Search results for: Elodie Arnaud
4 Nude Cosmetic Water-Rich Compositions for Skin Care and Consumer Emotions
Authors: Emmanuelle Merat, Arnaud Aubert, Sophie Cambos, Francis Vial, Patrick Beau
Abstract:
Basically, consumers are sensitive to many stimuli when applying a cream: brand, packaging and indeed formulation compositions. Many studies demonstrated the influence of some stimuli such as brand, packaging, formula color and odor (e.g. in make-up applications). Those parameters influence perceived quality of the product. The objective of this work is to further investigate the relationship between nude skincare basic compositions with different textures and consumer experience. A tentative final step will be to connect the consumer feelings with key ingredients in the compositions. A new approach was developed to better understand touch-related subjective experience in consumers based on a combination of methods: sensory analysis with ten experts, preference mapping on one hundred female consumers and emotional assessments on thirty consumers (verbal and non-verbal through prosody and gesture monitoring). Finally, a methodology based on ‘sensorial trip’ (after olfactory, haptic and musical stimuli) has been experimented on the most interesting textures with 10 consumers. The results showed more or less impact depending on compositions and also on key ingredients. Three types of formulation particularly attracted the consumer: an aqueous gel, an oil-in-water emulsion, and a patented gel-in-oil formulation type. Regarding these three formulas, the preferences were both revealed through sensory and emotion tests. One was recognized as the most innovative in consumer sensory test whereas the two other formulas were discriminated in emotions evaluation. The positive emotions were highlighted especially in prosody criteria. The non-verbal analysis, which corresponds to the physical parameters of the voice, showed high pitch and amplitude values; linked to positive emotions. Verbatim, verbal content of responses (i.e., ideas, concepts, mental images), confirmed the first conclusion. On the formulas selected for their positive emotions generation, the ‘sensorial trip’ provided complementary information to characterize each emotional profile. In the second step, dedicated to better understand ingredients power, two types of ingredients demonstrated an obvious input on consumer preference: rheology modifiers and emollients. As a conclusion, nude cosmetic compositions with well-chosen textures and ingredients can positively stimulate consumer emotions contributing to capture their preference. For a complete achievement of the study, a global approach (Asia, America territories...) should be developed.Keywords: sensory, emotion, cosmetic formulations, ingredients' influence
Procedia PDF Downloads 1793 Towards Automatic Calibration of In-Line Machine Processes
Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales
Abstract:
In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820Keywords: data model, machine learning, industrial winding, calibration
Procedia PDF Downloads 2412 Ocean Planner: A Web-Based Decision Aid to Design Measures to Best Mitigate Underwater Noise
Authors: Thomas Folegot, Arnaud Levaufre, Léna Bourven, Nicolas Kermagoret, Alexis Caillard, Roger Gallou
Abstract:
Concern for negative impacts of anthropogenic noise on the ocean’s ecosystems has increased over the recent decades. This concern leads to a similar increased willingness to regulate noise-generating activities, of which shipping is one of the most significant. Dealing with ship noise requires not only knowledge about the noise from individual ships, but also how the ship noise is distributed in time and space within the habitats of concern. Marine mammals, but also fish, sea turtles, larvae and invertebrates are mostly dependent on the sounds they use to hunt, feed, avoid predators, during reproduction to socialize and communicate, or to defend a territory. In the marine environment, sight is only useful up to a few tens of meters, whereas sound can propagate over hundreds or even thousands of kilometers. Directive 2008/56/EC of the European Parliament and of the Council of June 17, 2008 called the Marine Strategy Framework Directive (MSFD) require the Member States of the European Union to take the necessary measures to reduce the impacts of maritime activities to achieve and maintain a good environmental status of the marine environment. The Ocean-Planner is a web-based platform that provides to regulators, managers of protected or sensitive areas, etc. with a decision support tool that enable to anticipate and quantify the effectiveness of management measures in terms of reduction or modification the distribution of underwater noise, in response to Descriptor 11 of the MSFD and to the Marine Spatial Planning Directive. Based on the operational sound modelling tool Quonops Online Service, Ocean-Planner allows the user via an intuitive geographical interface to define management measures at local (Marine Protected Area, Natura 2000 sites, Harbors, etc.) or global (Particularly Sensitive Sea Area) scales, seasonal (regulation over a period of time) or permanent, partial (focused to some maritime activities) or complete (all maritime activities), etc. Speed limit, exclusion area, traffic separation scheme (TSS), and vessel sound level limitation are among the measures supported be the tool. Ocean Planner help to decide on the most effective measure to apply to maintain or restore the biodiversity and the functioning of the ecosystems of the coastal seabed, maintain a good state of conservation of sensitive areas and maintain or restore the populations of marine species.Keywords: underwater noise, marine biodiversity, marine spatial planning, mitigation measures, prediction
Procedia PDF Downloads 1221 Newly Designed Ecological Task to Assess Cognitive Map Reading Ability: Behavioral Neuro-Anatomic Correlates of Mental Navigation
Authors: Igor Faulmann, Arnaud Saj, Roland Maurer
Abstract:
Spatial cognition consists in a plethora of high level cognitive abilities: among them, the ability to learn and to navigate in large scale environments is probably one of the most complex skills. Navigation is thought to rely on the ability to read a cognitive map, defined as an allocentric representation of ones environment. Those representations are of course intimately related to the two geometrical primitives of the environment: distance and direction. Also, many recent studies point to a predominant hippocampal and para-hippocampal role in spatial cognition, as well as in the more specific cluster of navigational skills. In a previous study in humans, we used a newly validated test assessing cognitive map processing by evaluating the ability to judge relative distances and directions: the CMRT (Cognitive Map Recall Test). This study identified in topographically disorientated patients (1) behavioral differences between the evaluation of distances and of directions, and (2) distinct causality patterns assessed via VLSM (i.e., distinct cerebral lesions cause distinct response patterns depending on the modality (distance vs direction questions). Thus, we hypothesized that: (1) if the CMRT really taps into the same resources as real navigation, there would be hippocampal, parahippocampal, and parietal activation, and (2) there exists underlying neuroanatomical and functional differences between the processing of this two modalities. Aiming toward a better understanding of the neuroanatomical correlates of the CMRT in humans, and more generally toward a better understanding of how the brain processes the cognitive map, we adapted the CMRT as an fMRI procedure. 23 healthy subjects (11 women, 12 men), all living in Geneva for at least 2 years, underwent the CMRT in fMRI. Results show, for distance and direction taken together, than the most active brain regions are the parietal, frontal and cerebellar parts. Additionally, and as expected, patterns of brain activation differ when comparing the two modalities. Furthermore, distance processing seems to rely more on parietal regions (compared to other brain regions in the same modality and also to direction). It is interesting to notice that no significant activity was observed in the hippocampal or parahippocampal areas. Direction processing seems to tap more into frontal and cerebellar brain regions (compared to other brain regions in the same modality and also to distance). Significant hippocampal and parahippocampal activity has been shown only in this modality. This results demonstrated a complex interaction of structures which are compatible with response patterns observed in other navigational tasks, thus showing that the CMRT taps at least partially into the same brain resources as real navigation. Additionally, differences between the processing of distances and directions leads to the conclusion that the human brain processes each modality distinctly. Further research should focus on the dynamics of this processing, allowing a clearer understanding between the two sub-processes.Keywords: cognitive map, navigation, fMRI, spatial cognition
Procedia PDF Downloads 294