Search results for: train routing
337 How Teachers Comprehend and Support Children's Needs to Be Scientists
Authors: Anita Yus
Abstract:
Several Elementary Schools (SD) ‘favored’ by parents, especially those live in big cities in Indonesia, implicitly demand each child enrolled in the first grade of SD to be able to read, write and calculate. This condition urges the parents to push the teachers in PAUD (Kindergarten) to train their children to read, write, and calculate so they have a set of knowledge. According to Piaget, each child is capable of acquiring knowledge when he is given the opportunity to interact with his environment (things, people, and atmosphere). Teachers can make the interaction occur. There are several learning approaches suitable for the characteristics and needs of child’s growth. This paper talks about a research result conducted to investigate how twelve teachers of early childhood program comprehend the constructivist theory of Piaget, and how they inquire, how the children acquire and construct a number of knowledge through occurred interactions. This is a qualitative research with an observation method followed up by a focus group discussion (FGD). The research result shows that there is a reciprocal interaction between the behaviors of teachers and children affected by the size of the classroom and learning source, teaching experiences, education background, teachers’ attitude and motivation, as well as the way the teachers interpret and support the children’s needs. The teachers involved in this research came up with varied perspective on how knowledge acquired by children at first and how they construct it. This research brings a new perspective in understanding children as scientists.Keywords: constructivist approach, young children as a scientist, teacher practice, teacher education
Procedia PDF Downloads 249336 Approach for Demonstrating Reliability Targets for Rail Transport during Low Mileage Accumulation in the Field: Methodology and Case Study
Authors: Nipun Manirajan, Heeralal Gargama, Sushil Guhe, Manoj Prabhakaran
Abstract:
In railway industry, train sets are designed based on contractual requirements (mission profile), where reliability targets are measured in terms of mean distance between failures (MDBF). However, during the beginning of revenue services, trains do not achieve the designed mission profile distance (mileage) within the timeframe due to infrastructure constraints, scarcity of commuters or other operational challenges thereby not respecting the original design inputs. Since trains do not run sufficiently and do not achieve the designed mileage within the specified time, car builder has a risk of not achieving the contractual MDBF target. This paper proposes a constant failure rate based model to deal with the situations where mileage accumulation is not a part of the design mission profile. The model provides appropriate MDBF target to be demonstrated based on actual accumulated mileage. A case study of rolling stock running in the field is undertaken to analyze the failure data and MDBF target demonstration during low mileage accumulation. The results of case study prove that with the proposed method, reliability targets are achieved under low mileage accumulation.Keywords: mean distance between failures, mileage-based reliability, reliability target appropriations, rolling stock reliability
Procedia PDF Downloads 266335 Novel Adaptive Radial Basis Function Neural Networks Based Approach for Short-Term Load Forecasting of Jordanian Power Grid
Authors: Eyad Almaita
Abstract:
In this paper, a novel adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to forecast the hour by hour electrical load demand in Jordan. A small and effective RBFNN model is used to forecast the hourly total load demand based on a small number of features. These features are; the load in the previous day, the load in the same day in the previous week, the temperature in the same hour, the hour number, the day number, and the day type. The proposed adaptive RBFNN model can enhance the reliability of the conventional RBFNN after embedding the network in the system. This is achieved by introducing an adaptive algorithm that allows the change of the weights of the RBFNN after the training process is completed, which will eliminates the need to retrain the RBFNN model again. The data used in this paper is real data measured by National Electrical Power co. (Jordan). The data for the period Jan./2012-April/2013 is used train the RBFNN models and the data for the period May/2013- Sep. /2013 is used to validate the models effectiveness.Keywords: load forecasting, adaptive neural network, radial basis function, short-term, electricity consumption
Procedia PDF Downloads 344334 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection
Authors: Hussin K. Ragb, Vijayan K. Asari
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor
Procedia PDF Downloads 488333 Fast Switching Mechanism for Multicasting Failure in OpenFlow Networks
Authors: Alaa Allakany, Koji Okamura
Abstract:
Multicast technology is an efficient and scalable technology for data distribution in order to optimize network resources. However, in the IP network, the responsibility for management of multicast groups is distributed among network routers, which causes some limitations such as delays in processing group events, high bandwidth consumption and redundant tree calculation. Software Defined Networking (SDN) represented by OpenFlow presented as a solution for many problems, in SDN the control plane and data plane are separated by shifting the control and management to a remote centralized controller, and the routers are used as a forwarder only. In this paper we will proposed fast switching mechanism for solving the problem of link failure in multicast tree based on Tabu Search heuristic algorithm and modifying the functions of OpenFlow switch to fasts switch to the pack up sub tree rather than sending to the controller. In this work we will implement multicasting OpenFlow controller, this centralized controller is a core part in our multicasting approach, which is responsible for 1- constructing the multicast tree, 2- handling the multicast group events and multicast state maintenance. And finally modifying OpenFlow switch functions for fasts switch to pack up paths. Forwarders, forward the multicast packet based on multicast routing entries which were generated by the centralized controller. Tabu search will be used as heuristic algorithm for construction near optimum multicast tree and maintain multicast tree to still near optimum in case of join or leave any members from multicast group (group events).Keywords: multicast tree, software define networks, tabu search, OpenFlow
Procedia PDF Downloads 263332 Transferring World Athletic Championship-Winning Principles to Entrepreneurship: The Case of Abdelkader El Mouaziz
Authors: Abderrahman Hassi, Omar Bacadi, Khaoula Zitouni
Abstract:
Abdelkader El Mouaziz is a Moroccan long-distance runner with a career-best time of 2:06:46 in the Chicago Marathon. El Mouaziz is a winner of the Madrid Marathon in 1994, the London Marathon in 1999 and 2001, as well as the New York Marathon in 2001. While he was playing for the Moroccan national team, he used to train in the Ifrane-Azrou region owing to its altitude, fresh forests, non-polluted air and quietness. After winning so many international competitions and retiring, he left his native Casablanca and went back to the Ifrane-Azrou region and started a business that employs ten people. In March 2010, El Mouaziz opened a bed and breakfast called Tourtite with a nice view on the mountain near the city of Ifrane in the way to Azrou. He wanted to give back to the region that helped him become a sport legend. His management style is not different than his sport style: performance and competitiveness combined with fair play. The objective of the present case study is to further enhance the understanding of the dynamics of transferring athletic championship-winning principles to entrepreneurial activities. The case study is a real-life situation and experience designed to provoke and stimulate reflections about a particular approach of management, especially for start-up businesses.Keywords: sport, winning principles, entrepreneurship, Abdelkader El Mouaziz
Procedia PDF Downloads 277331 Numerical Modelling and Soil-structure Interaction Analysis of Rigid Ballast-less and Flexible Ballast-based High-speed Rail Track-embankments Using Software
Authors: Tokirhusen Iqbalbhai Shaikh, M. V. Shah
Abstract:
With an increase in travel demand and a reduction in travel time, high-speed rail (HSR) has been introduced in India. Simplified 3-D finite element modelling is necessary to predict the stability and deformation characteristics of railway embankments and soil structure interaction behaviour under high-speed design requirements for Indian soil conditions. The objective of this study is to analyse the rigid ballast-less and flexible ballast-based high speed rail track embankments for various critical conditions subjected to them, viz. static condition, moving train condition, sudden brake application, and derailment case, using software. The input parameters for the analysis are soil type, thickness of the relevant strata, unit weight, Young’s modulus, Poisson’s ratio, undrained cohesion, friction angle, dilatancy angle, modulus of subgrade reaction, design speed, and other anticipated, relevant data. Eurocode 1, IRS-004(D), IS 1343, IRS specifications, California high-speed rail technical specifications, and the NHSRCL feasibility report will be followed in this study.Keywords: soil structure interaction, high speed rail, numerical modelling, PLAXIS3D
Procedia PDF Downloads 110330 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.Keywords: anomaly detection, autoencoder, data centers, deep learning
Procedia PDF Downloads 194329 School Emergency Drills Evaluation through E-PreS Monitoring System
Authors: A. Kourou, A. Ioakeimidou, V. Avramea
Abstract:
Planning for natural disasters and emergencies is something every school or educational institution must consider, regardless of its size or location. Preparedness is the key to save lives if a disaster strikes. School disaster management mirrors individual and family disaster prevention, and wider community disaster prevention efforts. This paper presents the usage of E-PreS System as a helpful, managerial tool during the school earthquake drill, in order to support schools in developing effective disaster and emergency plans specific to their local needs. The project comes up with a holistic methodology using real-time evaluation involving different categories of actors, districts, steps and metrics. The main outcomes of E-PreS project are the development of E-PreS web platform that host the needed data of school emergency planning; the development of E-PreS System; the implementation of disaster drills using E-PreS System in educational premises and local schools; and the evaluation of E-PreS System. Taking into consideration that every disaster drill aims to test and valid school plan and procedures; clarify and train personnel in roles and responsibilities; improve interagency coordination; identify gaps in resources; improve individual performance; and identify opportunities for improvement, E-PreS Project was submitted and approved by the European Commission (EC).Keywords: disaster drills, earthquake preparedness, E-PreS System, school emergency plans
Procedia PDF Downloads 228328 The Pitfalls of Empowerment Initiatives in India: Overcoming Male Resistance to Women Empowerment Through Community Outreach, TVET, and Improved Sanitation
Authors: Christopher Coley, Srividya Sheshadri, Rao R. Bhavani
Abstract:
Empowering marginalized populations, especially women, with greater economic, social, and other leadership roles has been shown to have a profound effect on entire communities. There are discernible links between sustainable development, poverty reduction, and skill training for empowerment; however, one of the major challenges with implementing empowerment programs is to establish an understanding within the community that investing in women’s education carries the potential of high return for everyone. Effective strategies that can both empower women, and overcome the complex social issues normally faced, need to be developed and shared across stakeholders. Amrita University’s AMMACHI Labs, a research lab engaged in women empowerment through Technical Vocational Education and Training (TVET), has launched a new initiative, WE: Sanitation, a project aiming to train women to build their own toilets and promote healthy sanitation practices in rural villages across India. While in some cases, the community has come together and toilets are being built, there has been resistance by the community, especially men, in many places. This paper will explore the experiences of field workers and the initial results of the WE: Sanitation project, including observations on the trends of community dynamics, raise important questions for the direction of development work in general, and especially for sanitation projects in rural India.Keywords: community-based development, gender dynamics, Indian sanitation, women empowerment, TVET
Procedia PDF Downloads 385327 Recommendations as a Key Aspect for Online Learning Personalization: Perceptions of Teachers and Students
Authors: N. Ipiña, R. Basagoiti, O. Jimenez, I. Arriaran
Abstract:
Higher education students are increasingly enrolling in online courses, they are, at the same time, generating data about their learning process in the courses. Data collected in those technology enhanced learning spaces can be used to identify patterns and therefore, offer recommendations/personalized courses to future online students. Moreover, recommendations are considered key aspects for personalization in online learning. Taking into account the above mentioned context, the aim of this paper is to explore the perception of higher education students and teachers towards receiving recommendations in online courses. The study was carried out with 322 students and 10 teachers from two different faculties (Engineering and Education) from Mondragon University. Online questionnaires and face to face interviews were used to gather data from the participants. Results from the questionnaires show that most of the students would like to receive recommendations in their online courses as a guide in their learning process. Findings from the interviews also show that teachers see recommendations useful for their students’ learning process. However, teachers believe that specific pedagogical training is required. Conclusions can also be drawn as regards the importance of personalization in technology enhanced learning. These findings have significant implications for those who train online teachers due to the fact that pedagogy should be the driven force and further training on the topic could be required. Therefore, further research is needed to better understand the impact of recommendations on online students’ learning process and draw some conclusion on pedagogical concerns.Keywords: higher education, perceptions, recommendations, online courses
Procedia PDF Downloads 267326 ChaQra: A Cellular Unit of the Indian Quantum Network
Authors: Shashank Gupta, Iteash Agarwal, Vijayalaxmi Mogiligidda, Rajesh Kumar Krishnan, Sruthi Chennuri, Deepika Aggarwal, Anwesha Hoodati, Sheroy Cooper, Ranjan, Mohammad Bilal Sheik, Bhavya K. M., Manasa Hegde, M. Naveen Krishna, Amit Kumar Chauhan, Mallikarjun Korrapati, Sumit Singh, J. B. Singh, Sunil Sud, Sunil Gupta, Sidhartha Pant, Sankar, Neha Agrawal, Ashish Ranjan, Piyush Mohapatra, Roopak T., Arsh Ahmad, Nanjunda M., Dilip Singh
Abstract:
Major research interests on quantum key distribution (QKD) are primarily focussed on increasing 1. point-to-point transmission distance (1000 Km), 2. secure key rate (Mbps), 3. security of quantum layer (device-independence). It is great to push the boundaries on these fronts, but these isolated approaches are neither scalable nor cost-effective due to the requirements of specialised hardware and different infrastructure. Current and future QKD network requires addressing different sets of challenges apart from distance, key rate, and quantum security. In this regard, we present ChaQra -a sub-quantum network with core features as 1) Crypto agility (integration in the already deployed telecommunication fibres), 2) Software defined networking (SDN paradigm for routing different nodes), 3) reliability (addressing denial-of-service with hybrid quantum safe cryptography), 4) upgradability (modules upgradation based on scientific and technological advancements), 5) Beyond QKD (using QKD network for distributed computing, multi-party computation etc). Our results demonstrate a clear path to create and accelerate quantum secure Indian subcontinent under the national quantum mission.Keywords: quantum network, quantum key distribution, quantum security, quantum information
Procedia PDF Downloads 56325 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition
Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar
Abstract:
In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers
Procedia PDF Downloads 45324 Learning the C-A-Bs: Resuscitation Training at Rwanda Military Hospital
Authors: Kathryn Norgang, Sarah Howrath, Auni Idi Muhire, Pacifique Umubyeyi
Abstract:
Description : A group of nurses address the shortage of trained staff to respond to critical patients at Rwanda Military Hospital (RMH) by developing a training program and a resuscitation response team. Members of the group who received the training when it first launched are now trainer of trainers; all components of the training program are organized and delivered by RMH staff-the clinical mentor only provides adjunct support. This two day training is held quarterly at RMH; basic life support and exposure to interventions for advanced care are included in the test and skills sign off. Seventy staff members have received the training this year alone. An increased number of admission/transfer to ICU due to successful resuscitation attempts is noted. Lessons learned: -Number of staff trained 2012-2014 (to be verified). -Staff who train together practice with greater collaboration during actual resuscitation events. -Staff more likely to initiate BLS if peer support is present-more staff trained equals more support. -More access to Advanced Cardiac Life Support training is necessary now that the cadre of BLS trained staff is growing. Conclusions: Increased access to training, peer support, and collaborative practice are effective strategies to strengthening resuscitation capacity within a hospital.Keywords: resuscitation, basic life support, capacity building, resuscitation response teams, nurse trainer of trainers
Procedia PDF Downloads 304323 Classification of Multiple Cancer Types with Deep Convolutional Neural Network
Authors: Nan Deng, Zhenqiu Liu
Abstract:
Thousands of patients with metastatic tumors were diagnosed with cancers of unknown primary sites each year. The inability to identify the primary cancer site may lead to inappropriate treatment and unexpected prognosis. Nowadays, a large amount of genomics and transcriptomics cancer data has been generated by next-generation sequencing (NGS) technologies, and The Cancer Genome Atlas (TCGA) database has accrued thousands of human cancer tumors and healthy controls, which provides an abundance of resource to differentiate cancer types. Meanwhile, deep convolutional neural networks (CNNs) have shown high accuracy on classification among a large number of image object categories. Here, we utilize 25 cancer primary tumors and 3 normal tissues from TCGA and convert their RNA-Seq gene expression profiling to color images; train, validate and test a CNN classifier directly from these images. The performance result shows that our CNN classifier can archive >80% test accuracy on most of the tumors and normal tissues. Since the gene expression pattern of distant metastases is similar to their primary tumors, the CNN classifier may provide a potential computational strategy on identifying the unknown primary origin of metastatic cancer in order to plan appropriate treatment for patients.Keywords: bioinformatics, cancer, convolutional neural network, deep leaning, gene expression pattern
Procedia PDF Downloads 299322 Assessing the Impacts of Folktales (Story Telling) On the Moral Advancement of Children Yoruba Communities in Ute-Owo, Nigeria
Authors: Felicia Titilayo Olanrewaju
Abstract:
Folktales are a subclass of folklores which are verbally told and passed down from one generation to another, from the elderly ones to their children, usually at moonlight. These tales are heavily laden with moral lessons of what should be done and what not within the society. Though these are oftentimes heavily embellished yet are related to guide, guard, train, and dishing out moral attributes and mores worthwhile for ethical progression of the young minds within our traditional settings. With the rapid advancement of technological know-how, the existence of most of these moral-inclined stories becomes questionable; hence this study appraised the influences of these traditional storytellings have in the upgrading of moral learning of ethical behavioral traits acceptable among the Yoruba people. Oral interviews couples with recording gadgets were used to collate both sample parents' and children’s responses within a particular community in Owo (ute) local government area of Owo Ondo State, Nigeria. Findings reveal that diverse tales told at moonlight periods have an untold impact on the speedy growth of the children intellectually than the modern happenings around them. These telltale stories become powerful aids in learning goodly traits and eschewing bad manners. It is recommended that folk stories be told within the household among the family after hard labour in the evenings as this would help develop human relationships and brings about a strong sense of community bindings.Keywords: folktales, folklores, impact, advancement, ethical progression
Procedia PDF Downloads 177321 The Effect of Flow Discharge on Suspended Solids Transport in the Nakhon-Nayok River
Authors: Apichote Urantinon
Abstract:
Suspended solid is one factor for water quality in open channel. It affects various problems in waterways that could cause high sedimentation in the channels, leading to shallowness in the river. It is composed of the organic and inorganic materials which can settle down anywhere along the open channel. Thus, depends on the solid amount and its composition, it occupies the water body capacity and causes the water quality problems simultaneously. However, the existing of suspended solid in the water column depends on the flow discharge (Q) and secchi depth (sec). This study aims to examine the effect of flow discharge (Q) and secchi depth (sec) on the suspended solids concentration in open channel and attempts to establish the formula that represents the relationship between flow discharges (Q), secchi depth (sec) and suspended solid concentration. The field samplings have been conducted in the Nakhon-Nayok river, during the wet season, September 15-16, 2014 and dry season, March 10-11, 2015. The samplings with five different locations are measured. The discharge has been measured onsite by floating technics, the secchi depth has been measured by secchi disc and the water samples have been collected at the center of the water column. They have been analyzed in the laboratory for the suspended solids concentration. The results demonstrate that the decrease in suspended solids concentration is dependent on flow discharge, since the natural processes in erosion consists of routing of eroded material. Finally, an empirical equation to compute the suspended solids concentration that shows an equation (SScon = 9.852 (sec)-0.759 Q0.0355) is developed. The calculated suspended solids concentration, with uses of empirical formula, show good agreement with the record data as the R2 = 0.831. Therefore, the empirical formula in this study is clearly verified.Keywords: suspended solids concentration, the Nakhon-Nayok river, secchi depth, floating technics
Procedia PDF Downloads 248320 Diversity Indices as a Tool for Evaluating Quality of Water Ways
Authors: Khadra Ahmed, Khaled Kheireldin
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: planktons, diversity indices, water quality index, water ways
Procedia PDF Downloads 518319 Investigation on the Bogie Pseudo-Hunting Motion of a Reduced-Scale Model Railway Vehicle Running on Double-Curved Rails
Authors: Barenten Suciu, Ryoichi Kinoshita
Abstract:
In this paper, an experimental and theoretical study on the bogie pseudo-hunting motion of a reduced-scale model railway vehicle, running on double-curved rails, is presented. Since the actual bogie hunting motion, occurring for real railway vehicles running on straight rails at high travelling speeds, cannot be obtained in laboratory conditions, due to the speed and wavelength limitations, a pseudo- hunting motion was induced by employing double-curved rails. Firstly, the test rig and the experimental procedure are described. Then, a geometrical model of the double-curved rails is presented. Based on such model, the variation of the carriage rotation angle relative to the bogies and the working conditions of the yaw damper are clarified. Vibration spectra recorded during vehicle travelling, on straight and double-curved rails, are presented and interpreted based on a simple vibration model of the railway vehicle. Ride comfort of the vehicle is evaluated according to the ISO 2631 standard, and also by using some particular frequency weightings, which account for the discomfort perceived during the reading and writing activities. Results obtained in this work are useful for the adequate design of the yaw dampers, which are used to attenuate the lateral vibration of the train car bodies.Keywords: double-curved rail, octave analysis, vibration model, ride comfort, railway vehicle
Procedia PDF Downloads 316318 Quoting Jobshops Due Dates Subject to Exogenous Factors in Developing Nations
Authors: Idris M. Olatunde, Kareem B.
Abstract:
In manufacturing systems, especially job shops, service performance is a key factor that determines customer satisfaction. Service performance depends not only on the quality of the output but on the delivery lead times as well. Besides product quality enhancement, delivery lead time must be minimized for optimal patronage. Quoting accurate due dates is sine quo non for job shop operational survival in a global competitive environment. Quoting accurate due dates in job shops has been a herculean task that nearly defiled solutions from many methods employed due to complex jobs routing nature of the system. This class of NP-hard problems possessed no rigid algorithms that can give an optimal solution. Jobshop operational problem is more complex in developing nations due to some peculiar factors. Operational complexity in job shops emanated from political instability, poor economy, technological know-how, and the non-promising socio-political environment. The mentioned exogenous factors were hardly considered in the previous studies on scheduling problem related to due date determination in job shops. This study has filled the gap created in the past studies by developing a dynamic model that incorporated the exogenous factors for accurate determination of due dates for varying jobs complexity. Real data from six job shops selected from the different part of Nigeria, were used to test the efficacy of the model, and the outcomes were analyzed statistically. The results of the analyzes showed that the model is more promising in determining accurate due dates than the traditional models deployed by many job shops in terms of patronage and lead times minimization.Keywords: due dates prediction, improved performance, customer satisfaction, dynamic model, exogenous factors, job shops
Procedia PDF Downloads 412317 Socio-Economic Impact of Education on Urban Women in Pakistan
Authors: Muhammad Ali Khan
Abstract:
Education is a word has been derived from Latin word "Educare", means to train. Therefore, the harmonious growth of the potentialities for achieving the qualities desirable and useful in the human society is called education. It is claimed that by educating women we can develop our economy, family health and decrease population growth. To explore the socio-economic impact of education on urban women. A prospective study design was used. Over a period of six months 50 respondents were randomly selected from Hayat Abad, an urban city in the North West of Pakistan. A questionnaire was used to explore marital, educational, occupational, social, economical and political status of urban women. Of the total, 50% (25) were employed, where 56% were married and 44% unmarried. Of the employed participants, 56% were teachers fallowed by social worker 16%. Monthly income was significantly high (p=001) of women with master degree. Understanding between wife and husband was also very significant in women with masters. . 78% of employed women replied that Parda (Hija) should be on choice not imposed. 52% of educated women replied participation in social activates, such as parties, shopping etc. Education has a high impact on urban women because it is directly related to employment, decision of power, economy and social life. Urban women with high education have significant political awareness and empowerment. Improving women educational level in rural areas of Pakistan is the key for economic growth and political empowermentKeywords: women, urban, Pakistan, socio economic
Procedia PDF Downloads 100316 Development of Restricted Formula SAE Intake Manifold Using 1D and Flow Simulations Based on Track Analysis
Authors: Sahil Kapahi
Abstract:
A Formula SAE competition is characterized by typical track layouts having slaloms, tight corners and short straights, which favor a particular range of engine speed for a given set of gear ratios. Therefore, it is imperative that the power-train is optimized for the corresponding engine rpm band. This paper describes the process of designing, simulating and validating an air intake manifold for an inline four cylinder four-stroke internal combustion gasoline engine based on analysis of required vehicle performance. The requirements for the design of subject intake were set considering the rules of FSAE competitions and analysis of engine performance patterns for typical competition scenarios, carried out using OPTIMUMLAP software. Manifold geometry was optimized using results of air flow simulations performed on ANSYS CFX, and subsequent effect of this geometry on the engine was modeled using 1D simulation on Ricardo WAVE. A design was developed to meet the targeted performance standards in terms of engine torque output and volumetric efficiency. Finally, the intake manifold was manufactured and assembled onto the vehicle, and the engine output of the vehicle with the designed intake was studied using a dynamometer. The results of the dynamometer testing were then validated against predicted values derived from the Ricardo WAVE modeling and benefits to performance of the vehicle were established.Keywords: 1 D Simulation, air flow simulation, ANSYS CFX, four-stroke engine, OPTIMUM LAP, Ricardo WAVE
Procedia PDF Downloads 246315 Design and Analysis of a Planetary Gearbox Used in Stirred Vessel
Authors: Payal T. Patel, Ramakant Panchal, Ketankumar G. Patel
Abstract:
Gear in stirred vessel is one of the most critical components in machinery which has power transmission system and it is rotating machinery cost and redesign being the major constraints, there is always a great scope for a mechanical engineer to apply skills to improve the design. Gear will be most effective means of transmitting power in future machinery due to their high degree of compactness. The Galliard moved in the industry from heavy industries such as textile machinery and shipbuilding to industries such as automobile manufacture tools will necessitate the affable application of gear technology. The two-stage planetary reduction gear unit is designed to meet the output specifications. In industries, where the bevel gears are used in turret vessel to transmit the power, that unit is replaced by this planetary gearbox. Use of this type of gearbox is to get better efficiency and also the manufacturing of the bevel gear is more complex than the spur gears. Design a gearbox with the epicyclic gear train. In industries, the power transmission from gearbox to vessel is done through the bevel gears, which transmit the power at a right angle. In this work, the power is to be transmitted vertically from gearbox to vessel, which will increase the efficiency and life of gears. The arrangement of the gears is quite difficult as well as it needs high manufacturing cost and maintenance cost. The design is replaced by the planetary gearbox to reduce the difficulties, and same output is achieved but with a different arrangement of the planetary gearbox.Keywords: planetary gearbox, epicyclic gear, optimization, dynamic balancing
Procedia PDF Downloads 359314 Dynamic Fault Diagnosis for Semi-Batch Reactor Under Closed-Loop Control via Independent RBFNN
Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm
Abstract:
In this paper, a new robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics and using the weighted sum-squared prediction error as the residual. The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. The several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control
Procedia PDF Downloads 497313 Introducing a Video-Based E-Learning Module to Improve Disaster Preparedness at a Tertiary Hospital in Oman
Authors: Ahmed Al Khamisi
Abstract:
The Disaster Preparedness Standard (DPS) is one of the elements that is evaluated by the Accreditation Canada International (ACI). ACI emphasizes to train and educate all staff, including service providers and senior leaders, on emergency and disaster preparedness upon the orientation and annually thereafter. Lack of awareness and deficit of knowledge among the healthcare providers about DPS have been noticed in a tertiary hospital where ACI standards were implemented. Therefore, this paper aims to introduce a video-based e-learning (VB-EL) module that explains the hospital’s disaster plan in a simple language which will be easily accessible to all healthcare providers through the hospital’s website. The healthcare disaster preparedness coordinator in the targeted hospital will be responsible to ensure that VB-EL is ready by 25 April 2019. This module will be developed based on the Kirkpatrick evaluation method. In fact, VB-EL combines different data forms such as images, motion, sounds, text in a complementary fashion which will suit diverse learning styles and individual learning pace of healthcare providers. Moreover, the module can be adjusted easily than other tools to control the information that healthcare providers receive. It will enable healthcare providers to stop, rewind, fast-forward, and replay content as many times as needed. Some anticipated limitations in the development of this module include challenges of preparing VB-EL content and resistance from healthcare providers.Keywords: Accreditation Canada International, Disaster Preparedness Standard, Kirkpatrick evaluation method, video-based e-learning
Procedia PDF Downloads 147312 A Unique Professional Development of Teacher Educators: Teaching Colleagues
Authors: Naomi Weiner-Levy
Abstract:
The Mofet Institute of Research, established a School of Professional Development, the only one of its kind in Israel and throughout the world. It offers specialized programs for teacher educators, providing them with the professional knowledge and skills. The studies aim at updating teachers about rapidly changing knowledge and skills. Teacher educators are conceptualized as shifting from first order practitioners (school teachers) to second order practitioners. Those who train teachers are referred to as third order practitioners. The instructors in the School of Professional Development are third-order practitioners – teacher educators specializing in teaching their colleagues. Collegial guidance by teachers’ college staff members is no simple task: Tutors must be expert in their field of specialization, as well as in instruction. Moreover, although colleagues, they have to position themselves within the group as authoritative figures in terms of instruction and knowledge. To date, the role and professional identity of these third-order practitioners, has not been studied. To understand the nature and development of professional identity, a qualitative study was conducted in which 12 tutors of various subjects were interviewed. These were analyzed by categorical content analysis. The findings, assessed professional identity through a post-modern prism, while examining the interplay among events that tutors experienced, the knowledge they acquired and the structuring of their professional identity. The Tutors’ identity transformed through negotiating with ‘self’ and ‘other’ in the class, and constructed by their mutual experiences as tutors and learners. Understanding the function and identity of tutors facilitates comprehension of this unique training process for teacher educators.Keywords: professional development, professional identity, teacher education, tutoring
Procedia PDF Downloads 223311 Review Architectural Standards in Design and Development Children's Educational Centers
Authors: Ahmad Torkaman, Suogol Shomtob, Hadi Akbari Seddigh
Abstract:
In this paper it has been attempted to investigate the lack of attention to how specific spatial characteristics of the children except existing places such as nurseries. In order to achieve the standard center to faster children understanding their mentality is the first issue that must be studied. Exploring the spiritual characteristics and complexities of children cannot be possible except in accordance with the different aspects and background of their growth in various age periods. In order to achieving the standard center for fostering children, the first issue that must be studied understands their mentality. Exploring the spiritual qualities and complexities of children are not provided except in accordance with the characteristics and their different growth backgrounds in different age periods. According to previous researches game or playing is the most important activity that helps children to communicate and educate and sometimes therapy in specific fields. Investigating game as a proper way to train, the variety of games, the various kind of play environment and how to treat some abnormalities thereby are the issues discussed in recent research. Another consideration concerns the importance of artistic activities among children which is very evident in studying identification of their abnormalities. At the end of this study after investigating how to understand child and communicate with him/her, aiming to recognize Specific spatial characteristics for better training children, the physical and physiological criteria and characteristics is Reviewed and ends up to a list of required spaces and dimensional characteristic of spaces and needed children's equipment.Keywords: children, space, interior design, development, growth
Procedia PDF Downloads 333310 Effectiveness of Using Phonemic Awareness Based Activities in Improving Decoding Skills of Third Grade Students Referred for Reading Disabilities in Oman
Authors: Mahmoud Mohamed Emam
Abstract:
In Oman the number of students referred for reading disabilities is on the rise. Schools serve these students by placement in the so-called learning disabilities unit. Recently the author led a strategic project to train teachers on the use of curriculum based measurement to identify students with reading disabilities in Oman. Additional the project involved training teachers to use phonemic awareness based activities to improve reading skills of those students. Phonemic awareness refers to the ability to notice, think about, and work with the individual sounds in words. We know that a student's skill in phonemic awareness is a good predictor of later reading success or difficulty. Using multiple baseline design across four participants the current studies investigated the effectiveness of using phonemic awareness based activities to improve decoding skills of third grade students referred for reading disabilities in Oman. During treatment students received phonemic awareness based activities that were designed to fulfill the idiosyncratic characteristics of Arabic language phonology as well as orthography. Results indicated that the phonemic awareness based activities were effective in substantially increasing the number of correctly decoded word for all four participants. Maintenance of strategy effects was evident for the weeks following the termination of intervention for the four students. In addition, the effects of intervention generalized to decoding novel words for all four participants.Keywords: learning disabilities, phonemic awareness, third graders, Oman
Procedia PDF Downloads 641309 BEATRICE: A Low-Cost Manipulator Arm for an Educational Planetary Rover
Authors: T. Pakulski, L. Kryza, A. Linossier
Abstract:
The BEar Articulated TeleRobotic Inspection and Clasping Extremity is a lightweight, 5 DoF robotic manipulator for the Berlin Educational Assistant Rover (BEAR). BEAR is one of the educational planetary rovers developed under the Space Rover projects at the Chair of Space Technology of the Technische Universität Berlin. The projects serve to conduct research and train engineers by developing rovers for competitions like the European Rover Challenge and the DLR SpaceBot Cup. BEATRICE is the result of a cost-driven design process to deliver a simple but capable platform for a variety of competition tasks: object grasping and manipulation, inspection, instrument wielding and more. The manipulator’s simple mechatronic design, based on a combination of servomotors and stepper motors with planetary gearboxes, also makes it a practical tool for developing embedded control systems. The platform’s initial implementation relies on tele-operated control but is fully instrumented for future autonomous functionality. This paper describes BEATRICE’s development from its preliminary link model to its structural and mechatronic design, embedded control and AI and T. In parallel, it examines the influence of budget constraints and high personnel turnover commonly associated with student teams on the manipulator’s design. Finally, it comments on the utility of robot design projects for educating future engineers.Keywords: education, low-cost, manipulator, robotics, rover
Procedia PDF Downloads 255308 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 125