Search results for: Airport Operation Control Center (AOCC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14631

Search results for: Airport Operation Control Center (AOCC)

14031 Digital Transformation: Actionable Insights to Optimize the Building Performance

Authors: Jovian Cheung, Thomas Kwok, Victor Wong

Abstract:

Buildings are entwined with smart city developments. Building performance relies heavily on electrical and mechanical (E&M) systems and services accounting for about 40 percent of global energy use. By cohering the advancement of technology as well as energy and operation-efficient initiatives into the buildings, people are enabled to raise building performance and enhance the sustainability of the built environment in their daily lives. Digital transformation in the buildings is the profound development of the city to leverage the changes and opportunities of digital technologies To optimize the building performance, intelligent power quality and energy management system is developed for transforming data into actions. The system is formed by interfacing and integrating legacy metering and internet of things technologies in the building and applying big data techniques. It provides operation and energy profile and actionable insights of a building, which enables to optimize the building performance through raising people awareness on E&M services and energy consumption, predicting the operation of E&M systems, benchmarking the building performance, and prioritizing assets and energy management opportunities. The intelligent power quality and energy management system comprises four elements, namely the Integrated Building Performance Map, Building Performance Dashboard, Power Quality Analysis, and Energy Performance Analysis. It provides predictive operation sequence of E&M systems response to the built environment and building activities. The system collects the live operating conditions of E&M systems over time to identify abnormal system performance, predict failure trends and alert users before anticipating system failure. The actionable insights collected can also be used for system design enhancement in future. This paper will illustrate how intelligent power quality and energy management system provides operation and energy profile to optimize the building performance and actionable insights to revitalize an existing building into a smart building. The system is driving building performance optimization and supporting in developing Hong Kong into a suitable smart city to be admired.

Keywords: intelligent buildings, internet of things technologies, big data analytics, predictive operation and maintenance, building performance

Procedia PDF Downloads 144
14030 Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

Authors: Taiki Baba, Tomoaki Hashimoto

Abstract:

The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization.

Keywords: model predictive control, stochastic systems, probabilistic constraints, random dither quantization

Procedia PDF Downloads 271
14029 The Destruction of Memory: Ataturk Cultural Centre

Authors: Birge Yildirim Okta

Abstract:

This paper aims to narrate the story of Atatürk Cultural Center in Taksim Square, which was demolished in 2018, and discuss its architectonic as a social place of memory and its existence and demolishment as the space of politics. Focusing on the timeline starting from early republican period till today, the paper uses narrative discourse analysis to research Atatürk Cultural Center as a place of memory and a space of politics in its existence. After the establishment of Turkish Republic, one of most important implementation in Taksim Square, reflecting the internationalist style, was the construction of Opera Building in Prost Plan. The first design of the opera building belonged to Aguste Perret, which could not be implemented due to economic hardship during World War II. Later the project was designed by architects Feridun Kip and Rüknettin Güney in 1946 but could not be completed due to 1960 military coup. Later the project was shifted to another architect Hayati Tabanlıoglu, with a change in its function as a cultural center. Eventually, the construction of the building was completed in 1969 in a completely different design. AKM became a symbol of republican modernism not only with its modern architectural style but also with it is function as the first opera building of the republic, reflecting the western, modern cultural heritage by professional groups, artists and the intelligentsia. In 2005, Istanbul’s council for the protection of cultural heritage decided to list AKM as a grade 1 cultural heritage, ending a period of controversy which saw calls for the demolition of the center as it was claimed it ended its useful lifespan. In 2008 the building was announced to be closed for repairs and restoration. Over the following years, the building was demolished piece by piece silently while Taksim mosque has been built just in front of Atatürk Cultural Center. Belonging to the early republican period, AKM was a representation of a cultural production of a modern society for the emergence and westward looking, secular public space in Turkey. Its erasure from Taksim scene under the rule of the conservative government, Justice and Development Party and the construction of Taksim mosque in front of AKM’s parcel is also representational. The question of governing the city through space has always been an important aspect for governments, those holding political power since cities are the chaotic environments that are seen as a threat for the governments, carrying the tensions of proletariat or the contradictory groups. The story of AKM as a dispositive or a regulatory apparatus demonstrates how space itself is becoming a political medium, to transform the socio-political condition. The article aims to discuss the existence and demolishment of Atatürk Cultural Center by discussing the constructed and demolished building as a place of memory and a space of politics.

Keywords: space of politics, place of memory, atatürk cultural center, taksim square

Procedia PDF Downloads 70
14028 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: anomaly detection, autoencoder, data centers, deep learning

Procedia PDF Downloads 182
14027 The Complementary Effect of Internal Control System and Whistleblowing Policy on Prevention and Detection of Fraud in Nigerian Deposit Money Banks

Authors: Dada Durojaye Joshua

Abstract:

The study examined the combined effect of internal control system and whistle blowing policy while it pursues the following specific objectives, which are to: examine the relationship between monitoring activities and fraud’s detection and prevention; investigate the effect of control activities on fraud’s detection and prevention in Nigerian Deposit Money Banks (DMBs). The population of the study comprises the 89,275 members of staff in the 20 DMBs in Nigeria as at June 2019. Purposive and convenient sampling techniques were used in the selection of the 80 members of staff at the supervisory level of the Internal Audit Departments of the head offices of the sampled banks, that is, selecting 4 respondents (Audit Executive/Head, Internal Control; Manager, Operation Risk Management; Head, Financial Crime Control; the Chief Compliance Officer) from each of the 20 DMBs in Nigeria. A standard questionnaire was adapted from 2017/2018 Internal Control Questionnaire and Assessment, Bureau of Financial Monitoring and Accountability Florida Department of Economic Opportunity. It was modified to serve the purpose for which it was meant to serve. It was self-administered to gather data from the 80 respondents at the respective headquarters of the sampled banks at their respective locations across Nigeria. Two likert-scales was used in achieving the stated objectives. A logit regression was used in analysing the stated hypotheses. It was found that effect of monitoring activities using the construct of conduct of ongoing or separate evaluation (COSE), evaluation and communication of deficiencies (ECD) revealed that monitoring activities is significant and positively related to fraud’s detection and prevention in Nigerian DMBS. So also, it was found that control activities using selection and development of control activities (SDCA), selection and development of general controls over technology to prevent financial fraud (SDGCTF), development of control activities that gives room for transparency through procedures that put policies into actions (DCATPPA) contributed to influence fraud detection and prevention in the Nigerian DMBs. In addition, it was found that transparency, accountability, reliability, independence and value relevance have significant effect on fraud detection and prevention ibn Nigerian DMBs. The study concluded that the board of directors demonstrated independence from management and exercises oversight of the development and performance of internal control. Part of the conclusion was that there was accountability on the part of the owners and preparers of the financial reports and that the system gives room for the members of staff to account for their responsibilities. Among the recommendations was that the management of Nigerian DMBs should create and establish a standard Internal Control System strong enough to deter fraud in order to encourage continuity of operations by ensuring liquidity, solvency and going concern of the banks. It was also recommended that the banks create a structure that encourages whistleblowing to complement the internal control system.

Keywords: internal control, whistleblowing, deposit money banks, fraud prevention, fraud detection

Procedia PDF Downloads 66
14026 An Integrated Approach to Handle Sour Gas Transportation Problems and Pipeline Failures

Authors: Venkata Madhusudana Rao Kapavarapu

Abstract:

The Intermediate Slug Catcher (ISC) facility was built to process nominally 234 MSCFD of export gas from the booster station on a day-to-day basis and to receive liquid slugs up to 1600 m³ (10,000 BBLS) in volume when the incoming 24” gas pipelines are pigged following upsets or production of non-dew-pointed gas from gathering centers. The maximum slug sizes expected are 812 m³ (5100 BBLS) in winter and 542 m³ (3400 BBLS) in summer after operating for a month or more at 100 MMSCFD of wet gas, being 60 MMSCFD of treated gas from the booster station, combined with 40 MMSCFD of untreated gas from gathering center. The water content is approximately 60% but may be higher if the line is not pigged for an extended period, owing to the relative volatility of the condensate compared to water. In addition to its primary function as a slug catcher, the ISC facility will receive pigged liquids from the upstream and downstream segments of the 14” condensate pipeline, returned liquids from the AGRP, pigged through the 8” pipeline, and blown-down fluids from the 14” condensate pipeline prior to maintenance. These fluids will be received in the condensate flash vessel or the condensate separator, depending on the specific operation, for the separation of water and condensate and settlement of solids scraped from the pipelines. Condensate meeting the colour and 200 ppm water specifications will be dispatched to the AGRP through the 14” pipeline, while off-spec material will be returned to BS-171 via the existing 10” condensate pipeline. When they are not in operation, the existing 24” export gas pipeline and the 10” condensate pipeline will be maintained under export gas pressure, ready for operation. The gas manifold area contains the interconnecting piping and valves needed to align the slug catcher with either of the 24” export gas pipelines from the booster station and to direct the gas to the downstream segment of either of these pipelines. The manifold enables the slug catcher to be bypassed if it needs to be maintained or if through-pigging of the gas pipelines is to be performed. All gas, whether bypassing the slug catcher or returning to the gas pipelines from it, passes through black powder filters to reduce the level of particulates in the stream. These items are connected to the closed drain vessel to drain the liquid collected. Condensate from the booster station is transported to AGRP through 14” condensate pipeline. The existing 10” condensate pipeline will be used as a standby and for utility functions such as returning condensate from AGRP to the ISC or booster station or for transporting off-spec fluids from the ISC back to booster station. The manifold contains block valves that allow the two condensate export lines to be segmented at the ISC, thus facilitating bi-directional flow independently in the upstream and downstream segments, which ensures complete pipeline integrity and facility integrity. Pipeline failures will be attended to with the latest technologies by remote techno plug techniques, and repair activities will be carried out as needed. Pipeline integrity will be evaluated with ili pigging to estimate the pipeline conditions.

Keywords: integrity, oil & gas, innovation, new technology

Procedia PDF Downloads 64
14025 Single Chip Controller Design for Piezoelectric Actuators with Mixed Signal FPGA

Authors: Han-Bin Park, Taesam Kang, SunKi Hong, Jeong Hoi Gu

Abstract:

The piezoelectric material is being used widely for actuators due to its large power density with simple structure. It can generate a larger force than the conventional actuators with the same size. Furthermore, the response time of piezoelectric actuators is very short, and thus, it can be used for very fast system applications with compact size. To control the piezoelectric actuator, we need analog signal conditioning circuits as well as digital microcontrollers. Conventional microcontrollers are not equipped with analog parts and thus the control system becomes bulky compared with the small size of the piezoelectric devices. To overcome these weaknesses, we are developing one-chip micro controller that can handle analog and digital signals simultaneously using mixed signal FPGA technology. We used the SmartFusion™ FPGA device that integrates ARM®Cortex-M3, analog interface and FPGA fabric in a single chip and offering full customization. It gives more flexibility than traditional fixed-function microcontrollers with the excessive cost of soft processor cores on traditional FPGAs. In this paper we introduce the design of single chip controller using mixed signal FPGA, SmartFusion™[1] device. To demonstrate its performance, we implemented a PI controller for power driving circuit and a 5th order H-infinity controller for the system with piezoelectric actuator in the FPGA fabric. We also demonstrated the regulation of a power output and the operation speed of a 5th order H-infinity controller.

Keywords: mixed signal FPGA, PI control, piezoelectric actuator, SmartFusion™

Procedia PDF Downloads 512
14024 Complementary Effect of Wistleblowing Policy and Internal Control System on Prevention and Detection of Fraud in Nigerian Deposit Money Banks

Authors: Dada Durojaye Joshua

Abstract:

The study examined the combined effect of internal control system and whistle blowing policy while it pursues the following specific objectives, which are to: examine the relationship between monitoring activities and fraud’s detection and prevention; investigate the effect of control activities on fraud’s detection and prevention in Nigerian Deposit Money Banks (DMBs). The population of the study comprises the 89,275 members of staff in the 20 DMBs in Nigeria as at June 2019. Purposive and convenient sampling techniques were used in the selection of the 80 members of staff at the supervisory level of the Internal Audit Departments of the head offices of the sampled banks, that is, selecting 4 respondents (Audit Executive/Head, Internal Control; Manager, Operation Risk Management; Head, Financial Crime Control; the Chief Compliance Officer) from each of the 20 DMBs in Nigeria. A standard questionnaire was adapted from 2017/2018 Internal Control Questionnaire and Assessment, Bureau of Financial Monitoring and Accountability Florida Department of Economic Opportunity. It was modified to serve the purpose for which it was meant to serve. It was self-administered to gather data from the 80 respondents at the respective headquarters of the sampled banks at their respective locations across Nigeria. Two likert-scales was used in achieving the stated objectives. A logit regression was used in analysing the stated hypotheses. It was found that effect of monitoring activities using the construct of conduct of ongoing or separate evaluation (COSE), evaluation and communication of deficiencies (ECD) revealed that monitoring activities is significant and positively related to fraud’s detection and prevention in Nigerian DMBS. So also, it was found that control activities using selection and development of control activities (SDCA), selection and development of general controls over technology to prevent financial fraud (SDGCTF), development of control activities that gives room for transparency through procedures that put policies into actions (DCATPPA) contributed to influence fraud detection and prevention in the Nigerian DMBs. In addition, it was found that transparency, accountability, reliability, independence and value relevance have significant effect on fraud detection and prevention ibn Nigerian DMBs. The study concluded that the board of directors demonstrated independence from management and exercises oversight of the development and performance of internal control. Part of the conclusion was that there was accountability on the part of the owners and preparers of the financial reports and that the system gives room for the members of staff to account for their responsibilities. Among the recommendations was that the management of Nigerian DMBs should create and establish a standard Internal Control System strong enough to deter fraud in order to encourage continuity of operations by ensuring liquidity, solvency and going concern of the banks. It was also recommended that the banks create a structure that encourages whistleblowing to complement the internal control system.

Keywords: internal control, whistleblowing, deposit money banks, fraud prevention, fraud detection

Procedia PDF Downloads 60
14023 Integrating Cooperative Education Experience into Engineering Curriculum: An Approach

Authors: Robin Lok-Wang Ma

Abstract:

The Center/Unit for Industry Engagement and Collaboration, as well as Internship, play a significant role at university. In general, the Center serves as the official interface between the industry and the School or Department to cultivate students’ early exposure to professional experience. The missions of the Center are not limited to provide a communication channel and collaborative platform for the industries and the university but also to assist students to build up their career paths early while still in the university. In recent years, a cooperative education experience (commonly known as a co-op) has been strongly advocated for students to make the school-to-work transition. The nature of the co-op program is not only consistent with the internships/final year design projects, but it is also more industrial-oriented with academic support from faculty at the university. The purpose of this paper is to describe an approach to how cooperative education experience can be integrated into Engineering Curriculum. It provides a mutual understanding and exchange of ideas for the approach between the university and the industry. A suggested format in terms of timeline, duration, selection of candidates, students, and companies’ expectations for the co-op program is described. Also, feedbacks from employers/industries show that a longer-term co-op program is well suited for students compared with a short-term internship. To this end, it provides a new insight into collaboration and/or partnership between the university and the industries to prepare professional work-ready graduates.

Keywords: cooperative education, industry, engagement, collaboration

Procedia PDF Downloads 88
14022 Renewable Energy Micro-Grid Control Using Microcontroller in LabVIEW

Authors: Meena Agrawal, Chaitanya P. Agrawal

Abstract:

The power systems are transforming and becoming smarter with innovations in technologies to enable embark simultaneously upon the sustainable energy needs, rising environmental concerns, economic benefits and quality requirements. The advantages provided by inter-connection of renewable energy resources are becoming more viable and dependable with the smart controlling technologies. The limitation of most renewable resources have their diversity and intermittency causing problems in power quality, grid stability, reliability, security etc. is being cured by these efforts. A necessitate of optimal energy management by intelligent Micro-Grids at the distribution end of the power system has been accredited to accommodate sustainable renewable Distributed Energy Resources on large scale across the power grid. All over the world Smart Grids are emerging now as foremost concern infrastructure upgrade programs. The hardware setup includes NI cRIO 9022, Compact Reconfigurable Input Output microcontroller board connected to the PC on a LAN router with three hardware modules. The Real-Time Embedded Controller is reconfigurable controller device consisting of an embedded real-time processor controller for communication and processing, a reconfigurable chassis housing the user-programmable FPGA, Eight hot-swappable I/O modules, and graphical LabVIEW system design software. It has been employed for signal analysis, controls and acquisition and logging of the renewable sources with the LabVIEW Real-Time applications. The employed cRIO chassis controls the timing for the module and handles communication with the PC over the USB, Ethernet, or 802.11 Wi-Fi buses. It combines modular I/O, real-time processing, and NI LabVIEW programmable. In the presented setup, the Analog Input Module NI 9205 five channels have been used for input analog voltage signals from renewable energy sources and NI 9227 four channels have been used for input analog current signals of the renewable sources. For switching actions based on the programming logic developed in software, a module having Electromechanical Relays (single-pole single throw) with 4-Channels, electrically isolated and LED indicating the state of that channel have been used for isolating the renewable Sources on fault occurrence, which is decided by the logic in the program. The module for Ethernet based Data Acquisition Interface ENET 9163 Ethernet Carrier, which is connected on the LAN Router for data acquisition from a remote source over Ethernet also has the module NI 9229 installed. The LabVIEW platform has been employed for efficient data acquisition, monitoring and control. Control logic utilized in program for operation of the hardware switching Related to Fault Relays has been portrayed as a flowchart. A communication system has been successfully developed amongst the sources and loads connected on different computers using Hypertext transfer protocol, HTTP or Ethernet Local Stacked area Network TCP/IP protocol. There are two main I/O interfacing clients controlling the operation of the switching control of the renewable energy sources over internet or intranet. The paper presents experimental results of the briefed setup for intelligent control of the micro-grid for renewable energy sources, besides the control of Micro-Grid with data acquisition and control hardware based on a microcontroller with visual program developed in LabVIEW.

Keywords: data acquisition and control, LabVIEW, microcontroller cRIO, Smart Micro-Grid

Procedia PDF Downloads 318
14021 Current Drainage Attack Correction via Adjusting the Attacking Saw-Function Asymmetry

Authors: Yuri Boiko, Iluju Kiringa, Tet Yeap

Abstract:

Current drainage attack suggested previously is further studied in regular settings of closed-loop controlled Brushless DC (BLDC) motor with Kalman filter in the feedback loop. Modeling and simulation experiments are conducted in a Matlab environment, implementing the closed-loop control model of BLDC motor operation in position sensorless mode under Kalman filter drive. The current increase in the motor windings is caused by the controller (p-controller in our case) affected by false data injection of substitution of the angular velocity estimates with distorted values. Operation of multiplication to distortion coefficient, values of which are taken from the distortion function synchronized in its periodicity with the rotor’s position change. A saw function with a triangular tooth shape is studied herewith for the purpose of carrying out the bias injection with current drainage consequences. The specific focus here is on how the asymmetry of the tooth in the saw function affects the flow of current drainage. The purpose is two-fold: (i) to produce and collect the signature of an asymmetric saw in the attack for further pattern recognition process, and (ii) to determine conditions of improving stealthiness of such attack via regulating asymmetry in saw function used. It is found that modification of the symmetry in the saw tooth affects the periodicity of current drainage modulation. Specifically, the modulation frequency of the drained current for a fully asymmetric tooth shape coincides with the saw function modulation frequency itself. Increasing the symmetry parameter for the triangle tooth shape leads to an increase in the modulation frequency for the drained current. Moreover, such frequency reaches the switching frequency of the motor windings for fully symmetric triangular shapes, thus becoming undetectable and improving the stealthiness of the attack. Therefore, the collected signatures of the attack can serve for attack parameter identification via the pattern recognition route.

Keywords: bias injection attack, Kalman filter, BLDC motor, control system, closed loop, P-controller, PID-controller, current drainage, saw-function, asymmetry

Procedia PDF Downloads 71
14020 A Wideband Low-Profile Circularly-Polarized Slotted Patch Antenna

Authors: Sai Radavaram

Abstract:

A wideband low-profile circularly-polarized antenna, consisting of 2×2 sequentially-rotated, differentially-fed, slotted rectangular patch elements, is proposed. To realize the right-hand circular polarization, an anti-clockwise phase rotation of 0o, -90o, -180o and -270o is applied between the antenna elements. The proposed antenna, with a height of only 0.02lambda (where lambda is the wavelength of the antenna at the center frequency of the antenna), exhibits a 68% impedance bandwidth from 2 to 4.05 GHz with a 3dB axial ratio bandwidth in the order of 56% from 2.25 to 4.05 GHz. Moreover, a wide 3dB axial ratio beamwidth of 140o is obtained at the center frequency of 3 GHz, along with symmetrical radiation patterns over the operating frequency band.

Keywords: circular polarization, sequentially rotated, slotted patch antennas, wideband

Procedia PDF Downloads 71
14019 Greenhouse Controlled with Graphical Plotting in Matlab

Authors: Bruno R. A. Oliveira, Italo V. V. Braga, Jonas P. Reges, Luiz P. O. Santos, Sidney C. Duarte, Emilson R. R. Melo, Auzuir R. Alexandria

Abstract:

This project aims to building a controlled greenhouse, or for better understanding, a structure where one can maintain a given range of temperature values (°C) coming from radiation emitted by an incandescent light, as previously defined, characterizing as a kind of on-off control and a differential, which is the plotting of temperature versus time graphs assisted by MATLAB software via serial communication. That way it is possible to connect the stove with a computer and monitor parameters. In the control, it was performed using a PIC 16F877A microprocessor which enabled convert analog signals to digital, perform serial communication with the IC MAX232 and enable signal transistors. The language used in the PIC's management is Basic. There are also a cooling system realized by two coolers 12V distributed in lateral structure, being used for venting and the other for exhaust air. To find out existing temperature inside is used LM35DZ sensor. Other mechanism used in the greenhouse construction was comprised of a reed switch and a magnet; their function is in recognition of the door position where a signal is sent to a buzzer when the door is open. Beyond it exist LEDs that help to identify the operation which the stove is located. To facilitate human-machine communication is employed an LCD display that tells real-time temperature and other information. The average range of design operating without any major problems, taking into account the limitations of the construction material and structure of electrical current conduction, is approximately 65 to 70 ° C. The project is efficient in these conditions, that is, when you wish to get information from a given material to be tested at temperatures not as high. With the implementation of the greenhouse automation, facilitating the temperature control and the development of a structure that encourages correct environment for the most diverse applications.

Keywords: greenhouse, microcontroller, temperature, control, MATLAB

Procedia PDF Downloads 394
14018 Comparative Syudy Of Heat Transfer Capacity Limits of Heat Pipe

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also observed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 360
14017 Heat Pipe Thermal Performance Improvement in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is a simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of the heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force, the liquid phase flows to evaporator section. In HVAC systems, the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally, heat pipes have three main sections: condenser, adiabatic region, and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of the heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances its heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, CFD simulation

Procedia PDF Downloads 482
14016 Heat Pipes Thermal Performance Improvement in H-VAC Systems Using CFD Modeling

Authors: M. Heydari, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 433
14015 Luggage Handling System at World’s Largest Pilgrimage Center

Authors: Saddikuti Venkataramanaiah, N Ravichandran

Abstract:

The main focus of this paper is to highlight the challenges faced by the world’s largest pilgrimage center in providing free-of-cost luggage handling services to visiting pilgrims. The service was managed by a third-party agency selected based on a competitive bidding process. The third-party agency is responsible for providing timely, reliable, and secure services to the pilgrims. The methodology includes field visits and interaction with pilgrims, service providers, and other stakeholders of the system. Based on a detailed analysis of the information/data gathered, various innovations implemented and implications for policy making and sustainable service delivery were suggested.

Keywords: luggage handling, sustainable, service delivery, third party logistics, innovation

Procedia PDF Downloads 73
14014 Assessment of Vocational Rehabilitation of Visually Impaired Persons in Poultry Farming at Blind Center, Ogbomoso

Authors: Modupe C. Alasa

Abstract:

One of the major parameters for ensuring a country’s economic growth and development is the extent to which the citizens are involved in agriculture. The general objective of this study is to determine the assessment of vocational rehabilitation of visually impaired persons in poultry farming at blind center, Ogbomoso, Nigeria. A total number of 70 students will be selected randomly through the use of structured questionnaire out of the total number of students which is 120. Data will be collected from the farmers’ personal characteristics and other specific objectives related to the work. The results will be analyzed with the use of simple statistical tools as frequency, percentage, means and standard deviations. Conclusion and recommendations will be suggested based on result findings of the study.

Keywords: assessment, impair, poultry, rehabilitation, vocational

Procedia PDF Downloads 245
14013 Convergence Analysis of Reactive Power Based Schemes Used in Sensorless Control of Induction Motors

Authors: N. Ben Si Ali, N. Benalia, N. Zerzouri

Abstract:

Many electronic drivers for the induction motor control are based on sensorless technologies. Speed and torque control is usually attained by application of a speed or position sensor which requires the additional mounting space, reduce the reliability and increase the cost. This paper seeks to analyze dynamical performances and sensitivity to motor parameter changes of reactive power based technique used in sensorless control of induction motors. Validity of theoretical results is verified by simulation.

Keywords: adaptive observers, model reference adaptive system, RP-based estimator, sensorless control, stability analysis

Procedia PDF Downloads 538
14012 View Synthesis of Kinetic Depth Imagery for 3D Security X-Ray Imaging

Authors: O. Abusaeeda, J. P. O. Evans, D. Downes

Abstract:

We demonstrate the synthesis of intermediary views within a sequence of X-ray images that exhibit depth from motion or kinetic depth effect in a visual display. Each synthetic image replaces the requirement for a linear X-ray detector array during the image acquisition process. Scale invariant feature transform, SIFT, in combination with epipolar morphing is employed to produce synthetic imagery. Comparison between synthetic and ground truth images is reported to quantify the performance of the approach. Our work is a key aspect in the development of a 3D imaging modality for the screening of luggage at airport checkpoints. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.

Keywords: X-ray, kinetic depth, KDE, view synthesis

Procedia PDF Downloads 252
14011 Numerical Approach for Solving the Hyper Singular Integral Equation in the Analysis of a Central Symmetrical Crack within an Infinite Strip

Authors: Ikram Slamani, Hicheme Ferdjani

Abstract:

This study focuses on analyzing a Griffith crack situated at the center of an infinite strip. The problem is reformulated as a hyper-singular integral equation and solved numerically using second-order Chebyshev polynomials. The primary objective is to calculate the stress intensity factor in mode 1, denoted as K1. The obtained results reveal the influence of the strip width and crack length on the stress intensity factor, assuming stress-free edges. Additionally, a comparison is made with relevant literature to validate the findings.

Keywords: center crack, Chebyshev polynomial, hyper singular integral equation, Griffith, infinite strip, stress intensity factor

Procedia PDF Downloads 128
14010 Analysis of Cascade Control Structure in Train Dynamic Braking System

Authors: B. Moaveni, S. Morovati

Abstract:

In recent years, increasing the usage of railway transportations especially in developing countries caused more attention to control systems railway vehicles. Consequently, designing and implementing the modern control systems to improve the operating performance of trains and locomotives become one of the main concerns of researches. Dynamic braking systems is an important safety system which controls the amount of braking torque generated by traction motors, to keep the adhesion coefficient between the wheel-sets and rail road in optimum bound. Adhesion force has an important role to control the braking distance and prevent the wheels from slipping during the braking process. Cascade control structure is one of the best control methods for the wide range of industrial plants in the presence of disturbances and errors. This paper presents cascade control structure based on two forward simple controllers with two feedback loops to control the slip ratio and braking torque. In this structure, the inner loop controls the angular velocity and the outer loop control the longitudinal velocity of the locomotive that its dynamic is slower than the dynamic of angular velocity. This control structure by controlling the torque of DC traction motors, tries to track the desired velocity profile to access the predefined braking distance and to control the slip ratio. Simulation results are employed to show the effectiveness of the introduced methodology in dynamic braking system.

Keywords: cascade control, dynamic braking system, DC traction motors, slip control

Procedia PDF Downloads 354
14009 Improve Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

A heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At a hot surface of the heat pipe, the liquid phase absorbs heat and changes to the vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to the liquid phase. Due to gravitational force the liquid phase flows to the evaporator section. In HVAC systems, the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses the heater, humidifier, or dryer is a suitable nominate for the utilization of heat pipes. Generally, heat pipes have three main sections: condenser, adiabatic region, and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of the heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian-Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances its heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 424
14008 Consideration of Uncertainty in Engineering

Authors: A. Mohammadi, M. Moghimi, S. Mohammadi

Abstract:

Engineers need computational methods which could provide solutions less sensitive to the environmental effects, so the techniques should be used which take the uncertainty to account to control and minimize the risk associated with design and operation. In order to consider uncertainty in engineering problem, the optimization problem should be solved for a suitable range of the each uncertain input variable instead of just one estimated point. Using deterministic optimization problem, a large computational burden is required to consider every possible and probable combination of uncertain input variables. Several methods have been reported in the literature to deal with problems under uncertainty. In this paper, different methods presented and analyzed.

Keywords: uncertainty, Monte Carlo simulated, stochastic programming, scenario method

Procedia PDF Downloads 400
14007 Optimal Control of DC Motor Using Linear Quadratic Regulator

Authors: Meetty Tomy, Arxhana G Thosar

Abstract:

This paper provides the implementation of optimal control for an armature-controlled DC motor. The selection of error weighted Matrix and control weighted matrix in order to implement optimal control theory for improving the dynamic behavior of DC motor is presented. The closed loop performance of Armature controlled DC motor with derived linear optimal controller is then evaluated for the transient operating condition (starting). The result obtained from MATLAB is compared with that of PID controller and simple closed loop response of the motor.

Keywords: optimal control, DC motor, performance index, MATLAB

Procedia PDF Downloads 395
14006 Effectiveness of ATMS (Advanced Transport Management Systems) in Asuncion, Paraguay

Authors: Sung Ho Oh

Abstract:

The advanced traffic lights, the system of traffic information collection and provision, the CCTVs for traffic control, and the traffic information center were installed in Asuncion, capital of Paraguay. After pre-post comparison of the installation, significant changes were found. Even though the traffic volumes were increased, travel speed was higher, so that travel time from origin to destination was decreased. the saving values for travel time, gas cost, and environmental cost are about 47 million US dollars per year. Satisfaction survey results for the installation were presented with statistical significance analysis.

Keywords: advanced transport management systems, effectiveness, Paraguay, traffic lights

Procedia PDF Downloads 340
14005 Tuberculosis Massive Active Case Discovery in East Jakarta 2016-2017: The Role of Ketuk Pintu Layani Dengan Hati and Juru Pemantau Batuk (Jumantuk) Cadre Programs

Authors: Ngabilas Salama

Abstract:

Background: Indonesia has the 2nd highest number of incidents of tuberculosis (TB). It accounts for 1.020.000 new cases per year, only 30% of which has been reported. To find the lost 70%, a massive active case discovery was conducted through two programs: Ketuk Pintu Layani Dengan Hati (KPLDH) and Kader Juru Pemantau Batuk (Jumantuk cadres), who also plays a role in child TB screening. Methods: Data was collected and analyzed through Tuberculosis Integrated Online System from 2014 to 2017 involving 129 DOTS facility with 86 primary health centers in East Jakarta. Results: East Jakarta consists of 2.900.722 people. KPLDH program started in February 2016 consisting of 84 teams (310 people). Jumantuk cadres was formed 4 months later (218 orang). The number of new TB cases in East Jakarta (primary health center) from 2014 to June 2017 respectively is as follows: 6.499 (2.637), 7.438 (2.651), 8.948 (3.211), 5.701 (1.830). Meanwhile, the percentage of child TB case discovery in primary health center was 8,5%, 9,8%, 12,1% from 2014 to 2016 respectively. In 2017, child TB case discovery was 13,1% for the first 3 months and 16,5% for the next 3 months. Discussion: Increased TB incidence rate from 2014 to 2017 was 14,4%, 20,3%, and 27,4% respectively in East Jakarta, and 0,5%, 21,1%, and 14% in primary health center. This reveals the positive role of KPLDH and Jumantuk in TB detection and reporting. Likewise, these programs were responsible for the increase in child TB case discovery, especially in the first 3 months of 2017 (Ketuk Pintu TB Day program) and the next 3 months (active TB screening). Conclusion: KPLDH dan Jumantuk are actively involved in increasing TB case discovery in both adults and children.

Keywords: tuberculosis, case discovery program, primary health center, cadre

Procedia PDF Downloads 318
14004 Improvement of Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.

Keywords: heat pipe, HVAC system, grooved heat pipe, CFD simulation

Procedia PDF Downloads 414
14003 Designing for Sustainable Public Housing from Property Management and Financial Feasibility Perspectives

Authors: Kung-Jen Tu

Abstract:

Many public housing properties developed by local governments in Taiwan in the 1980s have deteriorated severely as these rental apartment buildings aged. The lack of building maintainability considerations during project design phase as well as insufficient maintenance funds have made it difficult and costly for local governments to maintain and keep public housing properties in good shape. In order to assist the local governments in achieving and delivering sustainable public housing, this paper intends to present a developed design evaluation method to be used to evaluate the presented design schemes from property management and financial feasibility perspectives during project design phase of public housing projects. The design evaluation results, i.e. the property management and financial implications of presented design schemes that could occur later during the building operation and maintenance phase, will be reported to the client (the government) and design schemes revised consequently. It is proposed that the design evaluation be performed from two main perspectives: (1) Operation and property management perspective: Three criteria such as spatial appropriateness, people and vehicle circulation and control, property management working spaces are used to evaluate the ‘operation and PM effectiveness’ of a design scheme. (2) Financial feasibility perspective: Four types of financial analyses are performed to assess the long term financial feasibility of a presented design scheme, such as operational and rental income analysis, management fund analysis, regular operational and property management service expense analysis, capital expense analysis. The ongoing Chung-Li Public Housing Project developed by the Taoyuan City Government will be used as a case to demonstrate how the presented design evaluation method is implemented. The results of property management assessment as well as the annual operational and capital expenses of a proposed design scheme are presented.

Keywords: design evaluation method, management fund, operational and capital expenses, rental apartment buildings

Procedia PDF Downloads 290
14002 Improvement of Heat Pipes Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 354