Search results for: approximation of analytic functions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3354

Search results for: approximation of analytic functions

3324 The Application of the Analytic Basis Function Expansion Triangular-z Nodal Method for Neutron Diffusion Calculation

Authors: Kunpeng Wang, Hongchun, Wu, Liangzhi Cao, Chuanqi Zhao

Abstract:

The distributions of homogeneous neutron flux within a node were expanded into a set of analytic basis functions which satisfy the diffusion equation at any point in a triangular-z node for each energy group, and nodes were coupled with each other with both the zero- and first-order partial neutron current moments across all the interfaces of the triangular prism at the same time. Based this method, a code TABFEN has been developed and applied to solve the neutron diffusion equation in a complicated geometry. In addition, after a series of numerical derivation, one can get the neutron adjoint diffusion equations in matrix form which is the same with the neutron diffusion equation; therefore, it can be solved by TABFEN, and the low-high scan strategy is adopted to improve the efficiency. Four benchmark problems are tested by this method to verify its feasibility, the results show good agreement with the references which demonstrates the efficiency and feasibility of this method.

Keywords: analytic basis function expansion method, arbitrary triangular-z node, adjoint neutron flux, complicated geometry

Procedia PDF Downloads 445
3323 Constant Factor Approximation Algorithm for p-Median Network Design Problem with Multiple Cable Types

Authors: Chaghoub Soraya, Zhang Xiaoyan

Abstract:

This research presents the first constant approximation algorithm to the p-median network design problem with multiple cable types. This problem was addressed with a single cable type and there is a bifactor approximation algorithm for the problem. To the best of our knowledge, the algorithm proposed in this paper is the first constant approximation algorithm for the p-median network design with multiple cable types. The addressed problem is a combination of two well studied problems which are p-median problem and network design problem. The introduced algorithm is a random sampling approximation algorithm of constant factor which is conceived by using some random sampling techniques form the literature. It is based on a redistribution Lemma from the literature and a steiner tree problem as a subproblem. This algorithm is simple, and it relies on the notions of random sampling and probability. The proposed approach gives an approximation solution with one constant ratio without violating any of the constraints, in contrast to the one proposed in the literature. This paper provides a (21 + 2)-approximation algorithm for the p-median network design problem with multiple cable types using random sampling techniques.

Keywords: approximation algorithms, buy-at-bulk, combinatorial optimization, network design, p-median

Procedia PDF Downloads 203
3322 Approximation of the Time Series by Fractal Brownian Motion

Authors: Valeria Bondarenko

Abstract:

In this paper, we propose two problems related to fractal Brownian motion. First problem is simultaneous estimation of two parameters, Hurst exponent and the volatility, that describe this random process. Numerical tests for the simulated fBm provided an efficient method. Second problem is approximation of the increments of the observed time series by a power function by increments from the fractional Brownian motion. Approximation and estimation are shown on the example of real data, daily deposit interest rates.

Keywords: fractional Brownian motion, Gausssian processes, approximation, time series, estimation of properties of the model

Procedia PDF Downloads 376
3321 Approximation of Intersection Curves of Two Parametric Surfaces

Authors: Misbah Irshad, Faiza Sarfraz

Abstract:

The problem of approximating surface to surface intersection is considered to be very important in computer aided geometric design and computer aided manufacturing. Although it is a complex problem to handle, its continuous need in the industry makes it an active topic in research. A technique for approximating intersection curves of two parametric surfaces is proposed, which extracts boundary points and turning points from a sequence of intersection points and interpolate them with the help of rational cubic spline functions. The proposed approach is demonstrated with the help of examples and analyzed by calculating error.

Keywords: approximation, parametric surface, spline function, surface intersection

Procedia PDF Downloads 270
3320 The Bernstein Expansion for Exponentials in Taylor Functions: Approximation of Fixed Points

Authors: Tareq Hamadneh, Jochen Merker, Hassan Al-Zoubi

Abstract:

Bernstein's expansion for exponentials in Taylor functions provides lower and upper optimization values for the range of its original function. these values converge to the original functions if the degree is elevated or the domain subdivided. Taylor polynomial can be applied so that the exponential is a polynomial of finite degree over a given domain. Bernstein's basis has two main properties: its sum equals 1, and positive for all x 2 (0; 1). In this work, we prove the existence of fixed points for exponential functions in a given domain using the optimization values of Bernstein. The Bernstein basis of finite degree T over a domain D is defined non-negatively. Any polynomial p of degree t can be expanded into the Bernstein form of maximum degree t ≤ T, where we only need to compute the coefficients of Bernstein in order to optimize the original polynomial. The main property is that p(x) is approximated by the minimum and maximum Bernstein coefficients (Bernstein bound). If the bound is contained in the given domain, then we say that p(x) has fixed points in the same domain.

Keywords: Bernstein polynomials, Stability of control functions, numerical optimization, Taylor function

Procedia PDF Downloads 135
3319 Selecting a Foreign Country to Build a Naval Base Using a Fuzzy Hybrid Decision Support System

Authors: Latif Yanar, Muammer Kaçan

Abstract:

Decision support systems are getting more important in many fields of science and technology and used effectively especially when the problems to be solved are complicated with many criteria. In this kind of problems one of the main challenges for the decision makers are that sometimes they cannot produce a countable data for evaluating the criteria but the knowledge and sense of experts. In recent years, fuzzy set theory and fuzzy logic based decision models gaining more place in literature. In this study, a decision support model to determine a country to build naval base is proposed and the application of the model is performed, considering Turkish Navy by the evaluations of Turkish Navy officers and academicians of international relations departments of various Universities located in Istanbul. The results achieved from the evaluations made by the experts in our model are calculated by a decision support tool named DESTEC 1.0, which is developed by the authors using C Sharp programming language. The tool gives advices to the decision maker using Analytic Hierarchy Process, Analytic Network Process, Fuzzy Analytic Hierarchy Process and Fuzzy Analytic Network Process all at once. The calculated results for five foreign countries are shown in the conclusion.

Keywords: decision support system, analytic hierarchy process, fuzzy analytic hierarchy process, analytic network process, fuzzy analytic network process, naval base, country selection, international relations

Procedia PDF Downloads 591
3318 High-Pressure Calculations of the Elastic Properties of ZnSx Se 1−x Alloy in the Virtual-Crystal Approximation

Authors: N. Lebga, Kh. Bouamama, K. Kassali

Abstract:

We report first-principles calculation results on the structural and elastic properties of ZnS x Se1−x alloy for which we employed the virtual crystal approximation provided with the ABINIT program. The calculations done using density functional theory within the local density approximation and employing the virtual-crystal approximation, we made a comparative study between the numerical results obtained from ab-initio calculation using ABINIT or Wien2k within the Density Functional Theory framework with either Local Density Approximation or Generalized Gradient approximation and the pseudo-potential plane-wave method with the Hartwigzen Goedecker Hutter scheme potentials. It is found that the lattice parameter, the phase transition pressure, and the elastic constants (and their derivative with respect to the pressure) follow a quadratic law in x. The variation of the elastic constants is also numerically studied and the phase transformations are discussed in relation to the mechanical stability criteria.

Keywords: density functional theory, elastic properties, ZnS, ZnSe,

Procedia PDF Downloads 574
3317 Jointly Learning Python Programming and Analytic Geometry

Authors: Cristina-Maria Păcurar

Abstract:

The paper presents an original Python-based application that outlines the advantages of combining some elementary notions of mathematics with the study of a programming language. The application support refers to some of the first lessons of analytic geometry, meaning conics and quadrics and their reduction to a standard form, as well as some related notions. The chosen programming language is Python, not only for its closer to an everyday language syntax – and therefore, enhanced readability – but also for its highly reusable code, which is of utmost importance for a mathematician that is accustomed to exploit already known and used problems to solve new ones. The purpose of this paper is, on one hand, to support the idea that one of the most appropriate means to initiate one into programming is throughout mathematics, and reciprocal, one of the most facile and handy ways to assimilate some basic knowledge in the study of mathematics is to apply them in a personal project. On the other hand, besides being a mean of learning both programming and analytic geometry, the application subject to this paper is itself a useful tool for it can be seen as an independent original Python package for analytic geometry.

Keywords: analytic geometry, conics, python, quadrics

Procedia PDF Downloads 292
3316 Approximation of Convex Set by Compactly Semidefinite Representable Set

Authors: Anusuya Ghosh, Vishnu Narayanan

Abstract:

The approximation of convex set by semidefinite representable set plays an important role in semidefinite programming, especially in modern convex optimization. To optimize a linear function over a convex set is a hard problem. But optimizing the linear function over the semidefinite representable set which approximates the convex set is easy to solve as there exists numerous efficient algorithms to solve semidefinite programming problems. So, our approximation technique is significant in optimization. We develop a technique to approximate any closed convex set, say K by compactly semidefinite representable set. Further we prove that there exists a sequence of compactly semidefinite representable sets which give tighter approximation of the closed convex set, K gradually. We discuss about the convergence of the sequence of compactly semidefinite representable sets to closed convex set K. The recession cone of K and the recession cone of the compactly semidefinite representable set are equal. So, we say that the sequence of compactly semidefinite representable sets converge strongly to the closed convex set. Thus, this approximation technique is very useful development in semidefinite programming.

Keywords: semidefinite programming, semidefinite representable set, compactly semidefinite representable set, approximation

Procedia PDF Downloads 386
3315 On the Grid Technique by Approximating the Derivatives of the Solution of the Dirichlet Problems for (1+1) Dimensional Linear Schrodinger Equation

Authors: Lawrence A. Farinola

Abstract:

Four point implicit schemes for the approximation of the first and pure second order derivatives for the solution of the Dirichlet problem for one dimensional Schrodinger equation with respect to the time variable t were constructed. Also, special four-point implicit difference boundary value problems are proposed for the first and pure second derivatives of the solution with respect to the spatial variable x. The Grid method is also applied to the mixed second derivative of the solution of the Linear Schrodinger time-dependent equation. It is assumed that the initial function belongs to the Holder space C⁸⁺ᵃ, 0 < α < 1, the Schrodinger wave function given in the Schrodinger equation is from the Holder space Cₓ,ₜ⁶⁺ᵃ, ³⁺ᵃ/², the boundary functions are from C⁴⁺ᵃ, and between the initial and the boundary functions the conjugation conditions of orders q = 0,1,2,3,4 are satisfied. It is proven that the solution of the proposed difference schemes converges uniformly on the grids of the order O(h²+ k) where h is the step size in x and k is the step size in time. Numerical experiments are illustrated to support the analysis made.

Keywords: approximation of derivatives, finite difference method, Schrödinger equation, uniform error

Procedia PDF Downloads 120
3314 A Comparison between Fuzzy Analytic Hierarchy Process and Fuzzy Analytic Network Process for Rationality Evaluation of Land Use Planning Locations in Vietnam

Authors: X. L. Nguyen, T. Y. Chou, F. Y. Min, F. C. Lin, T. V. Hoang, Y. M. Huang

Abstract:

In Vietnam, land use planning is utilized as an efficient tool for the local government to adjust land use. However, planned locations are facing disapproval from people who live near these planned sites because of environmental problems. The selection of these locations is normally based on the subjective opinion of decision-makers and is not supported by any scientific methods. Many researchers have applied Multi-Criteria Analysis (MCA) methods in which Analytic Hierarchy Process (AHP) is the most popular techniques in combination with Fuzzy set theory for the subject of rationality assessment of land use planning locations. In this research, the Fuzzy set theory and Analytic Network Process (ANP) multi-criteria-based technique were used for the assessment process. The Fuzzy Analytic Hierarchy Process was also utilized, and the output results from two methods were compared to extract the differences. The 20 planned landfills in Hung Ha district, Thai Binh province, Vietnam was selected as a case study. The comparison results indicate that there are different between weights computed by AHP and ANP methods and the assessment outputs produced from these two methods also slight differences. After evaluation of existing planned sites, some potential locations were suggested to the local government for possibility of land use planning adjusts.

Keywords: Analytic Hierarchy Process, Analytic Network Process, Fuzzy set theory, land use planning

Procedia PDF Downloads 421
3313 Using Analytic Hierarchy Process as a Decision-Making Tool in Project Portfolio Management

Authors: Darius Danesh, Michael J. Ryan, Alireza Abbasi

Abstract:

Project Portfolio Management (PPM) is an essential component of an organisation’s strategic procedures, which requires attention of several factors to envisage a range of long-term outcomes to support strategic project portfolio decisions. To evaluate overall efficiency at the portfolio level, it is essential to identify the functionality of specific projects as well as to aggregate those findings in a mathematically meaningful manner that indicates the strategic significance of the associated projects at a number of levels of abstraction. PPM success is directly associated with the quality of decisions made and poor judgment increases portfolio costs. Hence, various Multi-Criteria Decision Making (MCDM) techniques have been designed and employed to support the decision-making functions. This paper reviews possible option to improve the decision-making outcomes in the organisational portfolio management processes using the Analytic Hierarchy Process (AHP) both from academic and practical perspectives and will examine the usability, certainty and quality of the technique. The results of the study will also provide insight into the technical risk associated with current decision-making model to underpin initiative tracking and strategic portfolio management.

Keywords: analytic hierarchy process, decision support systems, multi-criteria decision making, project portfolio management

Procedia PDF Downloads 321
3312 'I Mean' in Teacher Questioning Sequences in Post-Task Discussions: A Conversation Analytic Study

Authors: Derya Duran, Christine Jacknick

Abstract:

Despite a growing body of research on classroom, especially language classroom interactions, much more is yet to be discovered on how interaction is organized in higher education settings. This study investigates how the discourse marker 'I mean' in teacher questioning turns functions as a resource to promote student participation as well as to enhance collective understanding in whole-class discussions. This paper takes a conversation analytic perspective, drawing on 30-hour video recordings of classroom interaction in an English as a medium of instruction university in Turkey. Two content classrooms (i.e., Guidance) were observed during an academic term. The course was offered to 4th year students (n=78) in the Faculty of Education; students were majoring in different subjects (i.e., Early Childhood Education, Foreign Language Education, Mathematics Education). Results of the study demonstrate the multi-functionality of discourse marker 'I mean' in teacher questioning turns. In the context of English as a medium of instruction classrooms where possible sources of confusion may occur, we found that 'I mean' is primarily used to indicate upcoming adjustments. More specifically, it is employed for a variety of interactional purposes such as elaboration, clarification, specification, reformulation, and reference to the instructional activity. The study sheds light on the multiplicity of functions of the discourse marker in academic interactions and it uncovers how certain linguistic resources serve functions to the organization of repair such as the maintenance of understanding in classroom interaction. In doing so, it also shows the ways in which participation is routinely enacted in shared interactional events through linguistic resources.

Keywords: conversation analysis, discourse marker, English as a medium of instruction, repair

Procedia PDF Downloads 161
3311 Approximation to the Hardy Operator on Topological Measure Spaces

Authors: Kairat T. Mynbaev, Elena N. Lomakina

Abstract:

We consider a Hardy-type operator generated by a family of open subsets of a Hausdorff topological space. The family is indexed with non-negative real numbers and is totally ordered. For this operator, we obtain two-sided bounds of its norm, a compactness criterion, and bounds for its approximation numbers. Previously, bounds for its approximation numbers have been established only in the one-dimensional case, while we do not impose any restrictions on the dimension of the Hausdorff space. The bounds for the norm and conditions for compactness earlier have been found using different methods by G. Sinnamon and K. Mynbaev. Our approach is different in that we use domain partitions for all problems under consideration.

Keywords: approximation numbers, boundedness and compactness, multidimensional Hardy operator, Hausdorff topological space

Procedia PDF Downloads 104
3310 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks

Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha

Abstract:

Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs –Sigmoid, ReLU, and Tanh–have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment with multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLUReLU) combination. Our results show that using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).

Keywords: activation function, universal approximation function, neural networks, convergence

Procedia PDF Downloads 158
3309 Circular Approximation by Trigonometric Bézier Curves

Authors: Maria Hussin, Malik Zawwar Hussain, Mubashrah Saddiqa

Abstract:

We present a trigonometric scheme to approximate a circular arc with its two end points and two end tangents/unit tangents. A rational cubic trigonometric Bézier curve is constructed whose end control points are defined by the end points of the circular arc. Weight functions and the remaining control points of the cubic trigonometric Bézier curve are estimated by variational approach to reproduce a circular arc. The radius error is calculated and found less than the existing techniques.

Keywords: control points, rational trigonometric Bézier curves, radius error, shape measure, weight functions

Procedia PDF Downloads 475
3308 The Understanding-Without-Reflection in Psychoanalytic Supervision

Authors: Hanoch Yerushalmi

Abstract:

One of the transformational therapeutic experiences is the therapeutic dyad's immersion in and recovery from shared regressive states that are often provoked by an awakened childhood fear of breakdown. the suggest that the supervisory dyad has parallel transformational experiences―the shared regressive states that follow continuous incomprehension of the unfolding therapeutic reality. Moreover, when the supervisory partners immerse themselves in a shared regressive state, a unique, inclusive, embodied, unsymbolized, and procedural understanding-without-reflection emerges spontaneously. Analytic writers describe such an understanding as unconscious knowledge, and existentialist writers describe it as prereflective consciousness. Before translating this unique understanding into a therapeutic narrative, the supervisor needs to recover from the regressive state and organize it according to discursive and logical analytic principles. From this perspective, the already existing experiential and analytic theoretical knowledge serves as a platform for creating new perceptions and analytic discourses.

Keywords: supervision, existentialism, prereflective consciousness, regressive states

Procedia PDF Downloads 119
3307 Developing a Model – an Application of Fuzzy Analytic Network Process Techniques for Hostels

Authors: Pin-Ju Juan, Peng-Yu Juan, Yi-Shan Chen

Abstract:

The main purpose of this paper is to present a fuzzy Analytic Network Process (ANP) model for the hostel organizational performance selection. In this article, we created 39 criteria for selecting hostel organizational performance acquired from literature's review and experts method practical investigations, and the methods of fuzzy analytic network process are used to consolidate decision-makers’ assessments about criteria weightings. Finally, we selected organizational performance of a hostel in Taiwan to determine the effectiveness of the proposed evaluation model in this paper.

Keywords: Fuzzy ANP, hostel, organizational performance, strategy management

Procedia PDF Downloads 200
3306 The Construction of the Semigroup Which Is Chernoff Equivalent to Statistical Mixture of Quantizations for the Case of the Harmonic Oscillator

Authors: Leonid Borisov, Yuri Orlov

Abstract:

We obtain explicit formulas of finitely multiple approximations of the equilibrium density matrix for the case of the harmonic oscillator using Chernoff's theorem and the notion of semigroup which is Chernoff equivalent to average semigroup. Also we found explicit formulas for the corresponding approximate Wigner functions and average values of the observable. We consider a superposition of τ -quantizations representing a wide class of linear quantizations. We show that the convergence of the approximations of the average values of the observable is not uniform with respect to the Gibbs parameter. This does not allow to represent approximate expression as the sum of the exact limits and small deviations evenly throughout the temperature range with a given order of approximation.

Keywords: Chernoff theorem, Feynman formulas, finitely multiple approximation, harmonic oscillator, Wigner function

Procedia PDF Downloads 439
3305 An Axisymmetric Finite Element Method for Compressible Swirling Flow

Authors: Raphael Zanella, Todd A. Oliver, Karl W. Schulz

Abstract:

This work deals with the finite element approximation of axisymmetric compressible flows with swirl velocity. We are interested in problems where the flow, while weakly dependent on the azimuthal coordinate, may have a strong azimuthal velocity component. We describe the approximation of the compressible Navier-Stokes equations with H1-conformal spaces of axisymmetric functions. The weak formulation is implemented in a C++ solver with explicit time marching. The code is first verified with a convergence test on a manufactured solution. The verification is completed by comparing the numerical and analytical solutions in a Poiseuille flow case and a Taylor-Couette flow case. The code is finally applied to the problem of a swirling subsonic air flow in a plasma torch geometry.

Keywords: axisymmetric problem, compressible Navier-Stokes equations, continuous finite elements, swirling flow

Procedia PDF Downloads 174
3304 Matrix Valued Difference Equations with Spectral Singularities

Authors: Serifenur Cebesoy, Yelda Aygar, Elgiz Bairamov

Abstract:

In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.

Keywords: asymptotics, continuous spectrum, difference equations, eigenvalues, jost functions, spectral singularities

Procedia PDF Downloads 446
3303 Derivatives Formulas Involving I-Functions of Two Variables and Generalized M-Series

Authors: Gebreegziabher Hailu Gebrecherkos

Abstract:

This study explores the derivatives of functions defined by I-functions of two variables and their connections to generalized M-series. We begin by defining I-functions, which are generalized functions that encompass various special functions, and analyze their properties. By employing advanced calculus techniques, we derive new formulas for the first and higher-order derivatives of I-functions with respect to their variables; we establish some derivative formulae of the I-function of two variables involving generalized M-series. The special cases of our derivatives yield interesting results.

Keywords: I-function, Mellin-Barners control integral, generalized M-series, higher order derivative

Procedia PDF Downloads 15
3302 A Mathematical Model for Reliability Redundancy Optimization Problem of K-Out-Of-N: G System

Authors: Gak-Gyu Kim, Won Il Jung

Abstract:

According to a remarkable development of science and technology, function and role of the system of engineering fields has recently been diversified. The system has become increasingly more complex and precise, and thus, system designers intended to maximize reliability concentrate more effort at the design stage. This study deals with the reliability redundancy optimization problem (RROP) for k-out-of-n: G system configuration with cold standby and warm standby components. This paper further intends to present the optimal mathematical model through which the following three elements of (i) multiple components choices, (ii) redundant components quantity and (iii) the choice of redundancy strategies may be combined in order to maximize the reliability of the system. Therefore, we focus on the following three issues. First, we consider RROP that there exists warm standby state as well as cold standby state of the component. Second, as eliminating an approximation approach of the previous RROP studies, we construct a precise model for system reliability. Third, given transition time when the state of components changes, we present not simply a workable solution but the advanced method. For the wide applicability of RROPs, moreover, we use absorbing continuous time Markov chain and matrix analytic methods in the suggested mathematical model.

Keywords: RROP, matrix analytic methods, k-out-of-n: G system, MTTF, absorbing continuous time Markov Chain

Procedia PDF Downloads 254
3301 Orthogonal Basis Extreme Learning Algorithm and Function Approximation

Authors: Ying Li, Yan Li

Abstract:

A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.

Keywords: neural network, orthogonal basis extreme learning, function approximation

Procedia PDF Downloads 534
3300 Exploring the Applications of Modular Forms in Cryptography

Authors: Berhane Tewelday Weldhiwot

Abstract:

This research investigates the pivotal role of modular forms in modern cryptographic systems, particularly focusing on their applications in secure communications and data integrity. Modular forms, which are complex analytic functions with rich arithmetic properties, have gained prominence due to their connections to number theory and algebraic geometry. This study begins by outlining the fundamental concepts of modular forms and their historical development, followed by a detailed examination of their applications in cryptographic protocols such as elliptic curve cryptography and zero-knowledge proofs. By employing techniques from analytic number theory, the research delves into how modular forms can enhance the efficiency and security of cryptographic algorithms. The findings suggest that leveraging modular forms not only improves computational performance but also fortifies security measures against emerging threats in digital communication. This work aims to contribute to the ongoing discourse on integrating advanced mathematical theories into practical applications, ultimately fostering innovation in cryptographic methodologies.

Keywords: modular forms, cryptography, elliptic curves, applications, mathematical theory

Procedia PDF Downloads 16
3299 Robust Numerical Solution for Flow Problems

Authors: Gregor Kosec

Abstract:

Simple and robust numerical approach for solving flow problems is presented, where involved physical fields are represented through the local approximation functions, i.e., the considered field is approximated over a local support domain. The approximation functions are then used to evaluate the partial differential operators. The type of approximation, the size of support domain, and the type and number of basis function can be general. The solution procedure is formulated completely through local computational operations. Besides local numerical method also the pressure velocity is performed locally with retaining the correct temporal transient. The complete locality of the introduced numerical scheme has several beneficial effects. One of the most attractive is the simplicity since it could be understood as a generalized Finite Differences Method, however, much more powerful. Presented methodology offers many possibilities for treating challenging cases, e.g. nodal adaptivity to address regions with sharp discontinuities or p-adaptivity to treat obscure anomalies in physical field. The stability versus computation complexity and accuracy can be regulated by changing number of support nodes, etc. All these features can be controlled on the fly during the simulation. The presented methodology is relatively simple to understand and implement, which makes it potentially powerful tool for engineering simulations. Besides simplicity and straightforward implementation, there are many opportunities to fully exploit modern computer architectures through different parallel computing strategies. The performance of the method is presented on the lid driven cavity problem, backward facing step problem, de Vahl Davis natural convection test, extended also to low Prandtl fluid and Darcy porous flow. Results are presented in terms of velocity profiles, convergence plots, and stability analyses. Results of all cases are also compared against published data.

Keywords: fluid flow, meshless, low Pr problem, natural convection

Procedia PDF Downloads 233
3298 Structural and Electronic Properties of the Rock-salt BaxSr1−xS Alloys

Authors: B. Bahloul, K. Babesse, A. Dkhira, Y. Bahloul, L. Amirouche

Abstract:

Structural and electronic properties of the rock-salt BaxSr1−xS are calculated using the first-principles calculations based on the density functional theory (DFT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA). The calculated lattice parameters at equilibrium volume for x=0 and x=1 are in good agreement with the literature data. The BaxSr1−xS alloys are found to be an indirect band gap semiconductor. Moreoever, for the composition (x) ranging between [0-1], we think that our results are well discussed and well predicted.

Keywords: semiconductor, Ab initio calculations, rocksalt, band structure, BaxSr1−xS

Procedia PDF Downloads 395
3297 A New Analytic Solution for the Heat Conduction with Time-Dependent Heat Transfer Coefficient

Authors: Te Wen Tu, Sen Yung Lee

Abstract:

An alternative approach is proposed to develop the analytic solution for one dimensional heat conduction with one mixed type boundary condition and general time-dependent heat transfer coefficient. In this study, the physic meaning of the solution procedure is revealed. It is shown that the shifting function takes the physic meaning of the reciprocal of Biot function in the initial time. Numerical results show the accuracy of this study. Comparing with those given in the existing literature, the difference is less than 0.3%.

Keywords: analytic solution, heat transfer coefficient, shifting function method, time-dependent boundary condition

Procedia PDF Downloads 431
3296 An Optimized RDP Algorithm for Curve Approximation

Authors: Jean-Pierre Lomaliza, Kwang-Seok Moon, Hanhoon Park

Abstract:

It is well-known that Ramer Douglas Peucker (RDP) algorithm greatly depends on the method of choosing starting points. Therefore, this paper focuses on finding such starting points that will optimize the results of RDP algorithm. Specifically, this paper proposes a curve approximation algorithm that finds flat points, called essential points, of an input curve, divides the curve into corner-like sub-curves using the essential points, and applies the RDP algorithm to the sub-curves. The number of essential points play a role on optimizing the approximation results by balancing the degree of shape information loss and the amount of data reduction. Through experiments with curves of various types and complexities of shape, we compared the performance of the proposed algorithm with three other methods, i.e., the RDP algorithm itself and its variants. As a result, the proposed algorithm outperformed the others in term of maintaining the original shapes of the input curve, which is important in various applications like pattern recognition.

Keywords: curve approximation, essential point, RDP algorithm

Procedia PDF Downloads 535
3295 Physical Properties of New Perovskite Kgex3 (X = F, Cl and Br) for Photovoltaic Applications

Authors: B. Bouadjemia, M. Houaria, S. Haida, Y. B. Idriss, A, Akham, M. Matouguia, A. Gasmia, T. Lantria, S. Bentataa

Abstract:

It have investigated the structural, optoelectronic, elastic and thermodynamic properties of KGeX₃ (X = F, Cl and Br) using the density functional theory (DFT) with generalized gradient approximation (GGA) for potential exchange correlation. The modified Becke-Johnson (mBJ-GGA) potential approximation is also used for calculating the optoelectronic properties of the material.The results show that the band structure of the metalloid halide perovskites KGeX₃ (X = F, Cl and Br) have a semiconductor behavior with direct band gap at R-R direction, the gap energy values for each compound as following: 2.83, 1.27 and 0.79eV respectively. The optical properties, such as real and imaginary parts of the dielectric functions, refractive index, reflectivity and absorption coefficient, are investigated. As results, these compounds are competent candidates for optoelectronic and photovoltaic devices in this range of the energy spectrum.

Keywords: density functional theory (DFT), semiconductor behavior, metalloid halide perovskites, optical propertie and photovoltaic devices

Procedia PDF Downloads 61