional steel and concrete systems. The introduction of CLT onto the student housing market proved so successful that by 2017 more than 4000 individual student residences will have been built using the same model of development and construction. The aim of this paper is to identify the key factors that enabled this breakthrough for CLT. It is based on an in-depth study of a series of housing projects and the role of the management company who both instigated and enabled this shift of CLT from the margin to the mainstream. Specifically, it will look at how a new building system was integrated into a marketing strategy that identified a market potential within the existing structure of the construction industry and within the economic restrictions inherent to student housing in Norway. It will show how a key player established a project model that changed both the patterns of cooperation and the information basis for decisions. Based on qualitative semi-structured interviews with managers, contractors and the interdisciplinary teams of consultants (architects, structural engineers, acoustical experts etc.) this paper will trace the introduction, expansion and evolution of CLT-based building systems in the student housing market. It will show how the project management firm’s position in the value chain enabled them to function both as a liaison between contractor and client, and between contractor and producer. A position that allowed them to improve the flow of information. This ensured that CLT was handled on equal terms to other structural solutions in the project specifications, enabling realistic pricing and risk evaluation. Secondly, this paper will describe and discuss how the project management firm established and interacted with a growing network of contractors, architects and engineers to pool expertise and broaden the knowledge base across Norway’s regional markets. Finally, it will examine the role of the client, the building typology, and the industrial and technological factors in achieving this breakthrough for CLT in the construction industry. This paper gives an in-depth view of the progression of a single case rather than a broad description of the state of the art of large-scale timber building in Norway. However, this type of study may offer insights that are important to the understanding not only of specific markets but also of how new technologies should be introduced in big and well-established industries.

Keywords: cross-laminated-timber (CLT), industry breakthrough, student housing, timber market

Procedia PDF Downloads 223
25150 The Perspective on Data Collection Instruments for Younger Learners

Authors: Hatice Kübra Koç

Abstract:

For academia, collecting reliable and valid data is one of the most significant issues for researchers. However, it is not the same procedure for all different target groups; meanwhile, during data collection from teenagers, young adults, or adults, researchers can use common data collection tools such as questionnaires, interviews, and semi-structured interviews; yet, for young learners and very young ones, these reliable and valid data collection tools cannot be easily designed or applied by the researchers. In this study, firstly, common data collection tools are examined for ‘very young’ and ‘young learners’ participant groups since it is thought that the quality and efficiency of an academic study is mainly based on its valid and correct data collection and data analysis procedure. Secondly, two different data collection instruments for very young and young learners are stated as discussing the efficacy of them. Finally, a suggested data collection tool – a performance-based questionnaire- which is specifically developed for ‘very young’ and ‘young learners’ participant groups in the field of teaching English to young learners as a foreign language is presented in this current study. The designing procedure and suggested items/factors for the suggested data collection tool are accordingly revealed at the end of the study to help researchers have studied with young and very learners.

Keywords: data collection instruments, performance-based questionnaire, young learners, very young learners

Procedia PDF Downloads 93
25149 Beyond Adoption: Econometric Analysis of Impacts of Farmer Innovation Systems and Improved Agricultural Technologies on Rice Yield in Ghana

Authors: Franklin N. Mabe, Samuel A. Donkoh, Seidu Al-Hassan

Abstract:

In order to increase and bridge the differences in rice yield, many farmers have resorted to adopting Farmer Innovation Systems (FISs) and Improved Agricultural Technologies (IATs). This study econometrically analysed the impacts of adoption of FISs and IATs on rice yield using multinomial endogenous switching regression (MESR). Nine-hundred and seven (907) rice farmers from Guinea Savannah Zone (GSZ), Forest Savannah Transition Zone (FSTZ) and Coastal Savannah Zone (CSZ) were used for the study. The study used both primary and secondary data. FBO advice, rice farming experience and distance from farming communities to input markets increase farmers’ adoption of only FISs. Factors that increase farmers’ probability of adopting only IATs are access to extension advice, credit, improved seeds and contract farming. Farmers located in CSZ have higher probability of adopting only IATs than their counterparts living in other agro-ecological zones. Age and access to input subsidy increase the probability of jointly adopting FISs and IATs. FISs and IATs have heterogeneous impact on rice yield with adoption of only IATs having the highest impact followed by joint adoption of FISs and IATs. It is important for stakeholders in rice subsector to champion the provision of improved rice seeds, the intensification of agricultural extension services and contract farming concept. Researchers should endeavour to researched into FISs.

Keywords: farmer innovation systems, improved agricultural technologies, multinomial endogenous switching regression, treatment effect

Procedia PDF Downloads 426
25148 Land, History and Housing: Colonial Legacies and Land Tenure in Kuala Lumpur

Authors: Nur Fareza Mustapha

Abstract:

Solutions to policy problems need to be curated to the local context, taking into account the trajectory of the local development path to ensure its efficacy. For Kuala Lumpur, rapid urbanization and migration into the city for the past few decades have increased the demand for housing to accommodate a growing urban population. As a critical factor affecting housing affordability, land supply constraints have been attributed to intensifying market pressures, which grew in tandem with the demands of urban development, along with existing institutional constraints in the governance of land. While demand-side pressures are inevitable given the fixed supply of land, supply-side constraints in regulations distort markets and if addressed inappropriately, may lead to mistargeted policy interventions. Given Malaysia’s historical development, regulatory barriers for land may originate from the British colonial period, when many aspects of the current laws governing tenure were introduced and formalized, and henceforth, became engrained in the system. This research undertakes a postcolonial institutional analysis approach to uncover the causal mechanism driving the evolution of land tenure systems in post-colonial Kuala Lumpur. It seeks to determine the sources of these shifts, focusing on the incentives and bargaining positions of actors during periods of institutional flux/change. It aims to construct a conceptual framework to further this understanding and to elucidate how this historical trajectory affects current access to urban land markets for housing. Archival analysis is used to outline and analyse the evolution of land tenure systems in Kuala Lumpur while stakeholder interviews are used to analyse its impact on the current urban land market, with a particular focus on the provision of and access to affordable housing in the city. Preliminary findings indicate that many aspects of the laws governing tenure that were introduced and formalized during the British colonial period have endured until the present day. Customary rules of tenure were displaced by rules following a European tradition, which found legitimacy through a misguided interpretation of local laws regarding the ownership of land. Colonial notions of race and its binary view of native vs. non-natives have also persisted in the construction and implementation of current legislation regarding land tenure. More concrete findings from this study will generate a more nuanced understanding of the regulatory land supply constraints in Kuala Lumpur, taking into account both the long and short term spatial and temporal processes that affect how these rules are created, implemented and enforced.

Keywords: colonial discourse, historical institutionalism, housing, land policy, post-colonial city

Procedia PDF Downloads 128
25147 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors

Authors: Yaxin Bi

Abstract:

Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.

Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors

Procedia PDF Downloads 33
25146 Consumer Behavior in Buying Organic Product: A Case Study of Consumer in the Bangkok Metropolits and Vicinity

Authors: Piluntana Panpluem, Monticha Putsakum

Abstract:

The objectives of this study were to investigate 1) consumers’ behaviors in buying organic products; and 2) the relationships between personal factors, cultural factors, social factors, psychological factors and marketing mix factors, and the behavior in buying organic products of consumers in the greater Bangkok metropolitan area. The sample group was 400 consumers at the age of 15 and older, who bought organic agricultural products from green markets and green shops in Bangkok, including its suburbs. The data were collected by using a questionnaire, which were analyzed by descriptive statistics and chi-square test. The results showed that the consumers bought 3 – 4 types of fresh vegetables with a total expenditure of less than 499 Baht each time. They purchased organic products mainly at a supermarket, 2 – 4 times per month, most frequently on Sundays, which took less than 30 minutes of shopping each time. The purpose of the purchase was for self-consuming. Gaining or retaining good health was the reason for the consumption of the products. Additionally, the first considered factor in the organic product selection was the quality. The decisions in purchasing the products were made directly by consumers, who were influenced mainly by advertising media on television. For the relationships among personal, cultural, social, psychological and marketing mix factors, and consumers’ behavior in buying organic products, the results showed the following: 1) personal factors, which were gender, age and educational level, were related to the behavior in terms of “What”, “Why”, and “Where” the consumers bought organic products (p<0.05); 2) cultural factors were related to “Why” the consumers bought organic products (p<0.05); 3) social factors were related to “Where” and “How” the consumers bought organic products (p<0.05); 4) psychological factors were related to “When” the consumers bought organic products (p<0.05). 5) For the marketing mix factors, “Product” was related to “Who participated” in buying, “What” and “Where” the consumers bought organic products (p<0.05), while “Price” was related to “What” and “When” the consumers bought organic products (p<0.05). “Place” was related to “What” and “How” the consumers bought organic products (p<0.05). Furthermore, “Promotion” was related to “What” and “Where” the consumers bought organic products (p<0.05).

Keywords: consumer behavior, organic products, Bangkok Metropolis and Vicinity

Procedia PDF Downloads 285
25145 Financial Assets Return, Economic Factors and Investor's Behavioral Indicators Relationships Modeling: A Bayesian Networks Approach

Authors: Nada Souissi, Mourad Mroua

Abstract:

The main purpose of this study is to examine the interaction between financial asset volatility, economic factors and investor's behavioral indicators related to both the company's and the markets stocks for the period from January 2000 to January2020. Using multiple linear regression and Bayesian Networks modeling, results show a positive and negative relationship between investor's psychology index, economic factors and predicted stock market return. We reveal that the application of the Bayesian Discrete Network contributes to identify the different cause and effect relationships between all economic, financial variables and psychology index.

Keywords: Financial asset return predictability, Economic factors, Investor's psychology index, Bayesian approach, Probabilistic networks, Parametric learning

Procedia PDF Downloads 150
25144 Generation of Quasi-Measurement Data for On-Line Process Data Analysis

Authors: Hyun-Woo Cho

Abstract:

For ensuring the safety of a manufacturing process one should quickly identify an assignable cause of a fault in an on-line basis. To this end, many statistical techniques including linear and nonlinear methods have been frequently utilized. However, such methods possessed a major problem of small sample size, which is mostly attributed to the characteristics of empirical models used for reference models. This work presents a new method to overcome the insufficiency of measurement data in the monitoring and diagnosis tasks. Some quasi-measurement data are generated from existing data based on the two indices of similarity and importance. The performance of the method is demonstrated using a real data set. The results turn out that the presented methods are able to handle the insufficiency problem successfully. In addition, it is shown to be quite efficient in terms of computational speed and memory usage, and thus on-line implementation of the method is straightforward for monitoring and diagnosis purposes.

Keywords: data analysis, diagnosis, monitoring, process data, quality control

Procedia PDF Downloads 482
25143 Economic Policy Promoting Economically Rational Behavior of Start-Up Entrepreneurs in Georgia

Authors: Gulnaz Erkomaishvili

Abstract:

Introduction: The pandemic and the current economic crisis have created problems for entrepreneurship and, therefore for start-up entrepreneurs. The paper presents the challenges of start-up entrepreneurs in Georgia in the time of pandemic and the analysis of the state economic policy measures. Despite many problems, the study found that in 54.2% of start-ups surveyed under the pandemic, innovation opportunities were growing. It can be stated that the pandemic was a good opportunity to increase the innovative capacity of the enterprise. 52% of the surveyed start-up entrepreneurs managed to adapt to the current situation and increase the sale of their products/services through remote channels. As for the assessment of state support measures by start-up entrepreneurs, a large number of Georgian start-ups do not assess the measures implemented by the state positively. Methodology: The research process uses methods of analysis and synthesis, quantitative and qualitative, interview/survey, grouping, relative and average values, graphing, comparison, data analysis, and others. Main Findings: Studies have shown that for the start-up entrepreneurs, the main problem remains: inaccessible funding, workers' qualifications gap, inflation, taxes, regulation, political instability, inadequate provision of infrastructure, amount of taxes, and other factors. Conclusions: The state should take the following measures to support business start-ups: create an attractive environment for investment, availability of soft loans, creation of an insurance system, infrastructure development, increase the effectiveness of tax policy (simplicity of the tax system, clarity, optimal tax level ); promote export growth (develop strategy for opening up international markets, build up a broad marketing network, etc.).

Keywords: start-up entrepreneurs, startups, start-up entrepreneurs support programs, start-up entrepreneurs support economic policy

Procedia PDF Downloads 116
25142 Local Food Movements and Community Building in Turkey

Authors: Derya Nizam

Abstract:

An alternative understanding of "localization" has gained significance as the ecological and social issues associated with the growing pressure of agricultural homogeneity and standardization become more apparent. Through an analysis of a case study on an alternative food networks in Turkey, this research seeks to critically examine the localization movement. The results indicate that the idea of localization helps to create new niche markets by creating place-based labels, but it also strengthens local identities through social networks that connect rural and urban areas. In that context, localization manifests as a commodification movement that appropriates local and cultural values to generate capitalist profit, as well as a grassroots movement that strengthens the resilience of local communities. This research addresses the potential of community development approaches in the democratization of global agro-food networks.

Keywords: community building, local food, alternative food movements, localization

Procedia PDF Downloads 80
25141 Emerging Technology for Business Intelligence Applications

Authors: Hsien-Tsen Wang

Abstract:

Business Intelligence (BI) has long helped organizations make informed decisions based on data-driven insights and gain competitive advantages in the marketplace. In the past two decades, businesses witnessed not only the dramatically increasing volume and heterogeneity of business data but also the emergence of new technologies, such as Artificial Intelligence (AI), Semantic Web (SW), Cloud Computing, and Big Data. It is plausible that the convergence of these technologies would bring more value out of business data by establishing linked data frameworks and connecting in ways that enable advanced analytics and improved data utilization. In this paper, we first review and summarize current BI applications and methodology. Emerging technologies that can be integrated into BI applications are then discussed. Finally, we conclude with a proposed synergy framework that aims at achieving a more flexible, scalable, and intelligent BI solution.

Keywords: business intelligence, artificial intelligence, semantic web, big data, cloud computing

Procedia PDF Downloads 95
25140 Using Equipment Telemetry Data for Condition-Based maintenance decisions

Authors: John Q. Todd

Abstract:

Given that modern equipment can provide comprehensive health, status, and error condition data via built-in sensors, maintenance organizations have a new and valuable source of insight to take advantage of. This presentation will expose what these data payloads might look like and how they can be filtered, visualized, calculated into metrics, used for machine learning, and generate alerts for further action.

Keywords: condition based maintenance, equipment data, metrics, alerts

Procedia PDF Downloads 188
25139 Ethics Can Enable Open Source Data Research

Authors: Dragana Calic

Abstract:

The openness, availability and the sheer volume of big data have provided, what some regard as, an invaluable and rich dataset. Researchers, businesses, advertising agencies, medical institutions, to name only a few, collect, share, and analyze this data to enable their processes and decision making. However, there are important ethical considerations associated with the use of big data. The rapidly evolving nature of online technologies has overtaken the many legislative, privacy, and ethical frameworks and principles that exist. For example, should we obtain consent to use people’s online data, and under what circumstances can privacy considerations be overridden? Current guidance on how to appropriately and ethically handle big data is inconsistent. Consequently, this paper focuses on two quite distinct but related ethical considerations that are at the core of the use of big data for research purposes. They include empowering the producers of data and empowering researchers who want to study big data. The first consideration focuses on informed consent which is at the core of empowering producers of data. In this paper, we discuss some of the complexities associated with informed consent and consider studies of producers’ perceptions to inform research ethics guidelines and practice. The second consideration focuses on the researcher. Similarly, we explore studies that focus on researchers’ perceptions and experiences.

Keywords: big data, ethics, producers’ perceptions, researchers’ perceptions

Procedia PDF Downloads 284
25138 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification

Procedia PDF Downloads 465