Search results for: trigonometric fourier approximation
1411 Construction of Graph Signal Modulations via Graph Fourier Transform and Its Applications
Authors: Xianwei Zheng, Yuan Yan Tang
Abstract:
Classical window Fourier transform has been widely used in signal processing, image processing, machine learning and pattern recognition. The related Gabor transform is powerful enough to capture the texture information of any given dataset. Recently, in the emerging field of graph signal processing, researchers devoting themselves to develop a graph signal processing theory to handle the so-called graph signals. Among the new developing theory, windowed graph Fourier transform has been constructed to establish a time-frequency analysis framework of graph signals. The windowed graph Fourier transform is defined by using the translation and modulation operators of graph signals, following the similar calculations in classical windowed Fourier transform. Specifically, the translation and modulation operators of graph signals are defined by using the Laplacian eigenvectors as follows. For a given graph signal, its translation is defined by a similar manner as its definition in classical signal processing. Specifically, the translation operator can be defined by using the Fourier atoms; the graph signal translation is defined similarly by using the Laplacian eigenvectors. The modulation of the graph can also be established by using the Laplacian eigenvectors. The windowed graph Fourier transform based on these two operators has been applied to obtain time-frequency representations of graph signals. Fundamentally, the modulation operator is defined similarly to the classical modulation by multiplying a graph signal with the entries in each Fourier atom. However, a single Laplacian eigenvector entry cannot play a similar role as the Fourier atom. This definition ignored the relationship between the translation and modulation operators. In this paper, a new definition of the modulation operator is proposed and thus another time-frequency framework for graph signal is constructed. Specifically, the relationship between the translation and modulation operations can be established by the Fourier transform. Specifically, for any signal, the Fourier transform of its translation is the modulation of its Fourier transform. Thus, the modulation of any signal can be defined as the inverse Fourier transform of the translation of its Fourier transform. Therefore, similarly, the graph modulation of any graph signal can be defined as the inverse graph Fourier transform of the translation of its graph Fourier. The novel definition of the graph modulation operator established a relationship of the translation and modulation operations. The new modulation operation and the original translation operation are applied to construct a new framework of graph signal time-frequency analysis. Furthermore, a windowed graph Fourier frame theory is developed. Necessary and sufficient conditions for constructing windowed graph Fourier frames, tight frames and dual frames are presented in this paper. The novel graph signal time-frequency analysis framework is applied to signals defined on well-known graphs, e.g. Minnesota road graph and random graphs. Experimental results show that the novel framework captures new features of graph signals.Keywords: graph signals, windowed graph Fourier transform, windowed graph Fourier frames, vertex frequency analysis
Procedia PDF Downloads 3411410 On Modeling Data Sets by Means of a Modified Saddlepoint Approximation
Authors: Serge B. Provost, Yishan Zhang
Abstract:
A moment-based adjustment to the saddlepoint approximation is introduced in the context of density estimation. First applied to univariate distributions, this methodology is extended to the bivariate case. It then entails estimating the density function associated with each marginal distribution by means of the saddlepoint approximation and applying a bivariate adjustment to the product of the resulting density estimates. The connection to the distribution of empirical copulas will be pointed out. As well, a novel approach is proposed for estimating the support of distribution. As these results solely rely on sample moments and empirical cumulant-generating functions, they are particularly well suited for modeling massive data sets. Several illustrative applications will be presented.Keywords: empirical cumulant-generating function, endpoints identification, saddlepoint approximation, sample moments, density estimation
Procedia PDF Downloads 1621409 Robust Numerical Scheme for Pricing American Options under Jump Diffusion Models
Authors: Salah Alrabeei, Mohammad Yousuf
Abstract:
The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. However, most of the option pricing models have no analytical solution. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, we solve the American option under jump diffusion models by using efficient time-dependent numerical methods. several techniques are integrated to reduced the overcome the computational complexity. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). Partial fraction decomposition technique is applied to rational approximation schemes to overcome the complexity of inverting polynomial of matrices. The proposed method is easy to implement on serial or parallel versions. Numerical results are presented to prove the accuracy and efficiency of the proposed method.Keywords: integral differential equations, jump–diffusion model, American options, rational approximation
Procedia PDF Downloads 1201408 Orthogonal Basis Extreme Learning Algorithm and Function Approximation
Abstract:
A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.Keywords: neural network, orthogonal basis extreme learning, function approximation
Procedia PDF Downloads 5341407 Structural and Electronic Properties of the Rock-salt BaxSr1−xS Alloys
Authors: B. Bahloul, K. Babesse, A. Dkhira, Y. Bahloul, L. Amirouche
Abstract:
Structural and electronic properties of the rock-salt BaxSr1−xS are calculated using the first-principles calculations based on the density functional theory (DFT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA). The calculated lattice parameters at equilibrium volume for x=0 and x=1 are in good agreement with the literature data. The BaxSr1−xS alloys are found to be an indirect band gap semiconductor. Moreoever, for the composition (x) ranging between [0-1], we think that our results are well discussed and well predicted.Keywords: semiconductor, Ab initio calculations, rocksalt, band structure, BaxSr1−xS
Procedia PDF Downloads 3951406 An Optimized RDP Algorithm for Curve Approximation
Authors: Jean-Pierre Lomaliza, Kwang-Seok Moon, Hanhoon Park
Abstract:
It is well-known that Ramer Douglas Peucker (RDP) algorithm greatly depends on the method of choosing starting points. Therefore, this paper focuses on finding such starting points that will optimize the results of RDP algorithm. Specifically, this paper proposes a curve approximation algorithm that finds flat points, called essential points, of an input curve, divides the curve into corner-like sub-curves using the essential points, and applies the RDP algorithm to the sub-curves. The number of essential points play a role on optimizing the approximation results by balancing the degree of shape information loss and the amount of data reduction. Through experiments with curves of various types and complexities of shape, we compared the performance of the proposed algorithm with three other methods, i.e., the RDP algorithm itself and its variants. As a result, the proposed algorithm outperformed the others in term of maintaining the original shapes of the input curve, which is important in various applications like pattern recognition.Keywords: curve approximation, essential point, RDP algorithm
Procedia PDF Downloads 5351405 Polynomially Adjusted Bivariate Density Estimates Based on the Saddlepoint Approximation
Authors: S. B. Provost, Susan Sheng
Abstract:
An alternative bivariate density estimation methodology is introduced in this presentation. The proposed approach involves estimating the density function associated with the marginal distribution of each of the two variables by means of the saddlepoint approximation technique and applying a bivariate polynomial adjustment to the product of these density estimates. Since the saddlepoint approximation is utilized in the context of density estimation, such estimates are determined from empirical cumulant-generating functions. In the univariate case, the saddlepoint density estimate is itself adjusted by a polynomial. Given a set of observations, the coefficients of the polynomial adjustments are obtained from the sample moments. Several illustrative applications of the proposed methodology shall be presented. Since this approach relies essentially on a determinate number of sample moments, it is particularly well suited for modeling massive data sets.Keywords: density estimation, empirical cumulant-generating function, moments, saddlepoint approximation
Procedia PDF Downloads 2801404 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation
Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski
Abstract:
Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.Keywords: bootstrap, edgeworth approximation, IID, quantile
Procedia PDF Downloads 1591403 Particle Swarm Optimization and Quantum Particle Swarm Optimization to Multidimensional Function Approximation
Authors: Diogo Silva, Fadul Rodor, Carlos Moraes
Abstract:
This work compares the results of multidimensional function approximation using two algorithms: the classical Particle Swarm Optimization (PSO) and the Quantum Particle Swarm Optimization (QPSO). These algorithms were both tested on three functions - The Rosenbrock, the Rastrigin, and the sphere functions - with different characteristics by increasing their number of dimensions. As a result, this study shows that the higher the function space, i.e. the larger the function dimension, the more evident the advantages of using the QPSO method compared to the PSO method in terms of performance and number of necessary iterations to reach the stop criterion.Keywords: PSO, QPSO, function approximation, AI, optimization, multidimensional functions
Procedia PDF Downloads 5891402 Estimation of Fourier Coefficients of Flux Density for Surface Mounted Permanent Magnet (SMPM) Generators by Direct Search Optimization
Authors: Ramakrishna Rao Mamidi
Abstract:
It is essential for Surface Mounted Permanent Magnet (SMPM) generators to determine the performance prediction and analyze the magnet’s air gap flux density wave shape. The flux density wave shape is neither a pure sine wave or square wave nor a combination. This is due to the variation of air gap reluctance between the stator and permanent magnets. The stator slot openings and the number of slots make the wave shape highly complicated. To reduce the complexity of analysis, approximations are made to the wave shape using Fourier analysis. In contrast to the traditional integration method, the Fourier coefficients, an and bn, are obtained by direct search method optimization. The wave shape with optimized coefficients gives a wave shape close to the desired wave shape. Harmonics amplitudes are worked out and compared with initial values. It can be concluded that the direct search method can be used for estimating Fourier coefficients for irregular wave shapes.Keywords: direct search, flux plot, fourier analysis, permanent magnets
Procedia PDF Downloads 2161401 The Modelling of Real Time Series Data
Authors: Valeria Bondarenko
Abstract:
We proposed algorithms for: estimation of parameters fBm (volatility and Hurst exponent) and for the approximation of random time series by functional of fBm. We proved the consistency of the estimators, which constitute the above algorithms, and proved the optimal forecast of approximated time series. The adequacy of estimation algorithms, approximation, and forecasting is proved by numerical experiment. During the process of creating software, the system has been created, which is displayed by the hierarchical structure. The comparative analysis of proposed algorithms with the other methods gives evidence of the advantage of approximation method. The results can be used to develop methods for the analysis and modeling of time series describing the economic, physical, biological and other processes.Keywords: mathematical model, random process, Wiener process, fractional Brownian motion
Procedia PDF Downloads 3581400 Localising Gauss’s Law and the Electric Charge Induction on a Conducting Sphere
Authors: Sirapat Lookrak, Anol Paisal
Abstract:
Space debris has numerous manifestations, including ferro-metalize and non-ferrous. The electric field will induce negative charges to split from positive charges inside the space debris. In this research, we focus only on conducting materials. The assumption is that the electric charge density of a conducting surface is proportional to the electric field on that surface due to Gauss's Law. We are trying to find the induced charge density from an external electric field perpendicular to a conducting spherical surface. An object is a sphere on which the external electric field is not uniform. The electric field is, therefore, considered locally. The localised spherical surface is a tangent plane, so the Gaussian surface is a very small cylinder, and every point on a spherical surface has its own cylinder. The electric field from a circular electrode has been calculated in near-field and far-field approximation and shown Explanation Touchless maneuvering space debris orbit properties. The electric charge density calculation from a near-field and far-field approximation is done.Keywords: near-field approximation, far-field approximation, localized Gauss’s law, electric charge density
Procedia PDF Downloads 1321399 Approximation by Generalized Lupaş-Durrmeyer Operators with Two Parameter α and β
Authors: Preeti Sharma
Abstract:
This paper deals with the Stancu type generalization of Lupaş-Durrmeyer operators. We establish some direct results in the polynomial weighted space of continuous functions defined on the interval [0, 1]. Also, Voronovskaja type theorem is studied.Keywords: Lupas-Durrmeyer operators, polya distribution, weighted approximation, rate of convergence, modulus of continuity
Procedia PDF Downloads 3461398 Ab Initio Calculation of Fundamental Properties of CaxMg1-xA (a = Se and Te) Alloys in the Rock-Salt Structure
Authors: M. A. Ghebouli, H. Choutri, B. Ghebouli , M. Fatmi, L. Louail
Abstract:
We employed the density-functional perturbation theory (DFPT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA) to study the effect of composition on the structure, stability, energy gaps, electron effective mass, the dynamic effective charge, optical and acoustical phonon frequencies and static and high dielectric constants of the rock-salt CaxMg1-xSe and CaxMg1-xTe alloys. The computed equilibrium lattice constant and bulk modulus show an important deviation from the linear concentration. From the Voigt-Reuss-Hill approximation, CaxMg1-xSe and CaxMg1-xTe present lower stiffness and lateral expansion. For Ca content ranging between 0.25-0.75, the elastic constants, energy gaps, electron effective mass and dynamic effective charge are predictions. The elastic constants and computed phonon dispersion curves indicate that these alloys are mechanically stable.Keywords: CaxMg1-xSe, CaxMg1-xTe, band structure, phonon
Procedia PDF Downloads 5401397 Active Contours for Image Segmentation Based on Complex Domain Approach
Authors: Sajid Hussain
Abstract:
The complex domain approach for image segmentation based on active contour has been designed, which deforms step by step to partition an image into numerous expedient regions. A novel region-based trigonometric complex pressure force function is proposed, which propagates around the region of interest using image forces. The signed trigonometric force function controls the propagation of the active contour and the active contour stops on the exact edges of the object accurately. The proposed model makes the level set function binary and uses Gaussian smoothing kernel to adjust and escape the re-initialization procedure. The working principle of the proposed model is as follows: The real image data is transformed into complex data by iota (i) times of image data and the average iota (i) times of horizontal and vertical components of the gradient of image data is inserted in the proposed model to catch complex gradient of the image data. A simple finite difference mathematical technique has been used to implement the proposed model. The efficiency and robustness of the proposed model have been verified and compared with other state-of-the-art models.Keywords: image segmentation, active contour, level set, Mumford and Shah model
Procedia PDF Downloads 1141396 Chebyshev Wavelets and Applications
Authors: Emanuel Guariglia
Abstract:
In this paper we deal with Chebyshev wavelets. We analyze their properties computing their Fourier transform. Moreover, we discuss the differential properties of Chebyshev wavelets due the connection coefficients. The differential properties of Chebyshev wavelets, expressed by the connection coefficients (also called refinable integrals), are given by finite series in terms of the Kronecker delta. Moreover, we treat the p-order derivative of Chebyshev wavelets and compute its Fourier transform. Finally, we expand the mother wavelet in Taylor series with an application both in fractional calculus and fractal geometry.Keywords: Chebyshev wavelets, Fourier transform, connection coefficients, Taylor series, local fractional derivative, Cantor set
Procedia PDF Downloads 1231395 Digital Material Characterization Using the Quantum Fourier Transform
Authors: Felix Givois, Nicolas R. Gauger, Matthias Kabel
Abstract:
The efficient digital material characterization is of great interest to many fields of application. It consists of the following three steps. First, a 3D reconstruction of 2D scans must be performed. Then, the resulting gray-value image of the material sample is enhanced by image processing methods. Finally, partial differential equations (PDE) are solved on the segmented image, and by averaging the resulting solutions fields, effective properties like stiffness or conductivity can be computed. Due to the high resolution of current CT images, the latter is typically performed with matrix-free solvers. Among them, a solver that uses the explicit formula of the Green-Eshelby operator in Fourier space has been proposed by Moulinec and Suquet. Its algorithmic, most complex part is the Fast Fourier Transformation (FFT). In our talk, we will discuss the potential quantum advantage that can be obtained by replacing the FFT with the Quantum Fourier Transformation (QFT). We will especially show that the data transfer for noisy intermediate-scale quantum (NISQ) devices can be improved by using appropriate boundary conditions for the PDE, which also allows using semi-classical versions of the QFT. In the end, we will compare the results of the QFT-based algorithm for simple geometries with the results of the FFT-based homogenization method.Keywords: most likelihood amplitude estimation (MLQAE), numerical homogenization, quantum Fourier transformation (QFT), NISQ devises
Procedia PDF Downloads 781394 Bayesian Analysis of Topp-Leone Generalized Exponential Distribution
Authors: Najrullah Khan, Athar Ali Khan
Abstract:
The Topp-Leone distribution was introduced by Topp- Leone in 1955. In this paper, an attempt has been made to fit Topp-Leone Generalized exponential (TPGE) distribution. A real survival data set is used for illustrations. Implementation is done using R and JAGS and appropriate illustrations are made. R and JAGS codes have been provided to implement censoring mechanism using both optimization and simulation tools. The main aim of this paper is to describe and illustrate the Bayesian modelling approach to the analysis of survival data. Emphasis is placed on the modeling of data and the interpretation of the results. Crucial to this is an understanding of the nature of the incomplete or 'censored' data encountered. Analytic approximation and simulation tools are covered here, but most of the emphasis is on Markov chain based Monte Carlo method including independent Metropolis algorithm, which is currently the most popular technique. For analytic approximation, among various optimization algorithms and trust region method is found to be the best. In this paper, TPGE model is also used to analyze the lifetime data in Bayesian paradigm. Results are evaluated from the above mentioned real survival data set. The analytic approximation and simulation methods are implemented using some software packages. It is clear from our findings that simulation tools provide better results as compared to those obtained by asymptotic approximation.Keywords: Bayesian Inference, JAGS, Laplace Approximation, LaplacesDemon, posterior, R Software, simulation
Procedia PDF Downloads 5351393 Approximation Algorithms for Peak-Demand Reduction
Authors: Zaid Jamal Saeed Almahmoud
Abstract:
Smart grid is emerging as the future power grid, with smart techniques to optimize power consumption and electricity generation. Minimizing peak power consumption under a fixed delay requirement is a significant problem in the smart grid.For this problem, all appliances must be scheduled within a given finite time duration. We consider the problem of minimizing the peak demand under appliances constraints by scheduling power jobs with uniform release dates and deadlines. As the problem is known to be NP-hard, we analyze the performance of a version of the natural greedy heuristic for solving this problem. Our theoretical analysis and experimental results show that the proposed heuristic outperforms existing methods by providing a better approximation to the optimal solution.Keywords: peak demand scheduling, approximation algorithms, smart grid, heuristics
Procedia PDF Downloads 941392 Identification of Wiener Model Using Iterative Schemes
Authors: Vikram Saini, Lillie Dewan
Abstract:
This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates.Keywords: hard non-linearity, least square, parameter estimation, stochastic approximation gradient, Wiener model
Procedia PDF Downloads 4051391 A Low-Area Fully-Reconfigurable Hardware Design of Fast Fourier Transform System for 3GPP-LTE Standard
Authors: Xin-Yu Shih, Yue-Qu Liu, Hong-Ru Chou
Abstract:
This paper presents a low-area and fully-reconfigurable Fast Fourier Transform (FFT) hardware design for 3GPP-LTE communication standard. It can fully support 32 different FFT sizes, up to 2048 FFT points. Besides, a special processing element is developed for making reconfigurable computing characteristics possible, while first-in first-out (FIFO) scheduling scheme design technique is proposed for hardware-friendly FIFO resource arranging. In a synthesis chip realization via TSMC 40 nm CMOS technology, the hardware circuit only occupies core area of 0.2325 mm2 and dissipates 233.5 mW at maximal operating frequency of 250 MHz.Keywords: reconfigurable, fast Fourier transform (FFT), single-path delay feedback (SDF), 3GPP-LTE
Procedia PDF Downloads 2781390 Three-Dimensional Generalized Thermoelasticity with Variable Thermal Conductivity
Authors: Hamdy M. Youssef, Mowffaq Oreijah, Hunaydi S. Alsharif
Abstract:
In this paper, a three-dimensional model of the generalized thermoelasticity with one relaxation time and variable thermal conductivity has been constructed. The resulting non-dimensional governing equations together with the Laplace and double Fourier transforms techniques have been applied to a three-dimensional half-space subjected to thermal loading with rectangular pulse and traction free in the directions of the principle co-ordinates. The inverses of double Fourier transforms, and Laplace transforms have been obtained numerically. Numerical results for the temperature increment, the invariant stress, the invariant strain, and the displacement are represented graphically. The variability of the thermal conductivity has significant effects on the thermal and the mechanical waves.Keywords: thermoelasticity, thermal conductivity, Laplace transforms, Fourier transforms
Procedia PDF Downloads 2281389 Bivariate Generalization of q-α-Bernstein Polynomials
Authors: Tarul Garg, P. N. Agrawal
Abstract:
We propose to define the q-analogue of the α-Bernstein Kantorovich operators and then introduce the q-bivariate generalization of these operators to study the approximation of functions of two variables. We obtain the rate of convergence of these bivariate operators by means of the total modulus of continuity, partial modulus of continuity and the Peetre’s K-functional for continuous functions. Further, in order to study the approximation of functions of two variables in a space bigger than the space of continuous functions, i.e. Bögel space; the GBS (Generalized Boolean Sum) of the q-bivariate operators is considered and degree of approximation is discussed for the Bögel continuous and Bögel differentiable functions with the aid of the Lipschitz class and the mixed modulus of smoothness.Keywords: Bögel continuous, Bögel differentiable, generalized Boolean sum, K-functional, mixed modulus of smoothness
Procedia PDF Downloads 3791388 Random Walks and Option Pricing for European and American Options
Authors: Guillaume Leduc
Abstract:
In this paper, we describe a broad setting under which the error of the approximation can be quantified, controlled, and for which convergence occurs at a speed of n⁻¹ for European and American options. We describe how knowledge of the error allows for arbitrarily fast acceleration of the convergence.Keywords: random walk approximation, European and American options, rate of convergence, option pricing
Procedia PDF Downloads 4631387 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach
Authors: Sarisa Pinkham, Kanyarat Bussaban
Abstract:
The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.Keywords: daily rainfall, image processing, approximation, pixel value data
Procedia PDF Downloads 3871386 Function Approximation with Radial Basis Function Neural Networks via FIR Filter
Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim
Abstract:
Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended Kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore, the number of centers will be considered since it affects the performance of approximation.Keywords: extended Kalman filter, classification problem, radial basis function networks (RBFN), finite impulse response (FIR) filter
Procedia PDF Downloads 4561385 Critically Sampled Hybrid Trigonometry Generalized Discrete Fourier Transform for Multistandard Receiver Platform
Authors: Temidayo Otunniyi
Abstract:
This paper presents a low computational channelization algorithm for the multi-standards platform using poly phase implementation of a critically sampled hybrid Trigonometry generalized Discrete Fourier Transform, (HGDFT). An HGDFT channelization algorithm exploits the orthogonality of two trigonometry Fourier functions, together with the properties of Quadrature Mirror Filter Bank (QMFB) and Exponential Modulated filter Bank (EMFB), respectively. HGDFT shows improvement in its implementation in terms of high reconfigurability, lower filter length, parallelism, and medium computational activities. Type 1 and type 111 poly phase structures are derived for real-valued HGDFT modulation. The design specifications are decimated critically and over-sampled for both single and multi standards receiver platforms. Evaluating the performance of oversampled single standard receiver channels, the HGDFT algorithm achieved 40% complexity reduction, compared to 34% and 38% reduction in the Discrete Fourier Transform (DFT) and tree quadrature mirror filter (TQMF) algorithm. The parallel generalized discrete Fourier transform (PGDFT) and recombined generalized discrete Fourier transform (RGDFT) had 41% complexity reduction and HGDFT had a 46% reduction in oversampling multi-standards mode. While in the critically sampled multi-standard receiver channels, HGDFT had complexity reduction of 70% while both PGDFT and RGDFT had a 34% reduction.Keywords: software defined radio, channelization, critical sample rate, over-sample rate
Procedia PDF Downloads 1481384 Influence of Glenohumeral Joint Approximation Technique on the Cardiovascular System in the Acute Phase after Stroke
Authors: Iva Hereitova, Miroslav Svatek, Vit Novacek
Abstract:
Background and Aim: Autonomic imbalance is one of the complications for immobilized patients in the acute stage after a stroke. The predominance of sympathetic activity significantly increases cardiac activity. The technique of glenohumeral joint approximation may contribute in a non-pharmacological way to the regulation of blood pressure and heart rate in patients in this risk group. The aim of the study was to evaluate the effect of glenohumeral joint approximation on the change in heart rate and blood pressure in immobilized patients in the acute phase after a stroke. Methods: The experimental study bilaterally evaluated heart rate, systolic and diastolic pressure values before and after glenohumeral joint approximation in 40 immobilized participants (72.6 ± 10.2 years) in the acute phase after stroke. The experimental group was compared with 40 healthy participants in the control group (68.6 ± 14.2 years). An SpO2 vital signs monitor and a validated Microlife WatchBP Office blood pressure monitor were used for evaluation. Statistical processing and evaluation were performed in MATLAB R2019 (The Math Works®, Inc., Natick, MA, USA). Results: Approximation of the glenohumeral joint resulted in a statistically significant decrease in systolic and diastolic pressure. An average decrease in systolic pressure for individual groups ranged from 8.2 to 11.3 mmHg (p <0.001). For diastolic pressure, the average decrease ranged from 5.0 - 14.2 mmHg (p <0.001). There was a statistically significant reduction in heart rate (p <0.01) only in patients after ischemic stroke in the inferior cerebral artery. There was the average decrease in heart rate of 3.9 beats per minute (median 4 beats per minute). Conclusion: Approximation of the glenohumeral joint leads to a statistically significant decrease in systolic and diastolic pressure in immobilized patients in the acute phase after stroke.Keywords: Aproximation technique, Cardiovaskular system, Glenohumeral joint, Stroke
Procedia PDF Downloads 2161383 Screening Deformed Red Blood Cells Irradiated by Ionizing Radiations Using Windowed Fourier Transform
Authors: Dahi Ghareab Abdelsalam Ibrahim, R. H. Bakr
Abstract:
Ionizing radiation, such as gamma radiation and X-rays, has many applications in medical diagnoses and cancer treatment. In this paper, we used the windowed Fourier transform to extract the complex image of the deformed red blood cells. The real values of the complex image are used to extract the best fitting of the deformed cell boundary. Male albino rats are irradiated by γ-rays from ⁶⁰Co. The male albino rats are anesthetized with ether, and then blood samples are collected from the eye vein by heparinized capillary tubes for studying the radiation-damaging effect in-vivo by the proposed windowed Fourier transform. The peripheral blood films are prepared according to the Brown method. The peripheral blood film is photographed by using an Automatic Image Contour Analysis system (SAMICA) from ELBEK-Bildanalyse GmbH, Siegen, Germany. The SAMICA system is provided with an electronic camera connected to a computer through a built-in interface card, and the image can be magnified up to 1200 times and displayed by the computer. The images of the peripheral blood films are then analyzed by the windowed Fourier transform method to extract the precise deformation from the best fitting. Based on accurate deformation evaluation of the red blood cells, diseases can be diagnosed in their primary stages.Keywords: windowed Fourier transform, red blood cells, phase wrapping, Image processing
Procedia PDF Downloads 851382 Comparison of Two Theories for the Critical Laser Radius in Thermal Quantum Plasma
Authors: Somaye Zare
Abstract:
The critical beam radius is a significant factor that predicts the behavior of the laser beam in the plasma, so if the laser beam radius is adequately greater in comparison to it, the beam will experience stable focusing on the plasma; otherwise, the beam will diverge after entering into the plasma. In this work, considering the paraxial approximation and moment theories, the localization of a relativistic laser beam in thermal quantum plasma is investigated. Using the dielectric function obtained in the quantum hydrodynamic model, the mathematical equation for the laser beam width parameter is attained and solved numerically by the fourth-order Runge-Kutta method. The results demonstrate that the stouter focusing effect is occurred in the moment theory compared to the paraxial approximation. Besides, similar to the two theories, with increasing Fermi temperature, plasma density, and laser intensity, the oscillation rate of the beam width parameter growths and focusing length reduces which means improving the focusing effect. Furthermore, it is understood that behaviors of the critical laser radius are different in the two theories, in the paraxial approximation, the critical radius after a minimum value is enhanced with increasing laser intensity, but in the moment theory, with increasing laser intensity, the critical radius decreases until it becomes independent of the laser intensity.Keywords: laser localization, quantum plasma, paraxial approximation, moment theory, quantum hydrodynamic model
Procedia PDF Downloads 72