Search results for: approximate solutions
4178 A Hybrid Block Multistep Method for Direct Numerical Integration of Fourth Order Initial Value Problems
Authors: Adamu S. Salawu, Ibrahim O. Isah
Abstract:
Direct solution to several forms of fourth-order ordinary differential equations is not easily obtained without first reducing them to a system of first-order equations. Thus, numerical methods are being developed with the underlying techniques in the literature, which seeks to approximate some classes of fourth-order initial value problems with admissible error bounds. Multistep methods present a great advantage of the ease of implementation but with a setback of several functions evaluation for every stage of implementation. However, hybrid methods conventionally show a slightly higher order of truncation for any k-step linear multistep method, with the possibility of obtaining solutions at off mesh points within the interval of solution. In the light of the foregoing, we propose the continuous form of a hybrid multistep method with Chebyshev polynomial as a basis function for the numerical integration of fourth-order initial value problems of ordinary differential equations. The basis function is interpolated and collocated at some points on the interval [0, 2] to yield a system of equations, which is solved to obtain the unknowns of the approximating polynomial. The continuous form obtained, its first and second derivatives are evaluated at carefully chosen points to obtain the proposed block method needed to directly approximate fourth-order initial value problems. The method is analyzed for convergence. Implementation of the method is done by conducting numerical experiments on some test problems. The outcome of the implementation of the method suggests that the method performs well on problems with oscillatory or trigonometric terms since the approximations at several points on the solution domain did not deviate too far from the theoretical solutions. The method also shows better performance compared with an existing hybrid method when implemented on a larger interval of solution.Keywords: Chebyshev polynomial, collocation, hybrid multistep method, initial value problems, interpolation
Procedia PDF Downloads 1244177 Co-Precipitation Method for the Fabrication of Charge-Transfer Molecular Crystal Nanocapsules
Authors: Rabih Al-Kaysi
Abstract:
When quasi-stable solutions of 9-methylanthracene (pi-electron donor, 0.0005 M) and 1,2,4,5-Tetracyanobenzene (pi-electron acceptor, 0.0005 M) in aqueous sodium dodecyl sulfate (SDS, 0.025 M) were gently mixed, uniform-shaped rectangular charge-transfer nanocrystals precipitated out. These red colored charge-transfer (CT) crystals were composed of a 1:1-mole ratio of acceptor/ donor and are highly insoluble in water/SDS solution. The rectangular crystals morphology is semi hollow with symmetrical twin pockets reminiscent of nanocapsules. For a typical crop of nanocapsules, the dimensions are 21 x 6 x 0.5 microns with an approximate hollow volume of 1.5 x 105 nm3. By varying the concentration of aqueous SDS, mixing duration and incubation temperature, we can control the size and volume of the nanocapsules. The initial number of CT seed nanoparticles, formed by mixing the D and A solutions, determined the number and dimensions of the obtained nanocapsules formed after several hours of incubation under still conditions. Prolonged mixing of the donor and acceptor solutions resulted in plenty of initial seeds hence smaller nanocapsules. Short mixing times yields less seed formation and larger micron-sized capsules. The addition of Doxorubicin in situ with the quasi-stable solutions while mixing leads to the formation of CT nanocapsules with Doxorubicin sealed inside. The Doxorubicin can be liberated from the nanocapsules by cracking them using ultrasonication. This method can be extended to other binary CT complex crystals as well.Keywords: charge-transfer, nanocapsules, nanocrystals, doxorubicin
Procedia PDF Downloads 2144176 Stress Analysis of Tubular Bonded Joints under Torsion and Hygrothermal Effects Using DQM
Authors: Mansour Mohieddin Ghomshei, Reza Shahi
Abstract:
Laminated composite tubes with adhesively bonded joints are widely used in aerospace and automotive industries as well as oil and gas industries. In this research, adhesively tubular single lap joints subjected to torsional and hygrothermal loadings are studied using the differential quadrature method (DQM). The analysis is based on the classical shell theory. At first, an approximate closed form solution is developed by omitting the lateral deflections in the connecting tubes. Using the analytical model, the circumferential displacements in tubes and the shear stresses in the interfacing adhesive layer are determined. Then, a numerical formulation is presented using DQM in which the lateral deflections are taken into account. By using the DQM formulation, the circumferential and radial displacements in tubes as well as shear and peel stresses in the adhesive layer are calculated. Results obtained from the proposed DQM solutions are compared well with those of the approximate analytical model and those of some published references. Finally using the DQM model, parametric studies are carried out to investigate the influence of various parameters such as adhesive layer thickness, torsional loading, overlap length, tubes radii, relative humidity, and temperature.Keywords: adhesively bonded joint, differential quadrature method (DQM), hygrothermal, laminated composite tube
Procedia PDF Downloads 3034175 Series Solutions to Boundary Value Differential Equations
Authors: Armin Ardekani, Mohammad Akbari
Abstract:
We present a method of generating series solutions to large classes of nonlinear differential equations. The method is well suited to be adapted in mathematical software and unlike the available commercial solvers, we are capable of generating solutions to boundary value ODEs and PDEs. Many of the generated solutions converge to closed form solutions. Our method can also be applied to systems of ODEs or PDEs, providing all the solutions efficiently. As examples, we present results to many difficult differential equations in engineering fields.Keywords: computational mathematics, differential equations, engineering, series
Procedia PDF Downloads 3364174 Solution of Hybrid Fuzzy Differential Equations
Authors: Mahmood Otadi, Maryam Mosleh
Abstract:
The hybrid differential equations have a wide range of applications in science and engineering. In this paper, the homotopy analysis method (HAM) is applied to obtain the series solution of the hybrid differential equations. Using the homotopy analysis method, it is possible to find the exact solution or an approximate solution of the problem. Comparisons are made between improved predictor-corrector method, homotopy analysis method and the exact solution. Finally, we illustrate our approach by some numerical example.Keywords: fuzzy number, fuzzy ODE, HAM, approximate method
Procedia PDF Downloads 5134173 A Framework Based on Dempster-Shafer Theory of Evidence Algorithm for the Analysis of the TV-Viewers’ Behaviors
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we propose an approach of detecting the behavior of the viewers of a TV program in a non-controlled environment. The experiment we propose is based on the use of three types of connected objects (smartphone, smart watch, and a connected remote control). 23 participants were observed while watching their TV programs during three phases: before, during and after watching a TV program. Their behaviors were detected using an approach based on The Dempster Shafer Theory (DST) in two phases. The first phase is to approximate dynamically the mass functions using an approach based on the correlation coefficient. The second phase is to calculate the approximate mass functions. To approximate the mass functions, two approaches have been tested: the first approach was to divide each features data space into cells; each one has a specific probability distribution over the behaviors. The probability distributions were computed statistically (estimated by empirical distribution). The second approach was to predict the TV-viewing behaviors through the use of classifiers algorithms and add uncertainty to the prediction based on the uncertainty of the model. Results showed that mixing the fusion rule with the computation of the initial approximate mass functions using a classifier led to an overall of 96%, 95% and 96% success rate for the first, second and third TV-viewing phase respectively. The results were also compared to those found in the literature. This study aims to anticipate certain actions in order to maintain the attention of TV viewers towards the proposed TV programs with usual connected objects, taking into account the various uncertainties that can be generated.Keywords: Iot, TV-viewing behaviors identification, automatic classification, unconstrained environment
Procedia PDF Downloads 2294172 Mapping Methods to Solve a Modified Korteweg de Vries Type Equation
Authors: E. V. Krishnan
Abstract:
In this paper, we employ mapping methods to construct exact travelling wave solutions for a modified Korteweg-de Vries equation. We have derived periodic wave solutions in terms of Jacobi elliptic functions, kink solutions and singular wave solutions in terms of hyperbolic functions.Keywords: travelling wave solutions, Jacobi elliptic functions, solitary wave solutions, Korteweg-de Vries equation
Procedia PDF Downloads 3324171 Exploring Solutions in Extended Horava-Lifshitz Gravity
Authors: Aziza Altaibayeva, Ertan Güdekli, Ratbay Myrzakulov
Abstract:
In this letter, we explore exact solutions for the Horava-Lifshitz gravity. We use of an extension of this theory with first order dynamical lapse function. The equations of motion have been derived in a fully consistent scenario. We assume that there are some spherically symmetric families of exact solutions of this extended theory of gravity. We obtain exact solutions and investigate the singularity structures of these solutions. Specially, an exact solution with the regular horizon is found.Keywords: quantum gravity, Horava-Lifshitz gravity, black hole, spherically symmetric space times
Procedia PDF Downloads 5824170 Formulating Rough Approximations in Information Tables with Possibilistic Information
Authors: Michinori Nakata, Hiroshi Sakai
Abstract:
A rough set, which consists of lower and upper approximations, is formulated in information tables containing possibilistic information. First, lower and upper approximations on the basis of possible world semantics in the same way as Lipski did in the field of incomplete databases are shown in order to clarify fundamentals of rough sets under possibilistic information. Possibility and necessity measures are used, as is done in possibilistic databases. As a result, each object has certain and possible membership degrees to lower and upper approximations, which degrees are the lower and upper bounds. Therefore, the degree that the object belongs to lower and upper approximations is expressed by an interval value. And the complementary property linked with the lower and upper approximations holds, as is valid under complete information. Second, the approach based on indiscernibility relations, which is proposed by Dubois and Prade, are extended in three cases. The first case is that objects used to approximate a set of objects are characterized by possibilistic information. The second case is that objects used to approximate a set of objects with possibilistic information are characterized by complete information. The third case is that objects that are characterized by possibilistic information approximate a set of objects with possibilistic information. The extended approach create the same results as the approach based on possible world semantics. This justifies our extension.Keywords: rough sets, possibilistic information, possible world semantics, indiscernibility relations, lower approximations, upper approximations
Procedia PDF Downloads 3214169 Optimization of Cloud Classification Using Particle Swarm Algorithm
Authors: Riffi Mohammed Amine
Abstract:
A cloud is made up of small particles of liquid water or ice suspended in the atmosphere, which generally do not reach the ground. Various methods are used to classify clouds. This article focuses specifically on a technique known as particle swarm optimization (PSO), an AI approach inspired by the collective behaviors of animals living in groups, such as schools of fish and flocks of birds, and a method used to solve complex classification and optimization problems with approximate solutions. The proposed technique was evaluated using a series of second-generation METOSAT images taken by the MSG satellite. The acquired results indicate that the proposed method gave acceptable results.Keywords: remote sensing, particle swarm optimization, clouds, meteorological image
Procedia PDF Downloads 194168 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method
Authors: Emad K. Jaradat, Ala’a Al-Faqih
Abstract:
Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.Keywords: non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two-dimensional Schrodinger equation
Procedia PDF Downloads 1874167 Energy States of Some Diatomic Molecules: Exact Quantization Rule Approach
Authors: Babatunde J. Falaye
Abstract:
In this study, we obtain the approximate analytical solutions of the radial Schrödinger equation for the Deng-Fan diatomic molecular potential by using exact quantization rule approach. The wave functions have been expressed by hypergeometric functions via the functional analysis approach. An extension to rotational-vibrational energy eigenvalues of some diatomic molecules are also presented. It is shown that the calculated energy levels are in good agreement with the ones obtained previously E_nl-D (shifted Deng-Fan).Keywords: Schrödinger equation, exact quantization rule, functional analysis, Deng-Fan potential
Procedia PDF Downloads 5014166 A New Approach for Generalized First Derivative of Nonsmooth Functions Using Optimization
Authors: Mohammad Mehdi Mazarei, Ali Asghar Behroozpoor
Abstract:
In this paper, we define an optimization problem corresponding to smooth and nonsmooth functions which its optimal solution is the first derivative of these functions in a domain. For this purpose, a linear programming problem corresponding to optimization problem is obtained. The optimal solution of this linear programming problem is the approximate generalized first derivative. In fact, we approximate generalized first derivative of nonsmooth functions as tailor series. We show the efficiency of our approach by some smooth and nonsmooth functions in some examples.Keywords: general derivative, linear programming, optimization problem, smooth and nonsmooth functions
Procedia PDF Downloads 5574165 Development of a Model Based on Wavelets and Matrices for the Treatment of Weakly Singular Partial Integro-Differential Equations
Authors: Somveer Singh, Vineet Kumar Singh
Abstract:
We present a new model based on viscoelasticity for the Non-Newtonian fluids.We use a matrix formulated algorithm to approximate solutions of a class of partial integro-differential equations with the given initial and boundary conditions. Some numerical results are presented to simplify application of operational matrix formulation and reduce the computational cost. Convergence analysis, error estimation and numerical stability of the method are also investigated. Finally, some test examples are given to demonstrate accuracy and efficiency of the proposed method.Keywords: Legendre Wavelets, operational matrices, partial integro-differential equation, viscoelasticity
Procedia PDF Downloads 3374164 Markov-Chain-Based Optimal Filtering and Smoothing
Authors: Garry A. Einicke, Langford B. White
Abstract:
This paper describes an optimum filter and smoother for recovering a Markov process message from noisy measurements. The developments follow from an equivalence between a state space model and a hidden Markov chain. The ensuing filter and smoother employ transition probability matrices and approximate probability distribution vectors. The properties of the optimum solutions are retained, namely, the estimates are unbiased and minimize the variance of the output estimation error, provided that the assumed parameter set are correct. Methods for estimating unknown parameters from noisy measurements are discussed. Signal recovery examples are described in which performance benefits are demonstrated at an increased calculation cost.Keywords: optimal filtering, smoothing, Markov chains
Procedia PDF Downloads 3174163 Application of Residual Correction Method on Hyperbolic Thermoelastic Response of Hollow Spherical Medium in Rapid Transient Heat Conduction
Authors: Po-Jen Su, Huann-Ming Chou
Abstract:
In this article we uses the residual correction method to deal with transient thermoelastic problems with a hollow spherical region when the continuum medium possesses spherically isotropic thermoelastic properties. Based on linear thermoelastic theory, the equations of hyperbolic heat conduction and thermoelastic motion were combined to establish the thermoelastic dynamic model with consideration of the deformation acceleration effect and non-Fourier effect under the condition of transient thermal shock. The approximate solutions of temperature and displacement distributions are obtained using the residual correction method based on the maximum principle in combination with the finite difference method, making it easier and faster to obtain upper and lower approximations of exact solutions. The proposed method is found to be an effective numerical method with satisfactory accuracy. Moreover, the result shows that the effect of transient thermal shock induced by deformation acceleration is enhanced by non-Fourier heat conduction with increased peak stress. The influence on the stress increases with the thermal relaxation time.Keywords: maximum principle, non-Fourier heat conduction, residual correction method, thermo-elastic response
Procedia PDF Downloads 4274162 General Time-Dependent Sequenced Route Queries in Road Networks
Authors: Mohammad Hossein Ahmadi, Vahid Haghighatdoost
Abstract:
Spatial databases have been an active area of research over years. In this paper, we study how to answer the General Time-Dependent Sequenced Route queries. Given the origin and destination of a user over a time-dependent road network graph, an ordered list of categories of interests and a departure time interval, our goal is to find the minimum travel time path along with the best departure time that minimizes the total travel time from the source location to the given destination passing through a sequence of points of interests belonging to each of the specified categories of interest. The challenge of this problem is the added complexity to the optimal sequenced route queries, where we assume that first the road network is time dependent, and secondly the user defines a departure time interval instead of one single departure time instance. For processing general time-dependent sequenced route queries, we propose two solutions as Discrete-Time and Continuous-Time Sequenced Route approaches, finding approximate and exact solutions, respectively. Our proposed approaches traverse the road network based on A*-search paradigm equipped with an efficient heuristic function, for shrinking the search space. Extensive experiments are conducted to verify the efficiency of our proposed approaches.Keywords: trip planning, time dependent, sequenced route query, road networks
Procedia PDF Downloads 3224161 A Spectral Decomposition Method for Ordinary Differential Equation Systems with Constant or Linear Right Hand Sides
Authors: R. B. Ogunrinde, C. C. Jibunoh
Abstract:
In this paper, a spectral decomposition method is developed for the direct integration of stiff and nonstiff homogeneous linear (ODE) systems with linear, constant, or zero right hand sides (RHSs). The method does not require iteration but obtains solutions at any random points of t, by direct evaluation, in the interval of integration. All the numerical solutions obtained for the class of systems coincide with the exact theoretical solutions. In particular, solutions of homogeneous linear systems, i.e. with zero RHS, conform to the exact analytical solutions of the systems in terms of t.Keywords: spectral decomposition, linear RHS, homogeneous linear systems, eigenvalues of the Jacobian
Procedia PDF Downloads 3304160 Investigating Perception of Iranian Organizations on Internet of Things Solutions and Applications
Authors: Changiz Valmohammadi
Abstract:
The main purpose of this study is to explore the perception of Iranian experts and executive managers of sample organizations on the benefits and barriers of Internet of Things (IoT) solutions implementation. Based on the review of the related literature and web sites, benefits and barriers of successful implementation to IoT solutions were identified. Through a self-administered questionnaire which was collected from 67 Iranian organizations the ranking and importance of benefits and barriers of IoT solutions implementation were determined based on the perception of the experts of the surveyed organizations. Analysis of data and the obtained results revealed that “improved customer experience” and “Supply chain optimization and responsiveness” are the most important benefits that the survey organizations expect to reap as a result of IoT solutions implementation. Also,” Integration challenges" and “cannot find right suppliers” were ranked as the most challenging barriers to IoT solutions implementation.Keywords: internet of things (IoT), exploratory study, benefits, barriers, Iran
Procedia PDF Downloads 5204159 Solution of Some Boundary Value Problems of the Generalized Theory of Thermo-Piezoelectricity
Authors: Manana Chumburidze
Abstract:
We have considered a non-classical model of dynamical problems for a conjugated system of differential equations arising in thermo-piezoelectricity, which was formulated by Toupin – Mindlin. The basic concepts and the general theory of solvability for isotropic homogeneous elastic media is considered. They are worked by using the methods the Laplace integral transform, potential method and singular integral equations. Approximate solutions of mixed boundary value problems for finite domain, bounded by the some closed surface are constructed. They are solved in explicitly by using the generalized Fourier's series method.Keywords: thermo-piezoelectricity, boundary value problems, Fourier's series, isotropic homogeneous elastic media
Procedia PDF Downloads 4664158 Nonlinear Analysis in Investigating the Complexity of Neurophysiological Data during Reflex Behavior
Authors: Juliana A. Knocikova
Abstract:
Methods of nonlinear signal analysis are based on finding that random behavior can arise in deterministic nonlinear systems with a few degrees of freedom. Considering the dynamical systems, entropy is usually understood as a rate of information production. Changes in temporal dynamics of physiological data are indicating evolving of system in time, thus a level of new signal pattern generation. During last decades, many algorithms were introduced to assess some patterns of physiological responses to external stimulus. However, the reflex responses are usually characterized by short periods of time. This characteristic represents a great limitation for usual methods of nonlinear analysis. To solve the problems of short recordings, parameter of approximate entropy has been introduced as a measure of system complexity. Low value of this parameter is reflecting regularity and predictability in analyzed time series. On the other side, increasing of this parameter means unpredictability and a random behavior, hence a higher system complexity. Reduced neurophysiological data complexity has been observed repeatedly when analyzing electroneurogram and electromyogram activities during defence reflex responses. Quantitative phrenic neurogram changes are also obvious during severe hypoxia, as well as during airway reflex episodes. Concluding, the approximate entropy parameter serves as a convenient tool for analysis of reflex behavior characterized by short lasting time series.Keywords: approximate entropy, neurophysiological data, nonlinear dynamics, reflex
Procedia PDF Downloads 3004157 Mapping Method to Solve a Nonlinear Schrodinger Type Equation
Authors: Edamana Vasudevan Krishnan
Abstract:
This paper studies solitons in optical materials with the help of Mapping Method. Two types of nonlinear media have been investigated, namely, the cubic nonlinearity and the quintic nonlinearity. The soliton solutions, shock wave solutions and singular solutions have been derives with certain constraint conditions.Keywords: solitons, integrability, metamaterials, mapping method
Procedia PDF Downloads 4944156 The Complete Modal Derivatives
Authors: Sebastian Andersen, Peter N. Poulsen
Abstract:
The use of basis projection in the structural dynamic analysis is frequently applied. The purpose of the method is to improve the computational efficiency, while maintaining a high solution accuracy, by projection the governing equations onto a small set of carefully selected basis vectors. The present work considers basis projection in kinematic nonlinear systems with a focus on two widely used basis vectors; the system mode shapes and their modal derivatives. Particularly the latter basis vectors are given special attention since only approximate modal derivatives have been used until now. In the present work the complete modal derivatives, derived from perturbation methods, are presented and compared to the previously applied approximate modal derivatives. The correctness of the complete modal derivatives is illustrated by use of an example of a harmonically loaded kinematic nonlinear structure modeled by beam elements.Keywords: basis projection, finite element method, kinematic nonlinearities, modal derivatives
Procedia PDF Downloads 2374155 The Construction of Exact Solutions for the Nonlinear Lattice Equation via Coth and Csch Functions Method
Authors: A. Zerarka, W. Djoudi
Abstract:
The method developed in this work uses a generalised coth and csch funtions method to construct new exact travelling solutions to the nonlinear lattice equation. The technique of the homogeneous balance method is used to handle the appropriated solutions.Keywords: coth functions, csch functions, nonlinear partial differential equation, travelling wave solutions
Procedia PDF Downloads 6644154 Upon One Smoothing Problem in Project Management
Authors: Dimitri Golenko-Ginzburg
Abstract:
A CPM network project with deterministic activity durations, in which activities require homogenous resources with fixed capacities, is considered. The problem is to determine the optimal schedule of starting times for all network activities within their maximal allowable limits (in order not to exceed the network's critical time) to minimize the maximum required resources for the project at any point in time. In case when a non-critical activity may start only at discrete moments with the pregiven time span, the problem becomes NP-complete and an optimal solution may be obtained via a look-over algorithm. For the case when a look-over requires much computational time an approximate algorithm is suggested. The algorithm's performance ratio, i.e., the relative accuracy error, is determined. Experimentation has been undertaken to verify the suggested algorithm.Keywords: resource smoothing problem, CPM network, lookover algorithm, lexicographical order, approximate algorithm, accuracy estimate
Procedia PDF Downloads 3024153 Symbolic Computation for the Multi-Soliton Solutions of a Class of Fifth-Order Evolution Equations
Authors: Rafat Alshorman, Fadi Awawdeh
Abstract:
By employing a simplified bilinear method, a class of generalized fifth-order KdV (gfKdV) equations which arise in nonlinear lattice, plasma physics and ocean dynamics are investigated. With the aid of symbolic computation, both solitary wave solutions and multiple-soliton solutions are obtained. These new exact solutions will extend previous results and help us explain the properties of nonlinear solitary waves in many physical models in shallow water. Parametric analysis is carried out in order to illustrate that the soliton amplitude, width and velocity are affected by the coefficient parameters in the equation.Keywords: multiple soliton solutions, fifth-order evolution equations, Cole-Hopf transformation, Hirota bilinear method
Procedia PDF Downloads 3234152 The Construction of the Semigroup Which Is Chernoff Equivalent to Statistical Mixture of Quantizations for the Case of the Harmonic Oscillator
Authors: Leonid Borisov, Yuri Orlov
Abstract:
We obtain explicit formulas of finitely multiple approximations of the equilibrium density matrix for the case of the harmonic oscillator using Chernoff's theorem and the notion of semigroup which is Chernoff equivalent to average semigroup. Also we found explicit formulas for the corresponding approximate Wigner functions and average values of the observable. We consider a superposition of τ -quantizations representing a wide class of linear quantizations. We show that the convergence of the approximations of the average values of the observable is not uniform with respect to the Gibbs parameter. This does not allow to represent approximate expression as the sum of the exact limits and small deviations evenly throughout the temperature range with a given order of approximation.Keywords: Chernoff theorem, Feynman formulas, finitely multiple approximation, harmonic oscillator, Wigner function
Procedia PDF Downloads 4394151 Constant Order Predictor Corrector Method for the Solution of Modeled Problems of First Order IVPs of ODEs
Authors: A. A. James, A. O. Adesanya, M. R. Odekunle, D. G. Yakubu
Abstract:
This paper examines the development of one step, five hybrid point method for the solution of first order initial value problems. We adopted the method of collocation and interpolation of power series approximate solution to generate a continuous linear multistep method. The continuous linear multistep method was evaluated at selected grid points to give the discrete linear multistep method. The method was implemented using a constant order predictor of order seven over an overlapping interval. The basic properties of the derived corrector was investigated and found to be zero stable, consistent and convergent. The region of absolute stability was also investigated. The method was tested on some numerical experiments and found to compete favorably with the existing methods.Keywords: interpolation, approximate solution, collocation, differential system, half step, converges, block method, efficiency
Procedia PDF Downloads 3374150 Variable-Fidelity Surrogate Modelling with Kriging
Authors: Selvakumar Ulaganathan, Ivo Couckuyt, Francesco Ferranti, Tom Dhaene, Eric Laermans
Abstract:
Variable-fidelity surrogate modelling offers an efficient way to approximate function data available in multiple degrees of accuracy each with varying computational cost. In this paper, a Kriging-based variable-fidelity surrogate modelling approach is introduced to approximate such deterministic data. Initially, individual Kriging surrogate models, which are enhanced with gradient data of different degrees of accuracy, are constructed. Then these Gradient enhanced Kriging surrogate models are strategically coupled using a recursive CoKriging formulation to provide an accurate surrogate model for the highest fidelity data. While, intuitively, gradient data is useful to enhance the accuracy of surrogate models, the primary motivation behind this work is to investigate if it is also worthwhile incorporating gradient data of varying degrees of accuracy.Keywords: Kriging, CoKriging, Surrogate modelling, Variable- fidelity modelling, Gradients
Procedia PDF Downloads 5584149 Second Order Solitary Solutions to the Hodgkin-Huxley Equation
Authors: Tadas Telksnys, Zenonas Navickas, Minvydas Ragulskis
Abstract:
Necessary and sufficient conditions for the existence of second order solitary solutions to the Hodgkin-Huxley equation are derived in this paper. The generalized multiplicative operator of differentiation helps not only to construct closed-form solitary solutions but also automatically generates conditions of their existence in the space of the equation's parameters and initial conditions. It is demonstrated that bright, kink-type solitons and solitary solutions with singularities can exist in the Hodgkin-Huxley equation.Keywords: Hodgkin-Huxley equation, solitary solution, existence condition, operator method
Procedia PDF Downloads 382