Search results for: quantum chemical methods
19404 Eco-Friendly Synthesis of Carbon Quantum Dots as an Effective Adsorbent
Authors: Hebat‑Allah S. Tohamy, Mohamed El‑Sakhawy, Samir Kamel
Abstract:
Fluorescent carbon quantum dots (CQDs) were prepared by an economical, green, and single-step procedure based on microwave heating of urea with sugarcane bagasse (SCB), cellulose (C), or carboxymethyl cellulose (CMC). The prepared CQDs were characterized using a series of spectroscopic techniques, and they had small size, strong absorption in the UV, and excitation wavelength-dependent fluorescence. The prepared CQDs were used for Pb(II) adsorption from an aqueous solution. The removal efficiency percentages (R %) were 99.16, 96.36, and 98.48 for QCMC, QC, and QSCB. The findings validated the efficiency of CQDs synthesized from CMC, cellulose, and SCB as excellent materials for further utilization in the environmental fields of wastewater pollution detection, adsorption, and chemical sensing applications. The kinetics and isotherms studied found that all CQD isotherms fit well with the Langmuir model than Freundlich and Temkin models. According to R², the pseudo-second-order fits the adsorption of QCMC, while the first-order one fits with QC and QSCB.Keywords: carbon quantum dots, graphene quantum dots, fluorescence, quantum yield, water treatment, agricultural wastes
Procedia PDF Downloads 13219403 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits
Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.
Abstract:
With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme
Procedia PDF Downloads 13419402 Novel Design of Quantum Dot Arrays to Enhance Near-Fields Excitation Resonances
Authors: Nour Hassan Ismail, Abdelmonem Nassar, Khaled Baz
Abstract:
Semiconductor crystals smaller than about 10 nm, known as quantum dots, have properties that differ from large samples, including a band gap that becomes larger for smaller particles. These properties create several applications for quantum dots. In this paper, new shapes of quantum dot arrays are used to enhance the photo physical properties of gold nano-particles. This paper presents a study of the effect of nano-particles shape, array, and size on their absorption characteristics.Keywords: quantum dots, nano-particles, LSPR
Procedia PDF Downloads 48219401 Investigation of Atomic Adsorption on the Surface of BC3 Nanotubes
Authors: S. V. Boroznin, I. V. Zaporotskova, N. P. Polikarpova
Abstract:
Studing of nanotubes sorption properties is very important for researching. These processes for carbon and boron nanotubes described in the high number of papers. But the sorption properties of boron containing nanotubes, susch as BC3-nanotubes haven’t been studied sufficiently yet. In this paper we present the results of theoretical research into the mechanism of atomic surface adsorption on the two types of boron-carbon nanotubes (BCNTs) within the framework of an ionic-built covalent-cyclic cluster model and an appropriately modified MNDO quantum chemical scheme and DFT method using B3LYP functional with 6-31G basis. These methods are well-known and the results, obtained using them, were in good agreement with the experiment. Also we studied three position of atom location above the nanotube surface. These facts suggest us to use them for our research and quantum-chemical calculations. We studied the mechanism of sorption of Cl, O and F atoms on the external surface of single-walled BC3 arm-chair nanotubes. We defined the optimal geometry of the sorption complexes and obtained the values of the sorption energies. Analysis of the band structure suggests that the band gap is insensitive to adsorption process. The electron density is located near atoms of the surface of the tube. Also we compared our results with others, which have been obtained earlier for pure carbon and boron nanotubes. The most stable adsorption complex has been between boron-carbon nanotube and oxygen atom. So, it suggests us to make a research of oxygen molecule adsorption on the BC3 nanotube surface. We modeled five variants of molecule orientation above the nanotube surface. The most stable sorption complex has been defined between the oxygen molecule and nanotube when the oxygen molecule is located above the nanotube surface perpendicular to the axis of the tube.Keywords: Boron-carbon nanotubes, nanostructures, nanolayers, quantum-chemical calculations, nanoengineering
Procedia PDF Downloads 31719400 External Noise Distillation in Quantum Holography with Undetected Light
Authors: Sebastian Töpfer, Jorge Fuenzalida, Marta Gilaberte Basset, Juan P. Torres, Markus Gräfe
Abstract:
This work presents an experimental and theoretical study about the noise resilience of quantum holography with undetected photons. Quantum imaging has become an important research topic in the recent years after its first publication in 2014. Following this research, advances towards different spectral ranges in detection and different optical geometries have been made. Especially an interest in the field of near infrared to mid infrared measurements has developed, because of the unique characteristic, that allows to sample a probe with photons in a different wavelength than the photons arriving at the detector. This promising effect can be used for medical applications, to measure in the so-called molecule fingerprint region, while using broadly available detectors for the visible spectral range. Further advance the development of quantum imaging methods have been made by new measurement and detection schemes. One of which is quantum holography with undetected light. It combines digital phase shifting holography with quantum imaging to extent the obtainable sample information, by measuring not only the object transmission, but also its influence on the phase shift experienced by the transmitted light. This work will present extended research for the quantum holography with undetected light scheme regarding the influence of external noise. It is shown experimentally and theoretically that the samples information can still be at noise levels of 250 times higher than the signal level, because of its information being transmitted by the interferometric pattern. A detailed theoretic explanation is also provided.Keywords: distillation, quantum holography, quantum imaging, quantum metrology
Procedia PDF Downloads 7519399 Meditation, Mental States, Quantum Mechanics and Enlightenment
Authors: Ven. Bhikkhu Ananda
Abstract:
Mind emerged from the quantum field. The practice of mediation can take one to the state of enlightenment. During meditation, the change in the very behaviour of electrons, protons, and photons and their fields, known to be quantum fields, create mental states. This could well be expressed in the mathematical language of quantum mechanics. This paper qualifies and quantifies mental states created during meditation and is explained by quantum mechanics. In meditation, phenomenology can be seen as the process of enlightenment. In this process, the emptiness shown in Buddhist philosophy and the emptiness of quantum fields is compared. The methodologies used here are mindfulness meditation and metta mediation (compassion meditation ). The research findings suggest not only quantumness and change are consciousness, but well-founded behaviour of an individual in the society, which can amplify the positive behaviour caused by mental states, and that emptiness and impermanence of phenomenon are based on dependent arisings. The presence of quantum coherence indicates that quantum mechanics has a role in the evolution of the pure mind and the phenomenology created thereof in mediation.Keywords: meditation, mental states, quantum mechanics, enlightenment
Procedia PDF Downloads 6719398 A Novel Way to Create Qudit Quantum Error Correction Codes
Authors: Arun Moorthy
Abstract:
Quantum computing promises to provide algorithmic speedups for a number of tasks; however, similar to classical computing, effective error-correcting codes are needed. Current quantum computers require costly equipment to control each particle, so having fewer particles to control is ideal. Although traditional quantum computers are built using qubits (2-level systems), qudits (more than 2-levels) are appealing since they can have an equivalent computational space using fewer particles, meaning fewer particles need to be controlled. Currently, qudit quantum error-correction codes are available for different level qudit systems; however, these codes have sometimes overly specific constraints. When building a qudit system, it is important for researchers to have access to many codes to satisfy their requirements. This project addresses two methods to increase the number of quantum error correcting codes available to researchers. The first method is generating new codes for a given set of parameters. The second method is generating new error-correction codes by using existing codes as a starting point to generate codes for another level (i.e., a 5-level system code on a 2-level system). So, this project builds a website that researchers can use to generate new error-correction codes or codes based on existing codes.Keywords: qudit, error correction, quantum, qubit
Procedia PDF Downloads 16019397 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots
Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha
Abstract:
Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.Keywords: biosensor, dopamine, fluorescence, quantum dots
Procedia PDF Downloads 36419396 Application of Compressed Sensing Method for Compression of Quantum Data
Authors: M. Kowalski, M. Życzkowski, M. Karol
Abstract:
Current quantum key distribution systems (QKD) offer low bit rate of up to single MHz. Compared to conventional optical fiber links with multiple GHz bitrates, parameters of recent QKD systems are significantly lower. In the article we present the conception of application of the Compressed Sensing method for compression of quantum information. The compression methodology as well as the signal reconstruction method and initial results of improving the throughput of quantum information link are presented.Keywords: quantum key distribution systems, fiber optic system, compressed sensing
Procedia PDF Downloads 69419395 Quantum Statistical Machine Learning and Quantum Time Series
Authors: Omar Alzeley, Sergey Utev
Abstract:
Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series
Procedia PDF Downloads 46919394 Quantum Chemical Prediction of Standard Formation Enthalpies of Uranyl Nitrates and Its Degradation Products
Authors: Mohamad Saab, Florent Real, Francois Virot, Laurent Cantrel, Valerie Vallet
Abstract:
All spent nuclear fuel reprocessing plants use the PUREX process (Plutonium Uranium Refining by Extraction), which is a liquid-liquid extraction method. The organic extracting solvent is a mixture of tri-n-butyl phosphate (TBP) and hydrocarbon solvent such as hydrogenated tetra-propylene (TPH). By chemical complexation, uranium and plutonium (from spent fuel dissolved in nitric acid solution), are separated from fission products and minor actinides. During a normal extraction operation, uranium is extracted in the organic phase as the UO₂(NO₃)₂(TBP)₂ complex. The TBP solvent can form an explosive mixture called red oil when it comes in contact with nitric acid. The formation of this unstable organic phase originates from the reaction between TBP and its degradation products on the one hand, and nitric acid, its derivatives and heavy metal nitrate complexes on the other hand. The decomposition of the red oil can lead to violent explosive thermal runaway. These hazards are at the origin of several accidents such as the two in the United States in 1953 and 1975 (Savannah River) and, more recently, the one in Russia in 1993 (Tomsk). This raises the question of the exothermicity of reactions that involve TBP and all other degradation products, and calls for a better knowledge of the underlying chemical phenomena. A simulation tool (Alambic) is currently being developed at IRSN that integrates thermal and kinetic functions related to the deterioration of uranyl nitrates in organic and aqueous phases, but not of the n-butyl phosphate. To include them in the modeling scheme, there is an urgent need to obtain the thermodynamic and kinetic functions governing the deterioration processes in liquid phase. However, little is known about the thermodynamic properties, like standard enthalpies of formation, of the n-butyl phosphate molecules and of the UO₂(NO₃)₂(TBP)₂ UO₂(NO₃)₂(HDBP)(TBP) and UO₂(NO₃)₂(HDBP)₂ complexes. In this work, we propose to estimate the thermodynamic properties with Quantum Methods (QM). Thus, in the first part of our project, we focused on the mono, di, and tri-butyl complexes. Quantum chemical calculations have been performed to study several reactions leading to the formation of mono-(H₂MBP), di-(HDBP), and TBP in gas and liquid phases. In the gas phase, the optimal structures of all species were optimized using the B3LYP density functional. Triple-ζ def2-TZVP basis sets were used for all atoms. All geometries were optimized in the gas-phase, and the corresponding harmonic frequencies were used without scaling to compute the vibrational partition functions at 298.15 K and 0.1 Mpa. Accurate single point energies were calculated using the efficient localized LCCSD(T) method to the complete basis set limit. Whenever species in the liquid phase are considered, solvent effects are included with the COSMO-RS continuum model. The standard enthalpies of formation of TBP, HDBP, and H2MBP are finally predicted with an uncertainty of about 15 kJ mol⁻¹. In the second part of this project, we have investigated the fundamental properties of three organic species that mostly contribute to the thermal runaway: UO₂(NO₃)₂(TBP)₂, UO₂(NO₃)₂(HDBP)(TBP), and UO₂(NO₃)₂(HDBP)₂ using the same quantum chemical methods that were used for TBP and its derivatives in both the gas and the liquid phase. We will discuss the structures and thermodynamic properties of all these species.Keywords: PUREX process, red oils, quantum chemical methods, hydrolysis
Procedia PDF Downloads 18819393 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals
Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty
Abstract:
A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction
Procedia PDF Downloads 11419392 A Generalized Space-Efficient Algorithm for Quantum Bit String Comparators
Authors: Khuram Shahzad, Omar Usman Khan
Abstract:
Quantum bit string comparators (QBSC) operate on two sequences of n-qubits, enabling the determination of their relationships, such as equality, greater than, or less than. This is analogous to the way conditional statements are used in programming languages. Consequently, QBSCs play a crucial role in various algorithms that can be executed or adapted for quantum computers. The development of efficient and generalized comparators for any n-qubit length has long posed a challenge, as they have a high-cost footprint and lead to quantum delays. Comparators that are efficient are associated with inputs of fixed length. As a result, comparators without a generalized circuit cannot be employed at a higher level, though they are well-suited for problems with limited size requirements. In this paper, we introduce a generalized design for the comparison of two n-qubit logic states using just two ancillary bits. The design is examined on the basis of qubit requirements, ancillary bit usage, quantum cost, quantum delay, gate operations, and circuit complexity and is tested comprehensively on various input lengths. The work allows for sufficient flexibility in the design of quantum algorithms, which can accelerate quantum algorithm development.Keywords: quantum comparator, quantum algorithm, space-efficient comparator, comparator
Procedia PDF Downloads 1519391 CdS Quantum Dots as Fluorescent Probes for Detection of Naphthalene
Authors: Zhengyu Yan, Yan Yu, Jianqiu Chen
Abstract:
A novel sensing system has been designed for naphthalene detection based on the quenched fluorescence signal of CdS quantum dots. The fluorescence intensity of the system reduced significantly after adding CdS quantum dots to the water pollution model because of the fluorescent static quenching f mechanism. Herein, we have demonstrated the facile methodology can offer a convenient and low analysis cost with the recovery rate as 97.43%-103.2%, which has potential application prospect.Keywords: CdS quantum dots, modification, detection, naphthalene
Procedia PDF Downloads 49319390 Quantum Chemical Calculations Synthesis and Corrosion Inhibition Efficiency of Nonionic Surfactants on API X65 Steel Surface under H2s Environment
Authors: E. G. Zaki, M. A. Migahed, A. M. Al-Sabagh, E. A. Khamis
Abstract:
Inhibition effect of four novel nonionic surfactants based on sulphonamide, of linear alkyl benzene sulphonic acid (LABS), was reacted with 1 mole triethylenetetramine, tetraethylenepentamine then Ethoxylation of amide X 65 type carbon steel in oil wells formation water under H2S environment was investigated by electrochemical measurements. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) were used to characterize the steel surface. The results showed that these surfactants act as a corrosion inhibitor in and their inhibition efficiencies depend on the ethylene oxide content in the system. The obtained results showed that the percentage inhibition efficiency (η%) was increased by increasing the inhibitor concentration until the critical micelle concentration (CMC) reached The quantum chemistry calculations were carried out to study the molecular geometry and electronic structure of obtained derivatives. The energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital has been calculated using the theoretical computations to reflect the chemical reactivity and kinetic stability of compounds.Keywords: corrosion, surfactants, steel surface, quantum
Procedia PDF Downloads 37719389 Autonomous Quantum Competitive Learning
Authors: Mohammed A. Zidan, Alaa Sagheer, Nasser Metwally
Abstract:
Real-time learning is an important goal that most of artificial intelligence researches try to achieve it. There are a lot of problems and applications which require low cost learning such as learn a robot to be able to classify and recognize patterns in real time and real-time recall. In this contribution, we suggest a model of quantum competitive learning based on a series of quantum gates and additional operator. The proposed model enables to recognize any incomplete patterns, where we can increase the probability of recognizing the pattern at the expense of the undesired ones. Moreover, these undesired ones could be utilized as new patterns for the system. The proposed model is much better compared with classical approaches and more powerful than the current quantum competitive learning approaches.Keywords: competitive learning, quantum gates, quantum gates, winner-take-all
Procedia PDF Downloads 47219388 Behavior of Current in a Semiconductor Nanostructure under Influence of Embedded Quantum Dots
Authors: H. Paredes Gutiérrez, S. T. Pérez-Merchancano
Abstract:
Motivated by recent experimental and theoretical developments, we investigate the influence of embedded quantum dot (EQD) of different geometries (lens, ring and pyramidal) in a double barrier heterostructure (DBH). We work with a general theory of quantum transport that accounts the tight-binding model for the spin dependent resonant tunneling in a semiconductor nanostructure, and Rashba spin orbital to study the spin orbit coupling. In this context, we use the second quantization theory for Rashba effect and the standard Green functions method. We calculate the current density as a function of the voltage without and in the presence of quantum dots. In the second case, we considered the size and shape of the quantum dot, and in the two cases, we worked considering the spin polarization affected by external electric fields. We found that the EQD generates significant changes in current when we consider different morphologies of EQD, as those described above. The first thing shown is that the current decreases significantly, such as the geometry of EQD is changed, prevailing the geometrical confinement. Likewise, we see that the current density decreases when the voltage is increased, showing that the quantum system studied here is more efficient when the morphology of the quantum dot changes.Keywords: quantum semiconductors, nanostructures, quantum dots, spin polarization
Procedia PDF Downloads 27319387 Quantum Algebra from Generalized Q-Algebra
Authors: Muna Tabuni
Abstract:
The paper contains an investigation of the notion of Q algebras. A brief introduction to quantum mechanics is given, in that systems the state defined by a vector in a complex vector space H which have Hermitian inner product property. H may be finite or infinite-dimensional. In quantum mechanics, operators must be hermitian. These facts are saved by Lie algebra operators but not by those of quantum algebras. A Hilbert space H consists of a set of vectors and a set of scalars. Lie group is a differentiable topological space with group laws given by differentiable maps. A Lie algebra has been introduced. Q-algebra has been defined. A brief introduction to BCI-algebra is given. A BCI sub algebra is introduced. A brief introduction to BCK=BCH-algebra is given. Every BCI-algebra is a BCH-algebra. Homomorphism maps meanings are introduced. Homomorphism maps between two BCK algebras are defined. The mathematical formulations of quantum mechanics can be expressed using the theory of unitary group representations. A generalization of Q algebras has been introduced, and their properties have been considered. The Q- quantum algebra has been studied, and various examples have been given.Keywords: Q-algebras, BCI, BCK, BCH-algebra, quantum mechanics
Procedia PDF Downloads 19919386 Normal Coordinate Analysis, Molecular Structure, Vibrational, Electronic Spectra, and NMR Investigation of 4-Amino-3-Phenyl-1H-1,2,4-Triazole-5(4H)-Thione by Ab Initio HF and DFT Method
Authors: Khaled Bahgat
Abstract:
In the present work, the characterization of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione (APTT) molecule was carried out by quantum chemical method and vibrational spectral techniques. The FT-IR (4000–400 cm_1) and FT-Raman (4000–100 cm_1) spectra of APTT were recorded in solid phase. The UV–Vis absorption spectrum of the APTT was recorded in the range of 200–400 nm. The molecular geometry, harmonic vibrational frequencies and bonding features of APTT in the ground state have been calculated by HF and DFT methods using 6-311++G(d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO) and natural localized molecular orbital (NLMO) analysis. The electronic properties, such as excitation energies, absorption wavelength, HOMO and LUMO energies were performed by time depended DFT (TD-DFT) approach. The 1H and 13C nuclear magnetic resonance chemical shift of the molecule were calculated using the gauge-including atomic orbital (GIAO) method and compared with experimental results. Finally, the calculation results were analyzed to simulate infrared, FT-Raman and UV spectra of the title compound which shows better agreement with observed spectra.Keywords: 4-amino-3-phenyl-1H-1, 2, 4-triazole-5(4H)-thione, vibrational assignments, normal coordinate analysis, quantum mechanical calculations
Procedia PDF Downloads 47319385 Analysis of Tandem Detonator Algorithm Optimized by Quantum Algorithm
Authors: Tomasz Robert Kuczerski
Abstract:
The high complexity of the algorithm of the autonomous tandem detonator system creates an optimization problem due to the parallel operation of several machine states of the system. Many years of experience and classic analyses have led to a partially optimized model. Limitations on the energy resources of this class of autonomous systems make it necessary to search for more effective methods of optimisation. The use of the Quantum Approximate Optimization Algorithm (QAOA) in these studies shows the most promising results. With the help of multiple evaluations of several qubit quantum circuits, proper results of variable parameter optimization were obtained. In addition, it was observed that the increase in the number of assessments does not result in further efficient growth due to the increasing complexity of optimising variables. The tests confirmed the effectiveness of the QAOA optimization method.Keywords: algorithm analysis, autonomous system, quantum optimization, tandem detonator
Procedia PDF Downloads 9219384 Adsorption and Corrosion Inhibition of New Synthesized Thiophene Schiff Base on Mild Steel in HCL Solution
Authors: H. Elmsellem, A. Aouniti, S. Radi, A. Chetouani, B. Hammouti
Abstract:
The synthesis of new organic molecules offers various molecular structures containing heteroatoms and substituents for corrosion protection in acid pickling of metals. The most synthesized compounds are the nitrogen heterocyclic compounds, which are known to be excellent complex or chelate forming substances with metals. The choice of the inhibitor is based on two considerations: first it could be synthesized conveniently from relatively cheap raw materials, secondly, it contains the electron cloud on the aromatic ring or, the electro negative atoms such as nitrogen and oxygen in the relatively long chain compounds. In the present study, (NE)‐2‐methyl‐N‐(thiophen‐2‐ylmethylidene) aniline(T) was synthesized and its inhibiting action on the corrosion of mild steel in 1 M hydrochloric acid was examined by different corrosion methods, such as weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The experimental results suggest that this compound is an efficient corrosion inhibitor and the inhibition efficiency increases with the increase in inhibitor concentration. Adsorption of this compound on mild steel surface obeys Langmuir’s isotherm. Correlation between quantum chemical calculations and inhibition efficiency of the investigated compound is discussed using the Density Functional Theory method (DFT).Keywords: mild steel, Schiff base, inhibition, corrosion, HCl, quantum chemical
Procedia PDF Downloads 33219383 Electrochemical and Theoretical Quantum Approaches on the Inhibition of C1018 Carbon Steel Corrosion in Acidic Medium Containing Chloride Using Newly Synthesized Phenolic Schiff Bases Compounds
Authors: Hany M. Abd El-Lateef
Abstract:
Two novel Schiff bases, 5-bromo-2-[(E)-(pyridin-3-ylimino) methyl] phenol (HBSAP) and 5-bromo-2-[(E)-(quinolin-8-ylimino) methyl] phenol (HBSAQ) have been synthesized. They have been characterized by elemental analysis and spectroscopic techniques (UV–Vis, IR and NMR). Moreover, the molecular structure of HBSAP and HBSAQ compounds are determined by single crystal X-ray diffraction technique. The inhibition activity of HBSAP and HBSAQ for carbon steel in 3.5 %NaCl+0.1 M HCl for both short and long immersion time, at different temperatures (20-50 ºC), was investigated using electrochemistry and surface characterization. The potentiodynamic polarization shows that the inhibitors molecule is more adsorbed on the cathodic sites. Its efficiency increases with increasing inhibitor concentrations (92.8 % at the optimal concentration of 10-3 M for HBSAQ). Adsorption of the inhibitors on the carbon steel surface was found to obey Langmuir’s adsorption isotherm with physical/chemical nature of the adsorption, as it is shown also by scanning electron microscopy. Further, the electronic structural calculations using quantum chemical methods were found to be in a good agreement with the results of the experimental studies.Keywords: carbon steel, Schiff bases, corrosion inhibition, SEM, electrochemical techniques
Procedia PDF Downloads 39219382 Quantum Computing with Qudits on a Graph
Authors: Aleksey Fedorov
Abstract:
Building a scalable platform for quantum computing remains one of the most challenging tasks in quantum science and technologies. However, the implementation of most important quantum operations with qubits (quantum analogues of classical bits), such as multiqubit Toffoli gate, requires either a polynomial number of operation or a linear number of operations with the use of ancilla qubits. Therefore, the reduction of the number of operations in the presence of scalability is a crucial goal in quantum information processing. One of the most elegant ideas in this direction is to use qudits (multilevel systems) instead of qubits and rely on additional levels of qudits instead of ancillas. Although some of the already obtained results demonstrate a reduction of the number of operation, they suffer from high complexity and/or of the absence of scalability. We show a strong reduction of the number of operations for the realization of the Toffoli gate by using qudits for a scalable multi-qudit processor. This is done on the basis of a general relation between the dimensionality of qudits and their topology of connections, that we derived.Keywords: quantum computing, qudits, Toffoli gates, gate decomposition
Procedia PDF Downloads 14719381 Proposal of Optimality Evaluation for Quantum Secure Communication Protocols by Taking the Average of the Main Protocol Parameters: Efficiency, Security and Practicality
Authors: Georgi Bebrov, Rozalina Dimova
Abstract:
In the field of quantum secure communication, there is no evaluation that characterizes quantum secure communication (QSC) protocols in a complete, general manner. The current paper addresses the problem concerning the lack of such an evaluation for QSC protocols by introducing an optimality evaluation, which is expressed as the average over the three main parameters of QSC protocols: efficiency, security, and practicality. For the efficiency evaluation, the common expression of this parameter is used, which incorporates all the classical and quantum resources (bits and qubits) utilized for transferring a certain amount of information (bits) in a secure manner. By using criteria approach whether or not certain criteria are met, an expression for the practicality evaluation is presented, which accounts for the complexity of the QSC practical realization. Based on the error rates that the common quantum attacks (Measurement and resend, Intercept and resend, probe attack, and entanglement swapping attack) induce, the security evaluation for a QSC protocol is proposed as the minimum function taken over the error rates of the mentioned quantum attacks. For the sake of clarity, an example is presented in order to show how the optimality is calculated.Keywords: quantum cryptography, quantum secure communcation, quantum secure direct communcation security, quantum secure direct communcation efficiency, quantum secure direct communcation practicality
Procedia PDF Downloads 18419380 De Broglie Wavelength Defined by the Rest Energy E0 and Its Velocity
Authors: K. Orozović, B. Balon
Abstract:
In this paper, we take a different approach to de Broglie wavelength, as we relate it to relativistic physics. The quantum energy of the photon radiated by a body with de Broglie wavelength, as it moves with velocity v, can be defined within relativistic physics by rest energy E₀. In this way, we can show the connection between the quantum of radiation energy of the body and the rest of energy E₀ and thus combine what has been incompatible so far, namely relativistic and quantum physics. So, here we discuss the unification of relativistic and quantum physics by introducing the factor k that is analog to the Lorentz factor in Einstein's theory of relativity.Keywords: de Brogli wavelength, relativistic physics, rest energy, quantum physics
Procedia PDF Downloads 15619379 The Photon-Drag Effect in Cylindrical Quantum Wire with a Parabolic Potential
Authors: Hoang Van Ngoc, Nguyen Thu Huong, Nguyen Quang Bau
Abstract:
Using the quantum kinetic equation for electrons interacting with acoustic phonon, the density of the constant current associated with the drag of charge carriers in cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field and a laser radiation field is calculated. The density of the constant current is studied as a function of the frequency of electromagnetic wave, as well as the frequency of laser field and the basic elements of quantum wire with a parabolic potential. The analytic expression of the constant current density is numerically evaluated and plotted for a specific quantum wires GaAs/AlGaAs to show the dependence of the constant current density on above parameters. All these results of quantum wire compared with bulk semiconductors and superlattices to show the difference.Keywords: The photon-drag effect, the constant current density, quantum wire, parabolic potential
Procedia PDF Downloads 42219378 Aerodynamics of Spherical Combat Platform Levitation
Authors: Aelina Franz
Abstract:
In recent years, the scientific community has witnessed a paradigm shift in the exploration of unconventional levitation methods, particularly in the domain of spherical combat platforms. This paper explores aerodynamics and levitational dynamics inherent in these spheres by examining interactions at the quantum level. Our research unravels the nuanced aerodynamic phenomena governing the levitation of spherical combat platforms. Through an analysis of the quantum fluid dynamics surrounding these spheres, we reveal the crucial interactions between air resistance, surface irregularities, and the quantum fluctuations that influence their levitational behavior. Our findings challenge conventional understanding, providing a perspective on the aerodynamic forces at play during the levitation of spherical combat platforms. Furthermore, we propose design modifications and control strategies informed by both classical aerodynamics and quantum information processing principles. These advancements not only enhance the stability and maneuverability of the combat platforms but also open new avenues for exploration in the interdisciplinary realm of engineering and quantum information sciences. This paper aims to contribute to levitation technologies and their applications in the field of spherical combat platforms. We anticipate that our work will stimulate further research to create a deeper understanding of aerodynamics and quantum phenomena in unconventional levitation systems.Keywords: spherical combat platforms, levitation technologies, aerodynamics, maneuverable platforms
Procedia PDF Downloads 5719377 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning
Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz
Abstract:
Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.Keywords: quantum machine learning, SVM, QSVM, matrix product state
Procedia PDF Downloads 9419376 Determining the Octanol-Water Partition Coefficient for Armchair Polyhex BN Nanotubes Using Topological Indices
Authors: Esmat Mohammadinasab
Abstract:
The aim of this paper is to investigate theoretically and establish a predictive model for determination LogP of armchair polyhex BN nanotubes by using simple descriptors. The relationship between the octanol-water partition coefficient (LogP) and quantum chemical descriptors, electric moments, and topological indices of some armchair polyhex BN nanotubes with various lengths and fixed circumference are represented. Based on density functional theory (DFT) electric moments and physico-chemical properties of those nanotubes are calculated. The DFT method performed based on the Becke’s 3-parameter formulation with the Lee-Yang-Parr functional (B3LYP) method and 3-21G standard basis sets. For the first time, the relationship between partition coefficient and different properties of polyhex BN nanotubes is investigated.Keywords: topological indices, quantum descriptors, DFT method, nanotubes
Procedia PDF Downloads 33519375 Amino Acid Derivatives as Green Corrosion Inhibitors for Mild Steel in 1M HCl: Electrochemical, Surface and Density Functional Theory Studies
Authors: Jiyaul Haque, Vandana Srivastava, M. A. Quraishi
Abstract:
The amino acids based corrosion inhibitors 2-(3-(carboxymethyl)-1H-imidazol-3-ium-1-yl) acetate (Z-1),2-(3-(1-carboxyethyl)-1H-imidazol-3-ium-1-yl) propanoate (Z-2) and 2-(3-(1-carboxy-2-phenylethyl)-1H-imidazol-3-ium-1-yl)-3- phenylpropanoate (Z-3) were synthesized by the reaction of amino acids, glyoxal and formaldehyde, and characterized by the FTIR and NMR spectroscopy. The corrosion inhibition performance of synthesized inhibitors was studied by electrochemical (EIS and PDP), surface and DFT methods. The results show, the studied Z-1, Z-2 and Z-3 are effective inhibitors, showed the maximum inhibition efficiency of 88.52 %, 89.48 and 96.08% at concentration 200ppm, respectively. The results of potentiodynamic polarization (PDP) study showed that Z-1 act as a cathodic inhibitor, while Z-2 and Z-3 act as mixed type inhibitors. The results of electrochemical impedance spectroscopy (EIS) studies showed that zwitterions inhibit the corrosion through adsorption mechanism. The adsorption of synthesized zwitterions on the mild steel surface was followed the Langmuir adsorption isotherm. The formation of zwitterions film on mild steel surface was confirmed by the scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). The quantum chemical parameters were used to study the reactivity of inhibitors and supported the experimental results. An inhibitor adsorption model is proposed.Keywords: electrochemical impedance spectroscopy, green corrosion inhibitors, mild steel, SEM, quantum chemical calculation, zwitterions
Procedia PDF Downloads 195