Search results for: content based image retrieval (CBIR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33845

Search results for: content based image retrieval (CBIR)

33275 Optimization of the Dental Direct Digital Imaging by Applying the Self-Recognition Technology

Authors: Mina Dabirinezhad, Mohsen Bayat Pour, Amin Dabirinejad

Abstract:

This paper is intended to introduce the technology to solve some of the deficiencies of the direct digital radiology. Nowadays, digital radiology is the latest progression in dental imaging, which has become an essential part of dentistry. There are two main parts of the direct digital radiology comprised of an intraoral X-ray machine and a sensor (digital image receptor). The dentists and the dental nurses experience afflictions during the taking image process by the direct digital X-ray machine. For instance, sometimes they need to readjust the sensor in the mouth of the patient to take the X-ray image again due to the low quality of that. Another problem is, the position of the sensor may move in the mouth of the patient and it triggers off an inappropriate image for the dentists. It means that it is a time-consuming process for dentists or dental nurses. On the other hand, taking several the X-ray images brings some problems for the patient such as being harmful to their health and feeling pain in their mouth due to the pressure of the sensor to the jaw. The author provides a technology to solve the above-mentioned issues that is called “Self-Recognition Direct Digital Radiology” (SDDR). This technology is based on the principle that the intraoral X-ray machine is capable to diagnose the location of the sensor in the mouth of the patient automatically. In addition, to solve the aforementioned problems, SDDR technology brings out fewer environmental impacts in comparison to the previous version.

Keywords: Dental direct digital imaging, digital image receptor, digital x-ray machine, and environmental impacts

Procedia PDF Downloads 138
33274 The Impact of Different Rhizobium leguminosarum Strains on the Protein Content of Peas and Broad Beans

Authors: Alise Senberga, Laila Dubova, Liene Strauta, Ina Alsina, Ieva Erdberga

Abstract:

Legume symbiotic relationship with nitrogen fixating bacteria Rhizobim leguminosarum is an important factor used to improve the productivity of legumes, due to the fact that rhizobia can supply plant with the necessary amount of nitrogen. R. leguminosarum strains have shown different activity in fixing nitrogen. Depending on the chosen R. leguminosarum strain, host plant biochemical content can be altered. In this study we focused particularly on the changes in protein content in beans (using two different varieties) and peas (five different varieties) due to the use of several different R. leguminosarum strains (four strains for both beans and peas). Overall, the protein content increase was observed after seed inoculation with R. leguminosarum. Strain and plant cultivar interaction specification was observed. The effect of R. leguminosarum inoculation on the content of protein was dependent on the R. leguminosarum strain used. Plant cultivar also appeared to have a decisive role in protein content formation with the help of R. leguminosaru.

Keywords: legumes, protein content, rhizobia strains, soil

Procedia PDF Downloads 521
33273 Multi-Dimensional Experience of Processing Textual and Visual Information: Case Study of Allocations to Places in the Mind’s Eye Based on Individual’s Semantic Knowledge Base

Authors: Joanna Wielochowska, Aneta Wielochowska

Abstract:

Whilst the relationship between scientific areas such as cognitive psychology, neurobiology and philosophy of mind has been emphasized in recent decades of scientific research, concepts and discoveries made in both fields overlap and complement each other in their quest for answers to similar questions. The object of the following case study is to describe, analyze and illustrate the nature and characteristics of a certain cognitive experience which appears to display features of synaesthesia, or rather high-level synaesthesia (ideasthesia). The following research has been conducted on the subject of two authors, monozygotic twins (both polysynaesthetes) experiencing involuntary associations of identical nature. Authors made attempts to identify which cognitive and conceptual dependencies may guide this experience. Operating on self-introduced nomenclature, the described phenomenon- multi-dimensional processing of textual and visual information- aims to define a relationship that involuntarily and immediately couples the content introduced by means of text or image a sensation of appearing in a certain place in the mind’s eye. More precisely: (I) defining a concept introduced by means of textual content during activity of reading or writing, or (II) defining a concept introduced by means of visual content during activity of looking at image(s) with simultaneous sensation of being allocated to a given place in the mind’s eye. A place can be then defined as a cognitive representation of a certain concept. During the activity of processing information, a person has an immediate and involuntary feel of appearing in a certain place themselves, just like a character of a story, ‘observing’ a venue or a scenery from one or more perspectives and angles. That forms a unique and unified experience, constituting a background mental landscape of text or image being looked at. We came to a conclusion that semantic allocations to a given place could be divided and classified into the categories and subcategories and are naturally linked with an individual’s semantic knowledge-base. A place can be defined as a representation one’s unique idea of a given concept that has been established in their semantic knowledge base. A multi-level structure of selectivity of places in the mind’s eye, as a reaction to a given information (one stimuli), draws comparisons to structures and patterns found in botany. Double-flowered varieties of flowers and a whorl system (arrangement) which is characteristic to components of some flower species were given as an illustrative example. A composition of petals that fan out from one single point and wrap around a stem inspired an idea that, just like in nature, in philosophy of mind there are patterns driven by the logic specific to a given phenomenon. The study intertwines terms perceived through the philosophical lens, such as definition of meaning, subjectivity of meaning, mental atmosphere of places, and others. Analysis of this rare experience aims to contribute to constantly developing theoretical framework of the philosophy of mind and influence the way human semantic knowledge base and processing given content in terms of distinguishing between information and meaning is researched.

Keywords: information and meaning, information processing, mental atmosphere of places, patterns in nature, philosophy of mind, selectivity, semantic knowledge base, senses, synaesthesia

Procedia PDF Downloads 124
33272 Iris Recognition Based on the Low Order Norms of Gradient Components

Authors: Iman A. Saad, Loay E. George

Abstract:

Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.

Keywords: iris recognition, contrast stretching, gradient features, texture features, Euclidean metric

Procedia PDF Downloads 334
33271 The Use of Classifiers in Image Analysis of Oil Wells Profiling Process and the Automatic Identification of Events

Authors: Jaqueline Maria Ribeiro Vieira

Abstract:

Different strategies and tools are available at the oil and gas industry for detecting and analyzing tension and possible fractures in borehole walls. Most of these techniques are based on manual observation of the captured borehole images. While this strategy may be possible and convenient with small images and few data, it may become difficult and suitable to errors when big databases of images must be treated. While the patterns may differ among the image area, depending on many characteristics (drilling strategy, rock components, rock strength, etc.). Previously we developed and proposed a novel strategy capable of detecting patterns at borehole images that may point to regions that have tension and breakout characteristics, based on segmented images. In this work we propose the inclusion of data-mining classification strategies in order to create a knowledge database of the segmented curves. These classifiers allow that, after some time using and manually pointing parts of borehole images that correspond to tension regions and breakout areas, the system will indicate and suggest automatically new candidate regions, with higher accuracy. We suggest the use of different classifiers methods, in order to achieve different knowledge data set configurations.

Keywords: image segmentation, oil well visualization, classifiers, data-mining, visual computer

Procedia PDF Downloads 303
33270 Effect of Semantic Relational Cues in Action Memory Performance over School Ages

Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf, Kamal Kharazi

Abstract:

Research into long-term memory has demonstrated that the richness of the knowledge base cues in memory tasks improves retrieval process, which in turn influences learning and memory performance. The present research investigated the idea that adding cues connected to knowledge can affect memory performance in the context of action memory in children. In action memory studies, participants are instructed to learn a series of verb–object phrases as verbal learning and experience-based learning (learning by doing and learning by observation). It is well established that executing action phrases is a more memorable way to learn than verbally repeating the phrases, a finding called enactment effect. In the present study, a total of 410 students from four grade groups—2nd, 4th, 6th, and 8th—participated in this study. During the study, participants listened to verbal action phrases (VTs), performed the phrases (SPTs: subject-performed tasks), and observed the experimenter perform the phrases (EPTs: experimenter-performed tasks). During the test phase, cued recall test was administered. Semantic relational cues (i.e., well-integrated vs. poorly integrated items) were manipulated in the present study. In that, the participants were presented two lists of action phrases with high semantic integration between verb and noun, e.g., “write with the pen” and with low semantic integration between verb and noun, e.g., “pick up the glass”. Results revealed that experience-based learning had a better results than verbal learning for both well-integrated and poorly integrated items, though manipulations of semantic relational cues can moderate the enactment effect. In addition, children of different grade groups outperformed for well- than poorly integrated items, in flavour of older children. The results were discussed in relation to the effect of knowledge-based information in facilitating retrieval process in children.

Keywords: action memory, enactment effect, knowledge-based cues, school-aged children, semantic relational cues

Procedia PDF Downloads 275
33269 Brain Tumor Segmentation Based on Minimum Spanning Tree

Authors: Simeon Mayala, Ida Herdlevær, Jonas Bull Haugsøen, Shamundeeswari Anandan, Sonia Gavasso, Morten Brun

Abstract:

In this paper, we propose a minimum spanning tree-based method for segmenting brain tumors. The proposed method performs interactive segmentation based on the minimum spanning tree without tuning parameters. The steps involve preprocessing, making a graph, constructing a minimum spanning tree, and a newly implemented way of interactively segmenting the region of interest. In the preprocessing step, a Gaussian filter is applied to 2D images to remove the noise. Then, the pixel neighbor graph is weighted by intensity differences and the corresponding minimum spanning tree is constructed. The image is loaded in an interactive window for segmenting the tumor. The region of interest and the background are selected by clicking to split the minimum spanning tree into two trees. One of these trees represents the region of interest and the other represents the background. Finally, the segmentation given by the two trees is visualized. The proposed method was tested by segmenting two different 2D brain T1-weighted magnetic resonance image data sets. The comparison between our results and the standard gold segmentation confirmed the validity of the minimum spanning tree approach. The proposed method is simple to implement and the results indicate that it is accurate and efficient.

Keywords: brain tumor, brain tumor segmentation, minimum spanning tree, segmentation, image processing

Procedia PDF Downloads 122
33268 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform

Authors: Jie Zhao, Meng Su

Abstract:

Image recognition, as one of the most critical technologies in computer vision, works to help machine-like robotics understand a scene, that is, if deployed appropriately, will trigger the revolution in remote sensing and industry automation. With the developments of AI technologies, there are many prevailing and sophisticated neural networks as technologies developed for image recognition. However, computer vision platforms as hardware, supporting neural networks for image recognition, as crucial as the neural network technologies, need to be more congruently addressed as the research subjects. In contrast, different computer vision platforms are deterministic to leverage the performance of different neural networks for recognition. In this paper, three different computer vision platforms – Jetson Nano(with 4GB), a standalone laptop(with RTX 3000s, using CUDA), and Google Colab (web-based, using GPU) are explored and four prominent neural network architectures (including AlexNet, VGG(16/19), GoogleNet, and ResNet(18/34/50)), are investigated. In the context of pairwise usage between different computer vision platforms and distinctive neural networks, with the merits of recognition accuracy and time efficiency, the performances are evaluated. In the case study using public imageNets, our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.

Keywords: alexNet, VGG, googleNet, resNet, Jetson nano, CUDA, COCO-NET, cifar10, imageNet large scale visual recognition challenge (ILSVRC), google colab

Procedia PDF Downloads 90
33267 Enhancement of Underwater Haze Image with Edge Reveal Using Pixel Normalization

Authors: M. Dhana Lakshmi, S. Sakthivel Murugan

Abstract:

As light passes from source to observer in the water medium, it is scattered by the suspended particulate matter. This scattering effect will plague the captured images with non-uniform illumination, blurring details, halo artefacts, weak edges, etc. To overcome this, pixel normalization with an Amended Unsharp Mask (AUM) filter is proposed to enhance the degraded image. To validate the robustness of the proposed technique irrespective of atmospheric light, the considered datasets are collected on dual locations. For those images, the maxima and minima pixel intensity value is computed and normalized; then the AUM filter is applied to strengthen the blurred edges. Finally, the enhanced image is obtained with good illumination and contrast. Thus, the proposed technique removes the effect of scattering called de-hazing and restores the perceptual information with enhanced edge detail. Both qualitative and quantitative analyses are done on considering the standard non-reference metric called underwater image sharpness measure (UISM), and underwater image quality measure (UIQM) is used to measure color, sharpness, and contrast for both of the location images. It is observed that the proposed technique has shown overwhelming performance compared to other deep-based enhancement networks and traditional techniques in an adaptive manner.

Keywords: underwater drone imagery, pixel normalization, thresholding, masking, unsharp mask filter

Procedia PDF Downloads 194
33266 Binarized-Weight Bilateral Filter for Low Computational Cost Image Smoothing

Authors: Yu Zhang, Kohei Inoue, Kiichi Urahama

Abstract:

We propose a simplified bilateral filter with binarized coefficients for accelerating it. Its computational cost is further decreased by sampling pixels. This computationally low cost filter is useful for smoothing or denoising images by using mobile devices with limited computational power.

Keywords: bilateral filter, binarized-weight bilateral filter, image smoothing, image denoising, pixel sampling

Procedia PDF Downloads 469
33265 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning

Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho

Abstract:

Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.

Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning

Procedia PDF Downloads 96
33264 Intelligent Rheumatoid Arthritis Identification System Based Image Processing and Neural Classifier

Authors: Abdulkader Helwan

Abstract:

Rheumatoid joint inflammation is characterized as a perpetual incendiary issue which influences the joints by hurting body tissues Therefore, there is an urgent need for an effective intelligent identification system of knee Rheumatoid arthritis especially in its early stages. This paper is to develop a new intelligent system for the identification of Rheumatoid arthritis of the knee utilizing image processing techniques and neural classifier. The system involves two principle stages. The first one is the image processing stage in which the images are processed using some techniques such as RGB to gryascale conversion, rescaling, median filtering, background extracting, images subtracting, segmentation using canny edge detection, and features extraction using pattern averaging. The extracted features are used then as inputs for the neural network which classifies the X-ray knee images as normal or abnormal (arthritic) based on a backpropagation learning algorithm which involves training of the network on 400 X-ray normal and abnormal knee images. The system was tested on 400 x-ray images and the network shows good performance during that phase, resulting in a good identification rate 97%.

Keywords: rheumatoid arthritis, intelligent identification, neural classifier, segmentation, backpropoagation

Procedia PDF Downloads 532
33263 Intangible Cultural Heritage as a Strategic Place Branding Tool

Authors: L. Ozoliņa

Abstract:

Place branding as a strategic marketing tool is applied in Latvia since 2000. The main objective of the study is to find unique connecting aspects of the intangible cultural heritage elements on the development of sustainable place branding. The study is based on in-depth semi-structured interviews with Latvian place branding experts and content analysis of Latvia's place brand identities. The study indicates place branding as an internal co-creational and educational process of all involved stakeholders of the place and highlights a critical view on the local place branding practices on the notability of the in-depth research of the intangible cultural heritage.

Keywords: belonging, identity, intangible cultural heritage, narrative, self-image, place branding

Procedia PDF Downloads 144
33262 Video Shot Detection and Key Frame Extraction Using Faber-Shauder DWT and SVD

Authors: Assma Azeroual, Karim Afdel, Mohamed El Hajji, Hassan Douzi

Abstract:

Key frame extraction methods select the most representative frames of a video, which can be used in different areas of video processing such as video retrieval, video summary, and video indexing. In this paper we present a novel approach for extracting key frames from video sequences. The frame is characterized uniquely by his contours which are represented by the dominant blocks. These dominant blocks are located on the contours and its near textures. When the video frames have a noticeable changement, its dominant blocks changed, then we can extracte a key frame. The dominant blocks of every frame is computed, and then feature vectors are extracted from the dominant blocks image of each frame and arranged in a feature matrix. Singular Value Decomposition is used to calculate sliding windows ranks of those matrices. Finally the computed ranks are traced and then we are able to extract key frames of a video. Experimental results show that the proposed approach is robust against a large range of digital effects used during shot transition.

Keywords: FSDWT, key frame extraction, shot detection, singular value decomposition

Procedia PDF Downloads 397
33261 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video

Authors: Nidhal K. Azawi, John M. Gauch

Abstract:

Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.

Keywords: colonoscopy classification, feature extraction, image alignment, machine learning

Procedia PDF Downloads 253
33260 Dry Matter, Moisture, Ash and Crude Fibre Content in Distinct Segments of ‘Durian Kampung’ Husk

Authors: Norhanim Nordin, Rosnah Shamsudin, Azrina Azlan, Mohammad Effendy Ya’acob

Abstract:

An environmental friendly approach for disposal of voluminous durian husk waste could be implemented by substituting them into various valuable commodities, such as healthcare and biofuel products. Thus, the study of composition value in each segment of durian husk was very crucial to determine the suitable proportions of nutrients that need to be added and mixed in the product. A total of 12 ‘Durian Kampung’ fruits from Sg Ruan, Pahang were selected and each fruit husk was divided into four segments and labelled as P-L (thin neck area of white inner husk), P-B (thick bottom area of white inner husk), H (green and thorny outer husk) and W (whole combination of P-B and H). Four experiments have been carried out to determine the dry matter, moisture, ash and crude fibre content. The results show that the H segment has the highest dry matter content (30.47%), while the P-B segment has the highest percentage in moisture (81.83%) and ash (6.95%) content. It was calculated that the ash content of the P-B segment has a higher rate of moisture level which causes the ash content to increase about 2.89% from the P-L segment. These data have proven that each segment of durian husk has a significant difference in terms of composition value, which might be useful information to fully utilize every part of the durian husk in the future.

Keywords: durian husk, crude fibre content, dry matter content, moisture content

Procedia PDF Downloads 300
33259 The Research of Culture Heritage Tourism Loyalty in Taiwan

Authors: Chih-Wen Wu

Abstract:

This study examines the antecedents of heritage tourism loyalty and its relation to destination image, consumer travel experience, and destination satisfaction in the tourism context. In this respect, a number of important questions concerning how destination image, consumer travel experience, and destination satisfaction impact destination loyalty are raised. This study attempts to identify three key antecedents of loyalty in the heritage context. The author empirically tests predicted relationships by using personal interview data from 475 foreign tourists. The conceptual model investigated the relevant relationships among the constructs by using confirmatory factor analysis(CFA) and structural equation modeling (SEM) approach. Findings from the research sample support the argument that destination image, consumer travel experience, destination satisfaction are the key determinants of destination loyalty. Destination image and consumer travel experience influence destination satisfaction. The author also discusses theoretical and managerial implications of research findings for marketing the heritage globally.

Keywords: heritage, destination loyalty, destination image, consumer travel experience, destination satisfaction, tourism

Procedia PDF Downloads 444
33258 Development of Intelligent Construction Management System Using Web-Camera Image and 3D Object Image

Authors: Hyeon-Seung Kim, Bit-Na Cho, Tae-Woon Jeong, Soo-Young Yoon, Leen-Seok Kang

Abstract:

Recently, a construction project has been large in the size and complicated in the site work. The web-cameras are used to manage the construction site of such a large construction project. They can be used for monitoring the construction schedule as compared to the actual work image of the planned work schedule. Specially, because the 4D CAD system that the construction appearance is continually simulated in a 3D CAD object by work schedule is widely applied to the construction project, the comparison system between the real image of actual work appearance by web-camera and the simulated image of planned work appearance by 3D CAD object can be an intelligent construction schedule management system (ICON). The delayed activities comparing with the planned schedule can be simulated by red color in the ICON as a virtual reality object. This study developed the ICON and it was verified in a real bridge construction project in Korea. To verify the developed system, a web-camera was installed and operated in a case project for a month. Because the angle and zooming of the web-camera can be operated by Internet, a project manager can easily monitor and assume the corrective action.

Keywords: 4D CAD, web-camera, ICON (intelligent construction schedule management system), 3D object image

Procedia PDF Downloads 507
33257 Normalized P-Laplacian: From Stochastic Game to Image Processing

Authors: Abderrahim Elmoataz

Abstract:

More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing.

Keywords: normalized p-laplacian, image processing, stochastic game, inverse problems

Procedia PDF Downloads 512
33256 Effects of Initial Moisture Content on the Physical and Mechanical Properties of Norway Spruce Briquettes

Authors: Miloš Matúš, Peter Križan, Ľubomír Šooš, Juraj Beniak

Abstract:

The moisture content of densified biomass is a limiting parameter influencing the quality of this solid biofuel. It influences its calorific value, density, mechanical strength and dimensional stability as well as affecting its production process. This paper deals with experimental research into the effect of moisture content of the densified material on the final quality of biofuel in the form of logs (briquettes or pellets). Experiments based on the single-axis densification of the spruce sawdust were carried out with a hydraulic piston press (piston and die), where the densified logs were produced at room temperature. The effect of moisture content on the qualitative properties of the logs, including density, change of moisture, expansion and physical changes, and compressive and impact resistance were studied. The results show the moisture ranges required for producing good-quality logs. The experiments were evaluated and the moisture content of the tested material was optimized to achieve the optimum value for the best quality of the solid biofuel. The dense logs also have high-energy content per unit volume. The research results could be used to develop and optimize industrial technologies and machinery for biomass densification to achieve high quality solid biofuel.

Keywords: biomass, briquettes, densification, fuel quality, moisture content, density

Procedia PDF Downloads 428
33255 Review of Ultrasound Image Processing Techniques for Speckle Noise Reduction

Authors: Kwazikwenkosi Sikhakhane, Suvendi Rimer, Mpho Gololo, Khmaies Oahada, Adnan Abu-Mahfouz

Abstract:

Medical ultrasound imaging is a crucial diagnostic technique due to its affordability and non-invasiveness compared to other imaging methods. However, the presence of speckle noise, which is a form of multiplicative noise, poses a significant obstacle to obtaining clear and accurate images in ultrasound imaging. Speckle noise reduces image quality by decreasing contrast, resolution, and signal-to-noise ratio (SNR). This makes it difficult for medical professionals to interpret ultrasound images accurately. To address this issue, various techniques have been developed to reduce speckle noise in ultrasound images, which improves image quality. This paper aims to review some of these techniques, highlighting the advantages and disadvantages of each algorithm and identifying the scenarios in which they work most effectively.

Keywords: image processing, noise, speckle, ultrasound

Procedia PDF Downloads 110
33254 Direct Integration of 3D Ultrasound Scans with Patient Educational Mobile Application

Authors: Zafar Iqbal, Eugene Chan, Fareed Ahmed, Mohamed Jama, Avez Rizvi

Abstract:

Advancements in Ultrasound Technology have enabled machines to capture 3D and 4D images with intricate features of the growing fetus. Sonographers can now capture clear 3D images and 4D videos of the fetus, especially of the face. Fetal faces are often seen on the ultrasound scan of the third trimester where anatomical features become more defined. Parents often want 3D/4D images and videos of their ultrasounds, and particularly image that capture the child’s face. Sidra Medicine developed a patient education mobile app called 10 Moons to improve care and provide useful information during the length of their pregnancy. In addition to general information, we built the ability to send ultrasound images directly from the modality to the mobile application, allowing expectant mothers to easily store and share images of their baby. 10 Moons represent the length of the pregnancy on a lunar calendar, which has both cultural and religious significance in the Middle East. During the third trimester scan, sonographers can capture 3D pictures of the fetus. Ultrasound machines are connected with a local 10 Moons Server with a Digital Imaging and Communications in Medicine (DICOM) application running on it. Sonographers are able to send images directly to the DICOM server by a preprogrammed button on the ultrasound modality. Mothers can also request which pictures they would like to be available on the app. An internally built DICOM application receives the image and saves the patient information from DICOM header (for verification purpose). The application also anonymizes the image by removing all the DICOM header information and subsequently converts it into a lossless JPEG. Finally, and the application passes the image to the mobile application server. On the 10 Moons mobile app – patients enter their Medical Record Number (MRN) and Date of Birth (DOB) to receive a One Time Password (OTP) for security reasons to view the images. Patients can also share the images anonymized images with friends and family. Furthermore, patients can also request 3D printed mementos of their child through 10 Moons. 10 Moons is unique patient education and information application where expected mothers can also see 3D ultrasound images of their children. Sidra Medicine staff has the added benefit of a full content management administrative backend where updates to content can be made. The app is available on secure infrastructure with both local and public interfaces. The application is also available in both English and Arabic languages to facilitate most of the patients in the region. Innovation is at the heart of modern healthcare management. With Innovation being one of Sidra Medicine’s core values, our 10 Moons application provides expectant mothers with unique educational content as well as the ability to store and share images of their child and purchase 3D printed mementos.

Keywords: patient educational mobile application, ultrasound images, digital imaging and communications in medicine (DICOM), imaging informatics

Procedia PDF Downloads 140
33253 Digital Material Characterization Using the Quantum Fourier Transform

Authors: Felix Givois, Nicolas R. Gauger, Matthias Kabel

Abstract:

The efficient digital material characterization is of great interest to many fields of application. It consists of the following three steps. First, a 3D reconstruction of 2D scans must be performed. Then, the resulting gray-value image of the material sample is enhanced by image processing methods. Finally, partial differential equations (PDE) are solved on the segmented image, and by averaging the resulting solutions fields, effective properties like stiffness or conductivity can be computed. Due to the high resolution of current CT images, the latter is typically performed with matrix-free solvers. Among them, a solver that uses the explicit formula of the Green-Eshelby operator in Fourier space has been proposed by Moulinec and Suquet. Its algorithmic, most complex part is the Fast Fourier Transformation (FFT). In our talk, we will discuss the potential quantum advantage that can be obtained by replacing the FFT with the Quantum Fourier Transformation (QFT). We will especially show that the data transfer for noisy intermediate-scale quantum (NISQ) devices can be improved by using appropriate boundary conditions for the PDE, which also allows using semi-classical versions of the QFT. In the end, we will compare the results of the QFT-based algorithm for simple geometries with the results of the FFT-based homogenization method.

Keywords: most likelihood amplitude estimation (MLQAE), numerical homogenization, quantum Fourier transformation (QFT), NISQ devises

Procedia PDF Downloads 78
33252 Secure Network Coding against Content Pollution Attacks in Named Data Network

Authors: Tao Feng, Xiaomei Ma, Xian Guo, Jing Wang

Abstract:

Named Data Network (NDN) is one of the future Internet architecture, all nodes (i.e., hosts, routers) are allowed to have a local cache, used to satisfy incoming requests for content. However, depending on caching allows an adversary to perform attacks that are very effective and relatively easy to implement, such as content pollution attack. In this paper, we use a method of secure network coding based on homomorphic signature system to solve this problem. Firstly ,we use a dynamic public key technique, our scheme for each generation authentication without updating the initial secret key used. Secondly, employing the homomorphism of hash function, intermediate node and destination node verify the signature of the received message. In addition, when the network topology of NDN is simple and fixed, the code coefficients in our scheme are generated in a pseudorandom number generator in each node, so the distribution of the coefficients is also avoided. In short, our scheme not only can efficiently prevent against Intra/Inter-GPAs, but also can against the content poisoning attack in NDN.

Keywords: named data networking, content polloution attack, network coding signature, internet architecture

Procedia PDF Downloads 337
33251 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: deep-learning, image classification, image identification, industrial engineering.

Procedia PDF Downloads 160
33250 Nonuniformity Correction Technique in Infrared Video Using Feedback Recursive Least Square Algorithm

Authors: Flavio O. Torres, Maria J. Castilla, Rodrigo A. Augsburger, Pedro I. Cachana, Katherine S. Reyes

Abstract:

In this paper, we present a scene-based nonuniformity correction method using a modified recursive least square algorithm with a feedback system on the updates. The feedback is designed to remove impulsive noise contamination images produced by a recursive least square algorithm by measuring the output of the proposed algorithm. The key advantage of the method is based on its capacity to estimate detectors parameters and then compensate for impulsive noise contamination image in a frame by frame basics. We define the algorithm and present several experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published recursive least square-based methods. We show that the proposed method removes impulsive noise contamination image.

Keywords: infrared focal plane arrays, infrared imaging, least mean square, nonuniformity correction

Procedia PDF Downloads 143
33249 Kernel-Based Double Nearest Proportion Feature Extraction for Hyperspectral Image Classification

Authors: Hung-Sheng Lin, Cheng-Hsuan Li

Abstract:

Over the past few years, kernel-based algorithms have been widely used to extend some linear feature extraction methods such as principal component analysis (PCA), linear discriminate analysis (LDA), and nonparametric weighted feature extraction (NWFE) to their nonlinear versions, kernel principal component analysis (KPCA), generalized discriminate analysis (GDA), and kernel nonparametric weighted feature extraction (KNWFE), respectively. These nonlinear feature extraction methods can detect nonlinear directions with the largest nonlinear variance or the largest class separability based on the given kernel function. Moreover, they have been applied to improve the target detection or the image classification of hyperspectral images. The double nearest proportion feature extraction (DNP) can effectively reduce the overlap effect and have good performance in hyperspectral image classification. The DNP structure is an extension of the k-nearest neighbor technique. For each sample, there are two corresponding nearest proportions of samples, the self-class nearest proportion and the other-class nearest proportion. The term “nearest proportion” used here consider both the local information and other more global information. With these settings, the effect of the overlap between the sample distributions can be reduced. Usually, the maximum likelihood estimator and the related unbiased estimator are not ideal estimators in high dimensional inference problems, particularly in small data-size situation. Hence, an improved estimator by shrinkage estimation (regularization) is proposed. Based on the DNP structure, LDA is included as a special case. In this paper, the kernel method is applied to extend DNP to kernel-based DNP (KDNP). In addition to the advantages of DNP, KDNP surpasses DNP in the experimental results. According to the experiments on the real hyperspectral image data sets, the classification performance of KDNP is better than that of PCA, LDA, NWFE, and their kernel versions, KPCA, GDA, and KNWFE.

Keywords: feature extraction, kernel method, double nearest proportion feature extraction, kernel double nearest feature extraction

Procedia PDF Downloads 344
33248 The Impact of Upward Social Media Comparisons on Body Image and the Role of Physical Appearance Perfectionism and Cognitive Coping

Authors: Lauren Currell, Gemma Hurst

Abstract:

Introduction: The present study experimentally investigated the impact of attractive Instagram images on female’s body image. It also examined whether physical appearance perfectionism and cognitive coping predicted body image following upward comparisons to idealised bodies on Instagram. Methods: One-hundred and fifty-eight females (mean age 24.35 years) were randomly assigned to an experimental (where they compared their bodies to those of Instagram models) or control condition (where they critiqued landscape painting). All participants completed measures on physical appearance perfectionism, cognitive coping, and pre- and post-measures of body image. Results: Comparing one’s body to idealised bodies on Instagram resulted in increased appearance and weight dissatisfaction and decreased confidence, compared to the control condition. Physical appearance perfectionism and cognitive coping both predicted body image outcomes for the experimental condition. Discussion: Clinical implications, such as the prevention and treatment of body dissatisfaction, are discussed. Strengths and limitations of the current study are also noted, and suggestions for future research are provided.

Keywords: perfectionism, cognitive coping, body image, social media

Procedia PDF Downloads 94
33247 Real-Time Image Encryption Using a 3D Discrete Dual Chaotic Cipher

Authors: M. F. Haroun, T. A. Gulliver

Abstract:

In this paper, an encryption algorithm is proposed for real-time image encryption. The scheme employs a dual chaotic generator based on a three dimensional (3D) discrete Lorenz attractor. Encryption is achieved using non-autonomous modulation where the data is injected into the dynamics of the master chaotic generator. The second generator is used to permute the dynamics of the master generator using the same approach. Since the data stream can be regarded as a random source, the resulting permutations of the generator dynamics greatly increase the security of the transmitted signal. In addition, a technique is proposed to mitigate the error propagation due to the finite precision arithmetic of digital hardware. In particular, truncation and rounding errors are eliminated by employing an integer representation of the data which can easily be implemented. The simple hardware architecture of the algorithm makes it suitable for secure real-time applications.

Keywords: chaotic systems, image encryption, non-autonomous modulation, FPGA

Procedia PDF Downloads 506
33246 Effects of Destination Image, Perceived Value, Tourist Satisfaction and Service Quality on Destination Loyalty

Authors: Mahadzirah Mohamad, Nur Izzati Ab Ghani

Abstract:

Worldwide, tourism sustained growth and remained to be one of the fast-growing sectors. Malaysia tourism industry experienced an unstable and declining pattern of international tourist arrival’s growth rate. The situation suggested that the industry was competitive and denoted the need to study factors that influence tourist loyalty. The primary purpose of this study was to develop a model that examined how destination image, perceived value, service quality and tourist satisfaction affect destination loyalty. The study was conducted at the Kuala Lumpur International Airport and Kota Kinabalu International Airport. The respondents were international tourists from United Kingdom and Australia and they were selected using simple random sampling method. A total of 337 respondents were subjected to data analysis using structural equation modelling. The study uncovered that perceived value and destination image was highly correlated and the model suggested that these constructs should be treated as one construct. The construct was labelled as overall destination image. Overall image had significant direct effect on service quality, satisfaction and loyalty. Service quality had a significant indirect effect on loyalty through satisfaction as a moderating variable. However, satisfaction had no mediating effect on the relationship between overall destination image and loyalty. The study suggested that more efforts should be focused on portraying the image of experiencing joy with many interesting natural scenic places to see whilst on a holiday to Malaysia. In addition, the destination management office should promote tourist visiting to Malaysia would enjoy quality service related to accommodation, information facilities, health, and shopping. Tourist satisfaction empirically proved to be an important construct that influenced destination loyalty. This study contributed to the extended knowledge that postulated overall image of a destination was measured by perceived value and destination image.

Keywords: destination image, destination loyalty, structural equation modelling, tourist satisfaction

Procedia PDF Downloads 398