Search results for: electrochemical corrosion properties
3597 Risk of Plastic Shrinkage Cracking in Recycled Aggregate Concrete
Authors: M. Eckert, M. Oliveira
Abstract:
The intensive use of natural aggregates, near cities and towns, associated to the increase of the global population, leads to its depletion and increases the transport distances. The uncontrolled deposition of construction and demolition waste in landfills and city outskirts, causes pollution and takes up space. The use of recycled aggregates in concrete preparation would contribute to mitigate the problem. However, it arises the problem that the high water absorption of recycled aggregate decreases the bleeding rate of concrete, and when this gets lower than the evaporation rate, plastic shrinkage cracking occurs. This phenomenon can be particularly problematic in hot and windy curing environments. Cracking facilitates the flow of liquid and gas into concrete which attacks the reinforcement and degrades the concrete. These factors reduce the durability of concrete structures and consequently the lifetime of buildings. A ring test was used, cured in a wind tunnel, to evaluate the plastic shrinkage cracking sensitivity of recycled aggregate concrete, in order to implement preventive means to control this phenomenon. The role of several aggregate properties on the concrete segregation and cracking mechanisms were also discussed.Keywords: recycled aggregate, plastic shrinkage cracking, wind tunnel, durability
Procedia PDF Downloads 4213596 Chemical Synthesis, Electrical and Antibacterial Properties of Polyaniline/Gold Nanocomposites
Authors: L. N. Shubha, M. Kalpana, P. Madhusudana Rao
Abstract:
Polyaniline/gold (PANI/Au) nanocomposite was prepared by in-situ chemical oxidation polymerization method. The synthesis involved the formation of polyaniline-gold nanocomposite, by in-situ redox reaction and the dispersion of gold nano particles throughout the polyaniline matrix. The nanocomposites were characterized by XRD, FTIR, TEM and UV-visible spectroscopy. The characteristic peaks in FTIR and UV-visible spectra confirmed the expected structure of polymer as reported in the literature. Further, transmission electron microscopy (TEM) confirmed the formation of gold nano particles. The crystallite size of 30 nm for nanoAu was supported by the XRD pattern. Further, the A.C. conductivity, dielectric constant (€’(w)) and dielectric loss (€’’(w)) of PANI/Au nano composite was measured using impedance analyzer. The effect of doping on the conductivity was investigated. The antibacterial activity was examined for this nano composite and it was observed that PANI/Au nanocomposite could be used as an antibacterial agent.Keywords: AC-conductivity, anti-microbial activity, dielectric constant, dielectric loss, polyaniline/gold (PANI/AU) nanocomposite
Procedia PDF Downloads 3833595 Degradation Mechanism of Automotive Refinish Coatings Exposed to Biological Substances: The Role of Cross-Linking Density
Authors: M. Mahdavi, M. Mohseni, R. Rafiei, H. Yari
Abstract:
Environmental factors can deteriorate the automotive coatings significantly. Such as UV radiations, humidity, hot-cold shock and destructive chemical compounds. Furthermore, some natural materials such as bird droppings and tree gums have the potential to degrade the coatings as well. The present work aims to study the mechanism of degradation for two automotive refinish coating (PU based) systems exposed to two types of biological materials, i.e. Arabic gum and the simulated bird dropping, pancreatin. To reach this goal, effects of these biological materials on surface properties and appearance were studied using different techniques including digital camera, FT-IR spectroscopy, optical microscopy, and gloss measurements. In addition, the thermo-mechanical behavior of coatings was examined by DMTA. It was found that cross-linking had a crucial role on the biological resistance of clear coat. The higher cross-linking enhanced biological resistance.Keywords: refinish clear coat, pancreatin, Arabic gum, cross-linking, biological degradation
Procedia PDF Downloads 3683594 Useful Lifetime Prediction of Rail Pads for High Speed Trains
Authors: Chang Su Woo, Hyun Sung Park
Abstract:
Useful lifetime evaluations of rail-pads were very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of rail pads. In this study, we performed properties and accelerated heat aging tests of rail pads considering degradation factors and all environmental conditions including operation, and then derived a lifetime prediction equation according to changes in hardness, thickness, and static spring constants in the Arrhenius plot to establish how to estimate the aging of rail pads. With the useful lifetime prediction equation, the lifetime of e-clip pads was 2.5 years when the change in hardness was 10% at 25°C; and that of f-clip pads was 1.7 years. When the change in thickness was 10%, the lifetime of e-clip pads and f-clip pads is 2.6 years respectively. The results obtained in this study to estimate the useful lifetime of rail pads for high speed trains can be used for determining the maintenance and replacement schedule for rail pads.Keywords: rail pads, accelerated test, Arrhenius plot, useful lifetime prediction, mechanical engineering design
Procedia PDF Downloads 3263593 Chemical Durability of Textured Glass-coat Suitable for Building Application
Authors: Adejo Andrew Ojonugwa, Jomboh Jeff Kator, Garkida Adele Dzikwi
Abstract:
This study investigates the behaviour of textured glass coat to chemical reactions upon application. Samples of textured glass coat developed from mixed post consumer glass were subjected to pH test (ASTM D5464), Chemical resistance test (ASTM D3260 and D1308), Adhesion test (ASTM D3359), and Abrasion test (ASTM D4060). Results shows a pH of 8.50, Chemical resistance of 5% flick rate when reacted with Sodium hydroxide (NaOH), a 3%, 5%, 10%, and 15% discolouration when reacted with Magnesium hydroxide (Mg(OH)2), Hydrogen fluoride (HF), Potassium hydroxide (KOH) and NaOH respectively, an adhesion of 4A and abrasion of 0.2g. The results confirm that the developed textured glass coat is in line with the standard pH range of 8-9, resistant to acid and base except for HF, NaOH, and Mg(OH)₂, good adhesion and abrasion properties, thereby making the coat resistant to chemical degradation and a good engineering material.Keywords: chemical durability, glass-coat, building, recycling
Procedia PDF Downloads 1133592 Effect of Slag Application to Soil Chemical Properties and Rice Yield on Acid Sulphate Soils with Different Pyrite Depth
Authors: Richardo Y. E. Sihotang, Atang Sutandi, Joshua Ginting
Abstract:
The expansion of marginal soil such as acid sulphate soils for the development of staple crops, including rice was unavoidable. However, acid sulphate soils were less suitable for rice field due to the low fertility and the threats of pyrite oxidation. An experiment using Randomized Complete Block Design was designed to investigate the effect of slag in stabilizing soil reaction (pH), improving soil fertility and rice yield. Experiments were conducted in two locations with different pyrite depth. The results showed that slag application was able to decrease the exchangeable Al and available iron (Fe) as well as increase the soil pH, available-P, soil exchangeable Ca2+, Mg2+, and K+. Furthermore, the slag application increased the plant nutrient uptakes, particularly N, P, K, followed by the increasing of rice yield significantly. Nutrients availability, nutrient uptake, and rice yield were higher in the shallow pyrite soil instead of the deep pyrite soil. In addition, slag application was economically feasible due to the ability to reduce standard fertilizer requirements.Keywords: acid sulphate soils, available nutrients, pyrite, slag
Procedia PDF Downloads 3033591 Determination of Mercury in Gold Ores by CVAAS Method
Authors: Ratna Siti Khodijah, Mirzam Abdurrachman
Abstract:
Gold is recovered from gold ores. Within the ores, there are not only gold but also several types of precious metals. Copper, silver, and platinum group elements (ruthenium, rhodium, palladium, rhenium, osmium, and iridium) are metals commonly found in the ores. These metals combine to form an ore because they have the same properties. It is due to their position in periodic-system-of-elements are near to gold. However, the presence of mercury in every gold ore has not been mentioned, even though it is located right next to gold in the periodic-system-of-elements and they are located in the same block, d-block. Thus, it is possible that mercury is contained in the ores. Moreover, the elements of the same group with mercury—zinc and cadmium—sometimes can be found in the ores. It is suspected that mercury can not be detected because the processing of gold ores usually using fire assay method. Before the ores melting, mercury would evaporate because it has the lowest boiling point of all precious metal in the ores. Therefore, it suggested doing research on the presence of mercury in gold ores by CVAAS method. The results of this study would obtain the amount of mercury in gold ores that should be purified. So it can be produced economically if possible.Keywords: boiling point, d-block, fire assay, precious metal
Procedia PDF Downloads 3413590 Household Low Temperature MS2 (ATCC15597-B1) Virus Inactivation Using a Hot Bubble Column Evaporator
Authors: Adrian Garrido Sanchis, Richard Pashley
Abstract:
The MS2 (ATCC15597-B1) virus was used as a surrogate to estimate the inactivation rates for enteric viruses when using a hot air bubble column evaporator (HBCE) system in the treatment of household wastewater. In this study, we have combined MS2 virus surface charging properties with thermal inactivation rates, using an improved double layer plaque assay technique, in order to assess the efficiency of the HBCE process for virus removal in water. When bubbling a continuous flow of dry air, at 200°C, only heats the aqueous solution in the bubble column to about 50°C. Viruses are not inactivated by this solution temperature, as confirmed separately from water bath heating experiments. Hence, the efficiency of the HBCE process for virus removal in water appeared to be caused entirely by collisions between the hot air bubbles and the virus organisms. This new energy efficient treatment for water reuse applications can reduce the thermal energy required to only 25% (about 113.7 kJ/L) of that required for boiling (about 450 kJ/L).Keywords: MS2 virus inactivation, water reuse, hot bubble column evaporator, water treatment
Procedia PDF Downloads 2103589 Development and Characterization of Kefir Drinks from Pumpkin (Cucurbita moschata) and Winter Melon (Benincasa hispida)
Authors: Uthumporn Utra, Y. N. Shariffa, M. Maizura, A. S. Ruri
Abstract:
This research is to study the utilization of pumpkin and winter melon as the main substrate for kefir fermentation in the production of pumpkin and winter melon-based fermented drinks. Optimized temperature and time were chosen for fermentation of pumpkin and winter melon. Physicochemical and microbiological evaluations were conducted to the end products: P (fermented pumpkin juice) and K (fermented winter melon juice). Ethanol content was detected at low concentration of 0.9% (v/wt) in P, and 1.0% (v/wt) in K. Level of glucose and fructose increased significantly (p < 0.05) in both fermented drinks when compared to unfermented pumpkin (CP) and winter melon (CK) juices. Total phenolic content in P & K was higher than CP and CK, while %DPPH inhibition of both decreased significantly. Total Lactobacilli counts in P & K were 8.9 and 7.88 log cfu/ml respectively, while acetic acid bacteria counts were 8.62 and 7.57 log cfu/ml respectively, yeast counts were 4.71 and 5 log cfu/ml, and no E.coli was detected in all samples. Sensory evaluation yield comparable properties in P & K. This concluded that pumpkin and winter melon fermented drinks inoculated by water kefir grains could be promising source of nutrients with probiotic potency.Keywords: fermented drinks, functional beverage, kefir, pumpkin, winter melon
Procedia PDF Downloads 1493588 Anisotropic Shear Strength of Sand Containing Plastic Fine Materials
Authors: Alaa H. J. Al-Rkaby, A. Chegenizadeh, H. R. Nikraz
Abstract:
Anisotropy is one of the major aspects that affect soil behavior, and extensive efforts have investigated its effect on the mechanical properties of soil. However, very little attention has been given to the combined effect of anisotropy and fine contents. Therefore, in this paper, the anisotropic strength of sand containing different fine content (F) of 5%, 10%, 15%, and 20%, was investigated using hollow cylinder tests under different principal stress directions of α = 0° and α = 90°. For a given principal stress direction (α), it was found that increasing fine content resulted in decreasing deviator stress (q). Moreover, results revealed that all fine contents showed anisotropic strength where there is a clear difference between the strength under 0° and the strength under 90°. This anisotropy was greatest under F = 5% while it decreased with increasing fine contents, particularly at F = 10%. Mixtures with low fine content show low contractive behavior and tended to show more dilation. Moreover, all sand-clay mixtures exhibited less dilation and more compression at α = 90° compared with that at α = 0°.Keywords: anisotropy, principal stress direction, fine content, hollow cylinder sample
Procedia PDF Downloads 3123587 Static and Dynamic Analysis of Microcantilever Beam
Authors: S. B. Kerur, B. S. Murgayya
Abstract:
The development of micro and nano particle is challenging task and the study of the behavior of material at the micro level is gaining importance as their behavior at micro/nano level is different. These micro particle are being used as a sensing element to measure and detects the hazardous chemical, gases, explosives and biological agents. In the present study, finite element method is used for static and dynamic analysis of simple and composite cantilever beams of different shapes. The present FE model is validated with available analytical results and various parameters like shape, materials properties, damped and undamped conditions are considered for the numerical study. The results show the effects of shape change on the natural frequency and as these are used with fluid for chemical applications, the effect of damping due to viscous nature of fluid are simulated by considering different damping coefficient effect on the dynamic behavior of cantilever beams. The obtained results show the effect of these parameters can be effectively utilized based on system requirements.Keywords: micro, FEM, dynamic, cantilever beam
Procedia PDF Downloads 3833586 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System
Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid
Abstract:
Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.Keywords: artificial neural network, bending angle, fuzzy logic, laser forming
Procedia PDF Downloads 5973585 The Performance of PtSn/Al₂O₃ with Cylindrical Particles for Acetic Acid Hydrogenation
Authors: Mingchuan Zhou, Haitao Zhang, Hongfang Ma, Weiyong Ying
Abstract:
Alumina supported PtSn catalysts with cylindrical particles were prepared and characterized by using low temperature N2 adsorption/desorption and X-ray diffraction. Low temperature N2 adsorption/desorption demonstrate that the tableting changed the texture properties of catalysts. XRD pattern indicate that the crystal structure of supports had no change after reaction. The performances over particles of PtSn/Al2O3 catalysts were investigated with regards to reaction temperature, pressure, and H2/AcOH mole ratio. After tableting, the conversion of acetic acid and selectivity of ethanol and acetyl acetate decreased. High reaction temperature and pressure can improve conversion of acetic acid. H2/AcOH mole ratio of 9.36 showed the best performance on acetic acid hydrogenation. High pressure had benefits for the selectivity of ethanol and other two parameters had no obvious effect on selectivity.Keywords: acetic acid hydrogenation, cylindrical particles, ethanol, PtSn
Procedia PDF Downloads 3193584 Starch-Based Systems for the Nano-Delivery of Quercetin
Authors: Fernando G. Torres, Omar P. Troncoso
Abstract:
Quercetin is a naturally occurring polyphenol found in many vegetables, such as onion, with antioxidant properties. It is a dietary component with a documented role in reducing different human cancers. However, its low bioavailability, poor water solubility, and chemical instability limit its applications. Different nano-delivery systems such as nanoparticles, micelles, and nanohydrogels have been studied in order to improve the bioavailability of quercetin. Nanoparticles based on natural polymers such as starch have the advantage of being biocompatible, biodegradable, and non-toxic. In this study, quercetin was loaded into starch nanoparticles using a nanoprecipitation method. Different routes, using sodium tripolyphosphate and Tween® 80 as tensioactive agents, were tested in order to obtain an optimized starch-based nano-delivery system. The characterization of the nanoparticles loaded with quercetin was assessed by Fourier Transform Infrared Spectroscopy, Dynamic Light Scattering, Zeta potential, and Differential scanning calorimetry. UV-vis spectrophotometry was used to evaluate the loading efficiency and capacity of the samples. The results showed that starch-based systems could be successfully used for the nano-delivery of quercetin.Keywords: starch nanoparticles, nanoprecipitation, quercetin, biomedical applications
Procedia PDF Downloads 1413583 Preliminary Study of Antimicrobial Activity against Escherichia coli sp. and Probiotic Properties of Lactic Acid Bacteria Isolated from Thailand Fermented Foods
Authors: Phanwipa Pangsri, Yawariyah Weahayee
Abstract:
The lactic acid bacteria (LAB) were isolated from 10 samples of fermented foods (Sa-tor-dong and Bodo) in South locality of Thailand. The 23 isolates of lactic acid bacteria were selected, which were exhibited a clear zone and growth on MRS agar supplemented with CaCO3. All of lactic acid bacteria were tested on morphological and biochemical. The result showed that all isolates were Gram’s positive, non-spore forming but only 10 isolates displayed catalase negative. The 10 isolates including BD 1.1, BD 1.2, BD 2.1, BD2.2, BD 2.3, BD 3.1, BD 4.1, BD 5.2, ST4.1, and ST 5.2 were selected for inhibition activity determination. Only 2 strains (ST 4.1 and BD 2.3) showed inhibition zone on agar, when using Escherichia coli sp. as target strain. The ST 4.1 showed highest inhibition zone on agar, which was selected for probiotic property testing. The ST4.1 isolate could grow in MRS broth containing a high concentration of sodium chloride 6%, bile salts 7%, pH 4-10 and vary temperature at 15-45^oC.Keywords: lactic acid bacteria, probiotic, antimicrobial, probiotic property testing
Procedia PDF Downloads 3783582 Development of 35kV SF6 Phase-Control Circuit Breaker Equipped with EFDA
Authors: Duanlei Yuan, Guangchao Yan, Zhanqing Chen, Xian Cheng
Abstract:
This paper mainly focuses on the problem that high voltage circuit breaker’s closing and opening operation at random phase brings harmful electromagnetic transient effects on the power system. To repress the negative transient effects, a 35 kV SF6 phase-control circuit breaker equipped with electromagnetic force driving actuator is designed in this paper. Based on the constructed mathematical and structural models, the static magnetic field distribution and dynamic properties of the under loading actuator are simulated. The prototype of 35 kV SF6 phase-control circuit breaker is developed based on theories analysis and simulation. Tests are carried on to verify the operating reliability of the prototype. The developed circuit breaker can control its operating speed intelligently and switches with phase selection. Results of the tests and simulation prove that the phase-control circuit breaker is feasible for industrial applications.Keywords: phase-control, circuit breaker, electromagnetic force driving actuator, tests and simulation
Procedia PDF Downloads 3963581 Data Challenges Facing Implementation of Road Safety Management Systems in Egypt
Authors: A. Anis, W. Bekheet, A. El Hakim
Abstract:
Implementing a Road Safety Management System (SMS) in a crowded developing country such as Egypt is a necessity. Beginning a sustainable SMS requires a comprehensive reliable data system for all information pertinent to road crashes. In this paper, a survey for the available data in Egypt and validating it for using in an SMS in Egypt. The research provides some missing data, and refer to the unavailable data in Egypt, looking forward to the contribution of the scientific society, the authorities, and the public in solving the problem of missing or unreliable crash data. The required data for implementing an SMS in Egypt are divided into three categories; the first is available data such as fatality and injury rates and it is proven in this research that it may be inconsistent and unreliable, the second category of data is not available, but it may be estimated, an example of estimating vehicle cost is available in this research, the third is not available and can be measured case by case such as the functional and geometric properties of a facility. Some inquiries are provided in this research for the scientific society, such as how to improve the links among stakeholders of road safety in order to obtain a consistent, non-biased, and reliable data system.Keywords: road safety management system, road crash, road fatality, road injury
Procedia PDF Downloads 1483580 Is Ag@TiO2 Core-Shell Nanoparticles Superior to Ag Surface Doped TiO2 Nanostructures?
Authors: Xiaohong Yang, Haitao Fu, Xizhong An, Aibing Yu
Abstract:
Silver@titanium dioxide (Ag@TiO2) core-shell nanostructures and Ag surface doped TiO2 particles (TiO2@Ag) have been designed and synthesized by sol-gel and hydrothermal methods under mild conditions. These two types of Ag/TiO2 nanocomposites were characterized in terms of their properties by various techniques such as transmission electron microscope (TEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) and ultra violet-visible absorption spectroscopy (UV-Vis). Specifically, the photocatalystic performance and antibacterial behavior of such nanocomposites have been investigated and compared. It was found that The Ag@TiO2 core-shell nanostructures exhibit superior photocatalytic property to the Ag surface doped TiO2 particles under the reported conditions. While with UV pre-irradiation, the Ag@TiO2 core-shell composites exhibit better bactericidal performance. This is probably because the Ag cores tend to facilitate charge separation for TiO2, producing greater hydroxyl radicals on the surface of the TiO2 particles. These findings would be useful for the design and synthesis of Ag/TiO2 nanocomposites with desirable photocatalystic and antimicrobial activity for environmental applications.Keywords: Ag@TiO2 core-shell nanoparticles, Ag surface doped TiO2 nanoparticles, photocatalysis, antibacterial
Procedia PDF Downloads 4853579 Prediction of Compressive Strength Using Artificial Neural Network
Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal
Abstract:
Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-Destructive Techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.Keywords: rebound, ultra-sonic pulse, penetration, ANN, NDT, regression
Procedia PDF Downloads 4283578 Anharmonic Behavior in BaTiO3: Investigation by Raman Spectroscopy
Authors: M. D. Fontana, I. Bejaoui Ouni, D. Chapron, H. Aroui
Abstract:
BaTiO3 (BT) is a well known ferroelectric material which has been thoroughly studied during several decades since it undergoes successive cubic-tetragonal-orthorhombic-rhombohedral phase transitions on cooling. It has several ferroelectric properties that allow it to be a good material for electronic applications such as the design of ferroelectric memories and pyroelectric elements. In the present work, we report the analysis of temperature dependence of Raman frequency and damping of the A1 modes polarized along the FE c axis as well as the optical phonons E corresponding to the ionic motions in the plane normal to c. Measurements were carried out at different temperatures ranging from 298 to 408 K (tetragonal phase) within different scattering configurations. Spectroscopic parameters of BT have determined using a high resolution Raman spectrometer and a fitting program. All the first order frequency modes exhibit a quasi linear decrease as function of the temperature, except for the A1[TO1], E[TO2] and E[TO4] lines which reveal a parabolic dependence illustrating an anharmonic process. The phonon frequency downshifts and damping evolutions are interpreted in terms of normal volume expansion and third- and fourth-order anharmonic potentials.Keywords: BaTiO3, Raman spectroscopy, frequency, damping, anharmonic potential
Procedia PDF Downloads 3003577 Analytical Investigation of Viscous and Non-Viscous Fluid Particles in a Restricted Region Using Diffusion Magnetic Resonance Imaging Equation
Authors: Yusuf, S. I., Saba, A., Olaoye, D. O., Ibrahim J. A., Yahaya H. M., Jatto A. O
Abstract:
Nuclear Magnetic Resonance (NMR) technology has been applied in several ways to provide vital information about petro-physical properties of reservoirs. However, due to the need to study the molecular behaviours of particles of the fluids in different restricted media, diffusion magnetic resonance equation is hereby applied in spherical coordinates and solved analytically using the method of separation of variables and solution of Legendre equation by Frobenius method. The viscous fluid considered in this research work is unused oil while the non-viscous fluid is water. The results obtained show that water begins to manifest appreciable change at radial adjustment value of 10 and Magnetization of 2.31191995400015x1014 and relaxes finally at 2.30x1014 at radial adjustment value of 1. On the other hand, unused engine oil begins to manifest its changes at radial adjustment value of 40 and Magnetization of 1.466557018x1014and relaxes finally at 1.48x1014 at radial adjustment value of 5.Keywords: viscous and non-viscous fluid, restricted medium, relaxation times, coefficient of diffusion
Procedia PDF Downloads 833576 Social Accountability: Persuasion and Debate to Contain Corruption
Authors: A. Lambert-Mogiliansky
Abstract:
In this paper, we investigate the properties of simple rules for reappointment aimed at holding a public official accountable and monitor his activity. The public official allocates budget resources to various activities which results in the delivery of public services to citizens. He has discretion over the use of resource so he can divert some of them for private ends. Because of a liability constraint, zero diversion can never be secured in all states. The optimal reappointment mechanism under complete information is shown to exhibit some leniency thus departing from the zero tolerance principle. Under asymmetric information (about the state), a rule with random verification in a pre-announced subset is shown to be optimal in a class of common rules. Surprisingly, those common rules make little use of hard information about service delivery when available. Similarly, PO's claim about his record is of no value to improve the performance of the examined rules. In contrast requesting that the PO defends his records publicly can be very useful if the service users are given the chance to refute false claims with cheap talk complaints: the first best complete information outcome can be approached in the absence of any observation by the manager of the accountability mechanism.Keywords: accountability, corruption, persuasion, debate
Procedia PDF Downloads 3803575 Buckling Analysis of Laminated Composite Plates with Central Holes
Authors: Pratyasha Patnaik, A. V. Asha
Abstract:
Laminated composite plates are made up of plates consisting of layers bonded together and made up of materials chemically different from each other but combined macroscopically. These have an application in aircrafts, railway coaches, bridges etc. because they are easy to handle, have got improved properties and the cost of their fabrication is low. But their failure can lead to catastrophic disasters. And generally, the failure of these structures is due to the combined effect of excessive stresses on it and buckling. Hence, the buckling behavior of these kinds of plates should be analyzed properly. Holes are provided either at the center or elsewhere in the laminar plates for the purpose of pipes for electric cables or other purposes. Due to the presence of holes in the plates, the stress concentration is near to the holes and the stiffness of the plates is reduced. In this study, the effect of a cut-out, its shape, different boundary conditions, length/thickness ratio, stacking sequence, and ply orientation has been studied. The analysis was carried out with laminated composite plates with circular, square and triangular cut-outs. Results show the effect of different cut-out shapes, boundary conditions, the orientation of layers and length/thickness ratio of the buckling loadKeywords: buckling, composite plates, cut-out, stress
Procedia PDF Downloads 3303574 High Frequency Nanomechanical Oscillators Based on Synthetic Nanowires
Authors: Minjin Kim, Jihwan Kim, Bongsoo Kim, Junho Suh
Abstract:
We demonstrate nanomechanical resonators constructed with synthetic nanowires (NWs) and study their electro-mechanical properties at millikelvin temperatures. Nanomechanical resonators are fabricated using single-crystalline Au NWs and InAs NWs. The mechanical resonance signals are acquired by either magnetomotive or capacitive detection methods. The Au NWs are synthesized by chemical vapor transport method at 1100 °C, and they exhibit clean surface and single-crystallinity with little defects. Due to pristine surface quality, these Au NW mechanical resonators could provide an ideal model system for studying surface-related effects on the mechanical systems. The InAs NWs are synthesized by molecular beam epitaxy or metal organic chemical vapor deposition method. The InAs NWs show electronic conductance modulation resembling Coulomb blockade, which also manifests in the mechanical resonance signals in the form of damping and resonance frequency shift. Our result provides an evidence of strong electro-mechanical coupling in synthetic NW nanomechanical resonators.Keywords: Au nanowire, InAs nanowire, nanomechanical resonator, synthetic nanowires
Procedia PDF Downloads 2103573 Characterization of Mechanical Properties of Graphene-Modified Epoxy Resin for Pipeline Repair
Authors: Siti Nur Afifah Azraai, Lim Kar Sing, Nordin Yahaya, Norhazilan Md Noor
Abstract:
This experimental study consists of a characterization of epoxy grout where an amount of 2% of graphene nanoplatelets particles were added to commercial epoxy resin to evaluate their behavior regarding neat epoxy resin. Compressive tests, tensile tests and flexural tests were conducted to study the effect of graphene nanoplatelets on neat epoxy resin. By comparing graphene-based and neat epoxy grout, there is no significant increase of strength due to weak interface in the graphene nanoplatelets/epoxy composites. From this experiment, the tension and flexural strength of graphene-based epoxy grouts is slightly lower than ones of neat epoxy grout. Nevertheless, the addition of graphene has produced more consistent results according to a smaller standard deviation of strength. Furthermore, the graphene has also improved the ductility of the grout, hence reducing its brittle behaviour. This shows that the performance of graphene-based grout is reliably predictable and able to minimize sudden rupture. This is important since repair design of damaged pipeline is of deterministic nature.Keywords: composite, epoxy resin, graphene nanoplatelets, pipeline
Procedia PDF Downloads 4823572 Porous Carbon Nanoparticels Co-Doped with Nitrogen and Iron as an Efficient Catalyst for Oxygen Reduction Reaction
Authors: Bita Bayatsarmadi, Shi-Zhang Qiao
Abstract:
Oxygen reduction reaction (ORR) performance of iron and nitrogen co-doped porous carbon nanoparticles (Fe-NPC) with various physical and (electro) chemical properties have been investigated. Fe-NPC nanoparticles are synthesized via a facile soft-templating procedure by using Iron (III) chloride hexa-hydrate as iron precursor and aminophenol-formaldehyde resin as both carbon and nitrogen precursor. Fe-NPC nanoparticles shows high surface area (443.83 m2g-1), high pore volume (0.52 m3g-1), narrow mesopore size distribution (ca. 3.8 nm), high conductivity (IG/ID=1.04), high kinetic limiting current (11.71 mAcm-2) and more positive onset potential (-0.106 V) compared to metal-free NPC nanoparticles (-0.295V) which make it high efficient ORR metal-free catalysts in alkaline solution. This study may pave the way of feasibly designing iron and nitrogen containing carbon materials (Fe-N-C) for highly efficient oxygen reduction electro-catalysis.Keywords: electro-catalyst, mesopore structure, oxygen reduction reaction, soft-template
Procedia PDF Downloads 3793571 Self-Organizing Map Network for Wheeled Robot Movement Optimization
Authors: Boguslaw Schreyer
Abstract:
The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.Keywords: slip control, SOM network, torque distribution, wheeled Robot
Procedia PDF Downloads 1273570 Effect of Salt Forms and Concentrations on the Alveograph and Extensigraph Parameters of Rye Flour
Authors: Péter Sipos, Gerda Diósi, Mariann Móré, Zsófia Szigeti
Abstract:
Several medical research found that the sodium is one of the main risk factor of high blood pressure and reason for different cardiovascular diseases, while sodium chloride is one of the most ancient food additives. As people consume much more sodium chloride as the recommended value several salt reduction programs started worldwide in the last years. The cereal products are the main source of sodium, and the bakery products are one of the main targets of these programs. In this paper we have evaluated the effects of different concentrations of sodium chloride on the alveo graphical and extensi graphical parameters of rye flours to determine whether it has the same strengthening effect on the dough texture as it was found in the case of wheat flours and these effects were compared to the effects of other salt forms. We found that while the strength of rye flours are similar to the ones of wheat flour, rye flours are much less extensible. The effects of salt concentrations are less significant on the rheological properties of rye flour than on the wheat flour and there is no significant difference between the effects of different salts.Keywords: alveograph, extensigraph, rye flour, salt
Procedia PDF Downloads 4903569 A Comparative Study on Sampling Techniques of Polynomial Regression Model Based Stochastic Free Vibration of Composite Plates
Authors: S. Dey, T. Mukhopadhyay, S. Adhikari
Abstract:
This paper presents an exhaustive comparative investigation on sampling techniques of polynomial regression model based stochastic natural frequency of composite plates. Both individual and combined variations of input parameters are considered to map the computational time and accuracy of each modelling techniques. The finite element formulation of composites is capable to deal with both correlated and uncorrelated random input variables such as fibre parameters and material properties. The results obtained by Polynomial regression (PR) using different sampling techniques are compared. Depending on the suitability of sampling techniques such as 2k Factorial designs, Central composite design, A-Optimal design, I-Optimal, D-Optimal, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube sampling, sobol sequence are illustrated. Statistical analysis of the first three natural frequencies is presented to compare the results and its performance.Keywords: composite plate, natural frequency, polynomial regression model, sampling technique, uncertainty quantification
Procedia PDF Downloads 5133568 Seismic Investigation on the Effect of Surface Structures and Twin Tunnel on the Site Response in Urban Areas
Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi
Abstract:
Site response has a profound effect on earthquake damages. Seismic interaction of urban tunnels with surface structures could also affect seismic site response. Here, we use FLAC 2D to investigate the interaction of a single tunnel and twin tunnels-surface structures on the site response. Soil stratification and properties are selected based on Line. No 7 of the Tehran subway. The effect of surface structure is considered in two ways: Equivalent surcharge and geometrical modeling of the structure. Comparison of the results shows that consideration of the structure geometry is vital in dynamic analysis and leads to the changes in the magnitude of displacements, accelerations and response spectrum. Therefore it is necessary for the surface structures to be wholly modeled and not just considered as a surcharge in dynamic analysis. The use of twin tunnel also leads to the reduction of dynamic residual settlement.Keywords: superstructure, tunnel, site response, surcharge, interaction
Procedia PDF Downloads 164