Search results for: LHCb physics
492 An Investigation on Physics Teachers’ Views Towards Context Based Learning Approach
Authors: Medine Baran, Abdulkadir Maskan, Mehmet Ikbal Yetişir, Mukadder Baran, Azmi Türkan, Şeyma Yaşar
Abstract:
The purpose of this study was to determine the views of physics teachers from several secondary schools in Turkey towards context-based learning approach. In the study, the context-based learning opinion questionnaire developed by the researchers for use as the data collection tool was piloted with 250 physics teachers. The questionnaire examined by the researchers and field experts was initially made up of 53 items. Following the evaluation process of the questionnaire, it included 37 items. In this way, the reliability and validity process of the measurement tool was completed. In the end, the finalized questionnaire was applied to 144 physics teachers from several secondary schools in different cities in Turkey (F:73, M:71). In the study, the participants were determined based on ease of reaching them. The results revealed no remarkable difference between the views of the physics teachers with respect to their gender, region and school. However, when the items in the questionnaire were considered, it was found that the participants interestingly agreed on some of the choices in the items. Depending on this, it was found that there were high levels of differences between the frequencies of those who agreed and those who disagreed with the 16 items in the questionnaire. Therefore, as the following phase of the present study, further research has been planned using the same questions. Based on these questions, which received opposite responses, physics teachers will be asked for their views about the results of the study using the interview technique, one of qualitative research techniques. In this way, the results will be evaluated both by the researchers and by the participants, and the problems and difficulties will be determined. As a result, related suggestions can be put forward.Keywords: context bases learning, physics teachers, views
Procedia PDF Downloads 373491 Enriching Interaction in the Classroom Based on Typologies of Experiments and Mathematization in Physics Teaching
Authors: Olga Castiblanco, Diego Vizcaíno
Abstract:
Changing the traditional way of using experimentation in science teaching is quite a challenge. This research results talk about the characterization of physics experiments, not because of the topic it deals with, nor depending on the material used in the assemblies, but related to the possibilities it offers to enrich interaction in the classroom and thereby contribute to the development of scientific thinking skills. It is an action-research of type intervention in the classroom, with four courses of Physics Teaching undergraduate students from a public university in Bogotá. This process allows characterizing typologies such as discrepant, homemade, illustrative, research, recreational, crucial, mental, and virtual experiments. Students' production and researchers' reports on each class were the most relevant data. Content analysis techniques let to categorize the information and obtain results on the richness that each typology of experiment offers when interacting in the classroom. Results show changes in the comprehension of new teachers' role, far from being the possessor and transmitter of the truth. Besides, they understand strategies to engage students effectively since the class advances extending ideas, reflections, debates, and questions, either towards themselves, their classmates, or the teacher.Keywords: physics teacher training, non-traditional experimentation, contextualized education, didactics of physics
Procedia PDF Downloads 95490 Systematic Review of Misconceptions: Tools for Diagnostics and Remediation Models for Misconceptions in Physics
Authors: Muhammad Iqbal, Edi Istiyono
Abstract:
Misconceptions are one of the problems in physics learning where students' understanding is not in line with scientific theory. The aim of this research is to find diagnostic tools to identify misconceptions and how to remediate physics misconceptions. In this research, the articles that will be reviewed come from the Scopus database related to physics misconceptions from 2013-2023. The articles obtained from the Scopus database were then selected according to the Prisma model, so 29 articles were obtained that focused on discussing physics misconceptions, especially regarding diagnostic tools and remediation methods. Currently, the most widely used diagnostic tool is the four-tier test, which is able to measure students' misconceptions in depth by knowing whether students are guessing or not and from then on, there is also a trend toward five-tier diagnostic tests with additional sources of information obtained. So that the origin of students' misconceptions is known. There are several ways to remediate student misconceptions, namely 11 ways and one of the methods used is digital practicum so that abstract things can be visualized into real ones. This research is limited to knowing what tools are used to diagnose and remediate misconceptions, so it is not yet known how big the effect of remediation methods is on misconceptions. The researcher recommends that in the future further research can be carried out to find out the most appropriate remediation method for remediating student misconceptions.Keywords: misconception, remediation, systematic review, tools
Procedia PDF Downloads 36489 Monitoring and Evaluation of Master Science Trainee Educational Students to their Practicum in Teaching Physics for Improving and Creating Attitude Skills for Sustainable Developing Upper Secondary Students in Thailand
Authors: T. Santiboon, S. Tongbu, P. S. Saihong
Abstract:
This study focuses on investigating students' perceptions of their physics classroom learning environments of their individualizations and their interactions with the instructional practicum in teaching physics of the master science trainee educational students for improving and creating attitude skills’ sustainable development toward physics for upper secondary educational students in Thailand. Associations between these perceptions and students' attitudes toward physics were also determined. The learning environment perceptions were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI) modified from the original Science Laboratory Environment Inventory. The 25-item Individualized Classroom Environment Questionnaire (ICEQ) was assessed those dimensions which distinguish individualized physics classrooms from convention on individualized open and inquiry-based education Teacher-student interactions were assessed with the 48-item Questionnaires on Teacher Interaction (QTI). Both these questionnaires have an Actual Form (assesses the class as it actually is) and a Preferred Form (asks the students what they would prefer their class to be like - the ideal situation). Students’ creating attitude skills’ sustainable development toward physics were assessed with the Test Of Physics-Related Attitude (TOPRA) modified from the original Test Of Science-Related Attitude (TOSRA) The questionnaires were administered in three phases with the Custer Random Sampling technique to a sample consisted of 989 students in 28 physics classes from 10 schools at the grade 10, 11, and 12 levels in the Secondary Educational Service Area 26 (Maha Sarakham Province) and Area 27 (Roi-Et). Statistically significant differences were found between the students' perceptions of actual-1, actual-2 and preferred environments of their physics laboratory and distinguish individualized classrooms, and teacher interpersonal behaviors with their improving and creating attitudes skills’ sustainable development to their physics classes also were found. Predictions of the monitoring and evaluation of master science trainee educational students of their practicum in teaching physics; students’ skills developments of their physics achievements’ sustainable for the set of actual and preferred environments as a whole and physics related attitudes also were correlated. The R2 values indicate that 58%, 67%, and 84% of the variances in students’ attitudes to their actuale-1, actual-2 and preferred for the PLEI; 42%,science trainee educational students of their practicum in teaching physics; students’ skill developments of their physics achievements’ sustainable for the set of actual and preferred environments as a whole and physics related attitudes also were correlated. The R2 values indicate that 58%, 67%, and 84% of the variances in students’ attitudes to their actuale-1, actual-2 and preferred for the PLEI; 42%, 63%, and 72% for the ICEQ, and 38%, 59%, and 68% for the QTI in physics environment classes were attributable to their perceptions of their actual and preferred physics environments and their developing creative science skills’ sustainable toward physics, consequently. Based on all the findings, suggestions for improving the physics laboratory and individualized classes and teacher interpersonal behaviors with students' perceptions are provided of their improving and creating attitude skills’ sustainable development by the master science trainee educational students ’ instructional administrations.Keywords: promotion, instructional model, qualitative method, reflective thinking, trainee teacher student
Procedia PDF Downloads 268488 Science Subjects Studied and Relation to Income after University Graduation: An Empirical Analysis in Japan
Authors: Kazuo Nishimura, Junichi Hirata, Tadashi Yagi, Junko Urasaka
Abstract:
This paper is an investigation of the effect of science education during the high school education how science graduates of universities are appreciated in the labor market in Japan. We conducted a survey utilizing the internet and analyzed the subjects they were good at and their annual income. The results confirm that among science graduates, workers adept at physics tend to have higher incomes compared to workers good at other subjects. Generational analysis based on the curriculum guideline amendments reveals that the generational difference is small among science majors who are good at physics.Keywords: curriculum, income, physics, science
Procedia PDF Downloads 284487 Physics Recitations for College Physics Courses Using Breakout Rooms during COVID Pandemic
Authors: Pratheesh Jakkala
Abstract:
This paper addresses the use of breakout sessions to conduct successful weekly physics recitations for College Physics I and II at a large University in remote teaching method during COVID-19 pandemic. All breakout sessions are synchronous, conducted live, and handled by teaching assistants. A two-prong approach is used to maintain the integrity of recitations. Three different conference platforms WebEx, Zoom, and Canvas conferences, were tested, and BigBlue button using Canvas was adopted. The results and experiences of all three learning platforms are presented in this paper. Recitation questions were assigned on WebAssign learning platform and a standard five-question template developed by the instructor was used for group discussions and active peer-peer engagement. Breakout sessions feature of BigBlueButton in Canvas conferences was successfully implemented. Each breakout session consists of a team of 4 students. An online whiteboard, chat window options were used for live teamwork. Student peer-peer interactions, Teaching Assistants’ interaction with students were video and audio recorded. A total of 72 students in College Physics II and 55 students in College Physics I was enrolled. 82% of students agreed that method under study is better than previous methods. The study addressed the quality of student teamwork, student attitude towards problem-solving, and student performance in the exams.Keywords: recitations, breakout rooms, online learning platforms, COVID pandemic
Procedia PDF Downloads 110486 Diagnostics via Biophysical Resistotrons
Authors: Matt Vellkorn, Mara Sarinski
Abstract:
The field of advanced diagnostics is a very rapidly changing one. A new technology that has not been fully used yet are resistotrons. A resistotron is a physical device thatis used to detect the presence of low energy alpha particles. It has been used for many years in nuclear physics as an alpha particle detector. Since they are used in nuclear physics, they have to be accurate. They have to be able to differentiate between alpha particles and other types of radiation. The resistotrons are primarily used for safety. They are used in areas where people or animals can get exposed to radiation. A typical example is in the treatment of nuclear waste. As it is with any nuclear physics instrument, a resistotron has to be very accurate and reliable. In the past, the instrument was very expensive because they were made out of copper. Today, they are made out of brass. The main difference is that brass is much less expensive than copper.Keywords: biosensors, resistotrons, biophysics, diagnostics
Procedia PDF Downloads 122485 Impact of Ethnoscience-Based Teaching Approach: Thinking Relevance, Effectiveness and Learner Retention in Physics Concepts of Optics
Authors: Rose C.Anamezie, Mishack T. Gumbo
Abstract:
Physics learners’ poor retention, which culminates in poor achievement due to teaching approaches that are unrelated to learners’ in non-Western cultures, warranted the study. The tenet of this study was to determine the effectiveness of the ethnoscience-based teaching (EBT) approach on learners’ retention in the Physics concept of Optics in the Awka Education zone of Anambra State- Nigeria. Two research questions and three null hypotheses tested at a 0.05 level of significance guided the study. The design adopted for the study was Quasi-experimental. Specifically, a non-equivalent control group design was adopted. The population for the study was 4,825 SS2 Physics learners in the zone. 160 SS2 learners were sampled using purposive and random sampling. The experimental group was taught rectilinear propagation of light (RPL) using the EBT approach, while the control group was taught the same topic using the lecture method. The instrument for data collection was the 50 Physics Retention Test (PRT) which was validated by three experts and tested for reliability using Kuder-Richardson’s formula-20, which yielded coefficients of 0.81. The data were analysed using mean, standard deviation and analysis of co-variance (p< .05). The results showed higher retention for the use of the EBT approach than the lecture method, while there was no significant gender-based factor in the learners’ retention in Physics. It was recommended that the EBT approach, which bridged the gender gap in Physics retention, be adopted in secondary school teaching and learning since it could transform science teaching, enhance learners’ construction of new science concepts based on their existing knowledge and bridge the gap between Western science and learners’ worldviews.Keywords: Ethnoscience-based teaching, optics, rectilinear propagation of light, retention
Procedia PDF Downloads 82484 Exact Energy Spectrum and Expectation Values of the Inverse Square Root Potential Model
Authors: Benedict Ita, Peter Okoi
Abstract:
In this work, the concept of the extended Nikiforov-Uvarov technique is discussed and employed to obtain the exact bound state energy eigenvalues and the corresponding normalized eigenfunctions of the inverse square root potential. With expressions for the exact energy eigenvalues and corresponding eigenfunctions, the expressions for the expectation values of the inverse separation-squared, kinetic energy, and the momentum-squared of the potential are presented using the Hellmann Feynman theorem. For visualization, algorithms written and implemented in Python language are used to generate tables and plots for l-states of the energy eigenvalues and some expectation values. The results obtained here may find suitable applications in areas like atomic and molecular physics, chemical physics, nuclear physics, and solid-state physics.Keywords: Schrodinger equation, Nikoforov-Uvarov method, inverse square root potential, diatomic molecules, Python programming, Hellmann-Feynman theorem, second order differential equation, matrix algebra
Procedia PDF Downloads 19483 Development and Validation of an Electronic Module in Linear Motion for First Year College Students of Iloilo City
Authors: Donna H. Gabor
Abstract:
This study aimed to develop and validate an electronic module in physics for first-year college students of Iloilo and find out if there would be a significant difference in the performance of students before and after using the electronic module. The e-module was composed of one topic with two sub-lessons in linear motion (kinematics). The participants of the study were classified into three groups: the subject matter experts who are physics instructors who suggested the content, physical appearance, and limitations of the e-module; the IT experts who are active both in teaching and developing computer programs; and 28 students divided into two groups, 15 in the pilot group and 13 in the final test group. A researcher created 30 items checklist form (difficulty of a sample problem, comprehension, application, and definition of terms) was prepared and validated by the experts in subject matter for gathering data. To test the difference in student performance in physics, the researcher prepared an achievement test containing 25 items, multiple choices. The findings revealed that there was an increase in the performance of students in the pretest and post-test. T-test results revealed that there was a significant difference in the test scores of the students before and after using the module which can be used as a future reference for linear motion as an additional teaching tool in physics.Keywords: electronic module, kinematics, linear motion, physics
Procedia PDF Downloads 134482 Teaching and Learning Physics via GPS and WikiS
Authors: Hashini E. Mohottala
Abstract:
We report the combine use of Wikispaces (WikiS) and Group Problem Solving (GPS) sessions conducted in the introductory level physics classes. As a part of this new teaching tool, some essay type problems were posted on the WikiS in weekly basis and students were encouraged to participate in problem solving without providing numerical final answers but the steps. Wikispace is used as a platform for students to meet online and create discussions. Each week students were further evaluated on problem solving skills opening up more opportunity for peer interaction through GPS. Each group was given a different problem to solve and the answers were graded. Students developed a set of skills in decision-making, problem solving, communication, negotiation, critical and independent thinking and teamwork through the combination of WikiS and GPS.Keywords: group problem solving (GPS), wikispace (WikiS), physics education, learning
Procedia PDF Downloads 418481 Radiation Hardness Materials Article Review
Authors: S. Abou El-Azm, U. Kruchonak, M. Gostkin, A. Guskov, A. Zhemchugov
Abstract:
Semiconductor detectors are widely used in nuclear physics and high-energy physics experiments. The application of semiconductor detectors could be limited by their ultimate radiation resistance. The increase of radiation defects concentration leads to significant degradation of the working parameters of semiconductor detectors. The investigation of radiation defects properties in order to enhance the radiation hardness of semiconductor detectors is an important task for the successful implementation of a number of nuclear physics experiments; we presented some information about radiation hardness materials like diamond, sapphire and CdTe. Also, the results of measurements I-V characteristics, charge collection efficiency and its dependence on the bias voltage for different doses of high resistivity (GaAs: Cr) and Si at LINAC-200 accelerator and reactor IBR-2 are presented.Keywords: semiconductor detectors, radiation hardness, GaAs, Si, CCE, I-V, C-V
Procedia PDF Downloads 113480 The Didactic Transposition in Brazilian High School Physics Textbooks: A Comparative Study of Didactic Materials
Authors: Leandro Marcos Alves Vaz
Abstract:
In this article, we analyze the different approaches to the topic Magnetism of Matter in physics textbooks of Brazilian schools. For this, we compared the approach to the concepts of the magnetic characteristics of materials (diamagnetism, paramagnetism, ferromagnetism and antiferromagnetism) in different sources of information and in different levels of education, from Higher Education to High School. In this sense, we used as reference the theory of the Didactic Transposition of Yves Chevallard, a French educational theorist, who conceived in his theory three types of knowledge – Scholarly Knowledge, Knowledge to be taught and Taught Knowledge – related to teaching practice. As a research methodology, from the reading of the works used in teacher training and those destined to basic education students, we compared the treatment of a higher education physics book, a scientific article published in a Brazilian journal of the educational area, and four high school textbooks, in order to establish in which there is a greater or lesser degree of approximation with the knowledge produced by the scholars – scholarly knowledge – or even with the knowledge to be taught (to that found in books intended for teaching). Thus, we evaluated the level of proximity of the subjects conveyed in high school and higher education, as well as the relevance that some textbook authors give to the theme.Keywords: Brazilian physics books, didactic transposition, magnetism of matter, teaching of physics
Procedia PDF Downloads 297479 Increasing Self-Efficacy of Secondary School Students in Physics Using Mentoring Enhanced Strategy
Authors: Gabriel Odeh Ankeli
Abstract:
The study determined how mentoring enhanced strategy can increase self-efficacy of secondary school students in physics in education zone C of Benue State, Nigeria. The study was guided by two research questions while two hypotheses were formulated and tested at 0.05 level of significance. The design of the study was the quasi-experimental, non-randomized, pre-test and post-test control groups. The population of the study consisted of 4,064 SS two physics students in the 94 schools in Education Zone C. The sample comprised 406 SS two physics students drawn from 10 schools using multi-stage sampling technique. The research instrument adapted and used for data collection was Students Self-Efficacy Scale (SSES). The research instrument was subjected to a reliability analysis using Cronbachs Alpha which yielded a reliability co-efficient of 0.84. Data collected were analyzed using discriptive statistics of mean and standard deviation to answer the research questions while inferential statistics of Analysis of Covariance (ANCOVA) was used to test the hypotheses. The findings revealed that students who were exposed to mentoring exhibited lower self-efficacy levels (F 1,405 = 2.751, P = 0.09˃0.05) than those students who were not exposed to mentoring. There was significant difference between male and female students’ self-efficacy level (F 1,211 = 5.496, P = 0.02˂0.05). Based on these findings, it was recommended among others that longer duration of mentoring period should be encouraged when using the mentoring strategy for better enhancement of Self-efficacy of students.Keywords: physics, self-efficacy, mentoring enhanced strategy, students
Procedia PDF Downloads 30478 A Model of Preventing Global Financial Crisis: Gauss Law Model Proposal Used in Electrical Field Calculations
Authors: Arzu K. Kamberli
Abstract:
This article examines the relationship between economics and physics, starting with Adam Smith, with a new econophysics approach in Economics-Physics with the Gauss Law model proposal using for the Electric Field calculation, which will allow us to anticipate the Global Financial Crisis. For this purpose, the similarities between the Gauss Law using the electric field calculations and the global financial crisis have been explained on the formula, and a model has been suggested to predict the risks of the financial systems from the electricity field calculations. Thus, this study is expected to help for preventing the Global Financial Crisis with the contribution of the science of economics and physics from the aspect of econophysics.Keywords: econophysics, electric field, financial system, Gauss law, global financial crisis
Procedia PDF Downloads 284477 Effects of Planned Pre-laboratory Discussion on Physics Students’ Acquisition of Science Process Skills in Kontagora, Niger State
Authors: Akano Benedict Ubawuike
Abstract:
This study investigated the effects of pre-laboratory discussion on physics students’ acquisition of science process skills. The study design was quasi-experimental and purposive sampling technique was applied in selecting two schools in Kontagora Town for the research based on the availability of a good physics laboratory. Intact classes already grouped by the school for the sake of small laboratory space and equipment, comprising Thirty (30) students, 15 for experimental group in School A and 15 for control in school B were the subjects for the research. The instrument used for data collection was the lesson prepared for pre – practical discussion and researcher made Science Process Skill Test (SPST ) and two (2) research questions, and two (2) research hypotheses were developed to guide the study. The data collected were analyzed using means and t-Test statistics at 0.05 level of significance. The study revealed that pre-laboratory discussion was found to be more efficacious in enhancing students’ acquisition of science process skills. It also revealed that gender, had no significant effect on students’ acquisition of science process skills. Based on the findings, it was recommended among others that teachers should encourage students to develop interest in practical activities by engaging them in pre-laboratory discussion and providing instructional materials that will challenge them to be actively involved during practical lessons. It is also recommended that Ministries of Education and professional organizations like Science Teachers' Association of Nigeria (STAN) should organize workshops, seminars and conferences for physics teachers and Physics concepts should be taught with practical activity so that the students will do science instead of learning about science.Keywords: physics, laboratory, discussion, students, acquisition, science process skills
Procedia PDF Downloads 131476 Extending Early High Energy Physics Studies with a Tri-Preon Model
Authors: Peter J. Riley
Abstract:
Introductory courses in High Energy Physics (HEP) can be extended with the Tri-Preon (TP) model to both supplements and challenge the Standard Model (SM) theory. TP supplements by simplifying the tracking of Conserved Quantum Numbers at an interaction vertex, e.g., the lepton number can be seen as a di-preon current. TP challenges by proposing extended particle families to three generations of particle triplets for leptons, quarks, and weak bosons. There are extensive examples discussed at an introductory level in six arXiv publications, including supersymmetry, hyper color, and the Higgs. Interesting exercises include pion decay, kaon-antikaon mixing, neutrino oscillations, and K+ decay to muons. It is a revealing exercise for students to weigh the pros and cons of parallel theories at an early stage in their HEP journey.Keywords: HEP, particle physics, standard model, Tri-Preon model
Procedia PDF Downloads 73475 Axiomatic Systems as an Alternative to Teach Physics
Authors: Liliana M. Marinelli, Cristina T. Varanese
Abstract:
In the last few years, students from higher education have difficulties in grasping mathematical concepts which support physical matters, especially those in the first years of this education. Classical Physics teaching turns to be complex when students are not able to make use of mathematical tools which lead to the conceptual structure of Physics. When derivation and integration rules are not used or developed in parallel with other disciplines, the physical meaning that we attempt to convey turns to be complicated. Due to this fact, it could be of great use to see the Classical Mechanics from an axiomatic approach, where the correspondence rules give physical meaning, if we expect students to understand concepts clearly and accurately. Using the Minkowski point of view adapted to a two-dimensional space and time where vectors, matrices, and straight lines (worked from an affine space) give mathematical and physical rigorosity even when it is more abstract. An interesting option would be to develop the disciplinary contents from an axiomatic version which embraces the Classical Mechanics as a particular case of Relativistic Mechanics. The observation about the increase in the difficulties stated by students in the first years of education allows this idea to grow as a possible option to improve performance and understanding of the concepts of this subject.Keywords: axioms, classical physics, physical concepts, relativity
Procedia PDF Downloads 306474 Learning Instructional Managements between the Problem-Based Learning and Stem Education Methods for Enhancing Students Learning Achievements and their Science Attitudes toward Physics the 12th Grade Level
Authors: Achirawatt Tungsombatsanti, Toansakul Santiboon, Kamon Ponkham
Abstract:
Strategies of the STEM education was aimed to prepare of an interdisciplinary and applied approach for the instructional of science, technology, engineering, and mathematics in an integrated students for enhancing engagement of their science skills to the Problem-Based Learning (PBL) method in Borabu School with a sample consists of 80 students in 2 classes at the 12th grade level of their learning achievements on electromagnetic issue. Research administrations were to separate on two different instructional model groups, the 40-experimental group was designed with the STEM instructional experimenting preparation and induction in a 40-student class and the controlling group using the PBL was designed to students identify what they already know, what they need to know, and how and where to access new information that may lead to the resolution of the problem in other class. The learning environment perceptions were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI). Students’ creating attitude skills’ sustainable development toward physics were assessed with the Test Of Physics-Related Attitude (TOPRA) The term scaling was applied to the attempts to measure the attitude objectively with the TOPRA was used to assess students’ perceptions of their science attitude toward physics. Comparisons between pretest and posttest techniques were assessed students’ learning achievements on each their outcomes from each instructional model, differently. The results of these findings revealed that the efficiency of the PLB and the STEM based on criteria indicate that are higher than the standard level of the 80/80. Statistically, significant of students’ learning achievements to their later outcomes on the controlling and experimental physics class groups with the PLB and the STEM instructional designs were differentiated between groups at the .05 level, evidently. Comparisons between the averages mean scores of students’ responses to their instructional activities in the STEM education method are higher than the average mean scores of the PLB model. Associations between students’ perceptions of their physics classes to their attitudes toward physics, the predictive efficiency R2 values indicate that 77%, and 83% of the variances in students’ attitudes for the PLEI and the TOPRA in physics environment classes were attributable to their perceptions of their physics PLB and the STEM instructional design classes, consequently. An important of these findings was contributed to student understanding of scientific concepts, attitudes, and skills as evidence with STEM instructional ought to higher responding than PBL educational teaching. Statistically significant between students’ learning achievements were differentiated of pre and post assessments which overall on two instructional models.Keywords: learning instructional managements, problem-based learning, STEM education, method, enhancement, students learning achievements, science attitude, physics classes
Procedia PDF Downloads 228473 An Investigation of How Pre-Service Physics Teachers Perceived the Results of Buoyancy Force
Authors: Ersin Bozkurt, Şükran Erdoğan
Abstract:
The purpose of the study is to explore how pre-service teachers perceive buoyancy force effecting an object in a liquid and identify their misconceptions. Pre-service teachers were interviewed to reveal their understandings of an object's floating, suspending and sinking in a liquid. In addition, they were asked about how an object -given its features- moved when it is provided with an external force and when it is released. The so-called circumstances were questioned in a different planet contexts. For this aim, focused group interview method was used. Six focused groups were formed and video recorded during the interval. Each focused group comprised of five pre-service teachers. It was found out pre-service teachers have common misunderstanding and misconceptions. In order to eliminate this conceptual misunderstandings, conceptual change texts were developed and further suggestions were made.Keywords: computer simulations, conceptual change texts, physics education, students’ misconceptions in physics
Procedia PDF Downloads 466472 Stern-Gerlach Force in Quantum Magnetic Field and Schrodinger's Cat
Authors: Mandip Singh
Abstract:
Quantum entanglement plays a fundamental role in our understanding of counter-intuitive aspects of quantum reality. If classical physics is an approximation of quantum physics, then quantum entanglement should persist at a macroscopic scale. In this paper, a thought experiment is presented where a free falling spin polarized Bose-Einstein condensate interacts with a quantum superimposed magnetic field of nonzero gradient. In contrast to the semiclassical Stern-Gerlach experiment, the magnetic field and the spin degrees of freedom both are considered to be quantum mechanical in a generalized scenario. As a consequence, a Bose-Einstein condensate can be prepared at distinct locations in space in a sense of quantum superposition. In addition, the generation of Schrodinger-cat like quantum states shall be presented.Keywords: Schrodinger-cat quantum states, macroscopic entanglement, macroscopic quantum fields, foundations of quantum physics
Procedia PDF Downloads 189471 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks
Authors: Mehrdad Shafiei Dizaji, Hoda Azari
Abstract:
The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven
Procedia PDF Downloads 40470 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 228469 Enhancing Student Learning Outcomes Using Engineering Design Process: Case Study in Physics Course
Authors: Thien Van Ngo
Abstract:
The engineering design process is a systematic approach to solving problems. It involves identifying a problem, brainstorming solutions, prototyping and testing solutions, and evaluating the results. The engineering design process can be used to teach students how to solve problems in a creative and innovative way. The research aim of this study was to investigate the effectiveness of using the engineering design process to enhance student learning outcomes in a physics course. A mixed research method was used in this study. The quantitative data were collected using a pretest-posttest control group design. The qualitative data were collected using semi-structured interviews. The sample was 150 first-year students in the Department of Mechanical Engineering Technology at Cao Thang Technical College in Vietnam in the 2022-2023 school year. The quantitative data were collected using a pretest-posttest control group design. The pretest was administered to both groups at the beginning of the study. The posttest was administered to both groups at the end of the study. The qualitative data were collected using semi-structured interviews with a sample of eight students in the experimental group. The interviews were conducted after the posttest. The quantitative data were analyzed using independent sample T-tests. The qualitative data were analyzed using thematic analysis. The quantitative data showed that students in the experimental group, who were taught using the engineering design process, had significantly higher post-test scores on physics problem-solving than students in the control group, who were taught using the conventional method. The qualitative data showed that students in the experimental group were more motivated and engaged in the learning process than students in the control group. Students in the experimental group also reported that they found the engineering design process to be a more effective way of learning physics. The findings of this study suggest that the engineering design process can be an effective way of enhancing student learning outcomes in physics courses. The engineering design process engages students in the learning process and helps them to develop problem-solving skills.Keywords: engineering design process, problem-solving, learning outcome of physics, students’ physics competencies, deep learning
Procedia PDF Downloads 65468 First-Year Undergraduate Students' Dilemma with Kinematics Graphs
Authors: Itumeleng Phage
Abstract:
Students’ comprehension of graphs may be affected by the characteristics of the discipline in which the graph is used, the type of the task as well as the background of the students who are the readers or interpreters of the graph. This research study investigated these aspects of the graph comprehension of 152 first-year undergraduate physics students by comparing their responses to corresponding tasks in the mathematics and physics disciplines. The discipline characteristics were analysed for four task-related constructs namely coordinates, representations, area and slope. Students’ responses to corresponding visual decoding and judgement tasks set in mathematics and kinematics contexts were statistically compared. The effects of the participants’ gender, year of school completion and study course were determined as reader characteristics. The results of the empirical study indicated that participants generally transferred their mathematics knowledge on coordinates and representation of straight line graphs to the physics contexts, but not in the cases of parabolic and hyperbolic functions or area under graphs. Insufficient understanding of the slope concept contributed to weak performances on this construct in both mathematics and physics contexts. Discipline characteristics seem to play a vital role in students’ understanding, while reader characteristics had insignificant to medium effects on their responses.Keywords: kinematics graph, discipline characteristics, constructs, coordinates, representations, area and slope
Procedia PDF Downloads 260467 Beginning Physics Experiments Class Using Multi Media in National University of Laos
Authors: T. Nagata, S. Xaphakdy, P. Souvannavong, P. Chanthamaly, K. Sithavong, C. H. Lee, S. Phommathat, V. Srithilat, P. Sengdala, B. Phetarnousone, B. Siharath, X. Chemcheng, T. Yamaguchi, A. Suenaga, S. Kashima
Abstract:
National University of Laos (NUOL) requested Japan International Cooperation Agency (JICA) volunteers to begin a physics experiments class using multi media. However, there are issues. NUOL had no physics experiment class, no space for physics experiments, experiment materials were not used for many years and were scattered in various places, and there is no projector and laptop computer in the unit. This raised the question: How do authors begin the physics experiments class using multimedia? To solve this problem, the JICA took some steps, took stock of what was available and reviewed the syllabus. The JICA then revised the experiment materials to assess what was available and then developed textbooks for experiments using them; however, the question remained, what about the multimedia component of the course? Next, the JICA reviewed Physics teacher Pavy Souvannavong’s YouTube channel, where he and his students upload video reports of their physics classes at NUOL using their smartphones. While they use multi-media, almost all the videos recorded were of class presentations. To improve the multimedia style, authors edited the videos in the style of another YouTube channel, “Science for Lao,” which is a science education group made up of Japan Overseas Cooperation Volunteers (JOCV) in Laos. They created the channel to enhance science education in Laos, and hold regular monthly meetings in the capital, Vientiane, and at teacher training colleges in the country. They edit the video clips in three parts, which are the materials and procedures part including pictures, practice footage of the experiment part, and then the result and conclusion part. Then students perform experiments and prepare for presentation by following the videos. The revised experiment presentation reports use PowerPoint presentations, material pictures and experiment video clips. As for providing textbooks and submitting reports, the students use the e-Learning system of “Moodle” of the Information Technology Center in Dongdok campus of NUOL. The Korean International Cooperation Agency (KOICA) donated those facilities. The authors have passed the process of the revised materials, developed textbooks, the PowerPoint slides presented by students, downloaded textbooks and uploaded reports, to begin the physics experiments class using multimedia. This is the practice research report for beginning a physics experiments class using multimedia in the physics unit at the Department of Natural Science, Faculty of Education, at the NUOL.Keywords: NUOL, JICA, KOICA, physics experiment materials, smartphone, Moodle, IT center, Science for Lao
Procedia PDF Downloads 352466 ICT-based Methodologies and Students’ Academic Performance and Retention in Physics: A Case with Newton Laws of Motion
Authors: Gabriel Ocheleka Aniedi A. Udo, Patum Wasinda
Abstract:
The study was carried out to appraise the impact of ICT-based teaching methodologies (video-taped instructions and Power Point presentations) on academic performance and retention of secondary school students in Physics, with particular interest in Newton Laws of Motion. The study was conducted in Cross River State, Nigeria, with a quasi-experimental research design using non-randomised pre-test and post-test control group. The sample for the study consisted of 176 SS2 students drawn from four intact classes of four secondary schools within the study area. Physics Achievement Test (PAT), with a reliability coefficient of 0.85, was used for data collection. Mean and Analysis of Covariance (ANCOVA) was used in the treatment of the obtained data. The results of the study showed that there was a significant difference in the academic performance and retention of students taught using video-taped instructions and those taught using power point presentations. Findings of the study showed that students taught using video-taped instructions had a higher academic performance and retention than those taught using power point presentations. The study concludes that the use of blended ICT-based teaching methods can improve learner’s academic performance and retention.Keywords: video taped instruction (VTI), power point presentation (PPT), academic performance, retention, physics
Procedia PDF Downloads 91465 Revising the Student Experiment Materials and Practices at the National University of Laos
Authors: Syhalath Xaphakdy, Toshio Nagata, Saykham Phommathat, Pavy Souwannavong, Vilayvanh Srithilat, Phoxay Sengdala, Bounaom Phetarnousone, Boualay Siharath, Xaya Chemcheng
Abstract:
The National University of Laos (NUOL) invited a group of volunteers from the Japan International Cooperation Agency (JICA) to revise the physics experiments to utilize the materials that were already available to students. The intension was to review and revise the materials regularly utilized in physics class. The project had access to limited materials and a small budget for the class in the unit; however, by developing experimental textbooks related to mechanics, electricity, and wave and vibration, the group found a way to apply them in the classroom and enhance the students teaching activities. The aim was to introduce a way to incorporate the materials and practices in the classroom to enhance the students learning and teaching skills, particularly when they graduate and begin working as high school teachers.Keywords: NUOL, JICA, physics experiment materials, small budget, mechanics, electricity
Procedia PDF Downloads 236464 The Probability Foundation of Fundamental Theoretical Physics
Authors: Quznetsov Gunn
Abstract:
In the study of the logical foundations of probability theory, it was found that the terms and equations of the fundamental theoretical physics represent terms and theorems of the classical probability theory, more precisely, of that part of this theory, which considers the probability of dot events in the 3 + 1 space-time. In particular, the masses, moments, energies, spins, etc. turn out of parameters of probability distributions such events. The terms and the equations of the electroweak and of the quark-gluon theories turn out the theoretical-probabilistic terms and theorems. Here the relation of a neutrino to his lepton becomes clear, the W and Z bosons masses turn out dynamic ones, the cause of the asymmetry between particles and antiparticles is the impossibility of the birth of single antiparticles. In addition, phenomena such as confinement and asymptotic freedom receive their probabilistic explanation. And here we have the logical foundations of the gravity theory with phenomena dark energy and dark matter.Keywords: classical theory of probability, logical foundation of fundamental theoretical physics, masses, moments, energies, spins
Procedia PDF Downloads 295463 Search for Flavour Changing Neutral Current Couplings of Higgs-up Sector Quarks at Future Circular Collider (FCC-eh)
Authors: I. Turk Cakir, B. Hacisahinoglu, S. Kartal, A. Yilmaz, A. Yilmaz, Z. Uysal, O. Cakir
Abstract:
In the search for new physics beyond the Standard Model, Flavour Changing Neutral Current (FCNC) is a good research field in terms of the observability at future colliders. Increased Higgs production with higher energy and luminosity in colliders is essential for verification or falsification of our knowledge of physics and predictions, and the search for new physics. Prospective electron-proton collider constituent of the Future Circular Collider project is FCC-eh. It offers great sensitivity due to its high luminosity and low interference. In this work, thq FCNC interaction vertex with off-shell top quark decay at electron-proton colliders is studied. By using MadGraph5_aMC@NLO multi-purpose event generator, observability of tuh and tch couplings are obtained with equal coupling scenario. Upper limit on branching ratio of tree level top quark FCNC decay is determined as 0.012% at FCC-eh with 1 ab ^−1 luminosity.Keywords: FCC, FCNC, Higgs Boson, Top Quark
Procedia PDF Downloads 212