Search results for: sampling algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4990

Search results for: sampling algorithms

4450 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes

Authors: L. S. Chathurika

Abstract:

Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.

Keywords: algorithm, classification, evaluation, features, testing, training

Procedia PDF Downloads 119
4449 The Public Relations Activities on Social Networking Sites for Communication to the Customer: Case Study the Company in Thailand

Authors: Phakit Treesukol

Abstract:

The purpose of this investigation is to ascertain Internet users’ behaviours towards companies’ public relations activities on social networking sites. In order to conduct a study of Internet users’ behaviour, data was collected using the quota sampling method from a total of 100 Internet users who are members of SNS and used the Internet during the period 10 December 2009 to 9 January 2010. An online self-administrated questionnaire was distributed through Facebook, Hi5 and Twitter to Internet users by using snowball sampling technique. Results of the study showed that the majority of the respondents were using social networking sites with the main purpose to contact their friends. Presently, most of the respondents were not regularly receiving companies’ public relations activities on social networking sites. The highest frequency of survey responses by the respondents was for hiding or deleting information introducing new products or services from companies on SNS also as well.

Keywords: media uses and gratification, online activities, public relations activities, social networking sites

Procedia PDF Downloads 257
4448 The Influence of Covariance Hankel Matrix Dimension on Algorithms for VARMA Models

Authors: Celina Pestano-Gabino, Concepcion Gonzalez-Concepcion, M. Candelaria Gil-Fariña

Abstract:

Some estimation methods for VARMA models, and Multivariate Time Series Models in general, rely on the use of a Hankel matrix. It is known that if the data sample is populous enough and the dimension of the Hankel matrix is unnecessarily large, this may result in an unnecessary number of computations as well as in numerical problems. In this sense, the aim of this paper is two-fold. First, we provide some theoretical results for these matrices which translate into a lower dimension for the matrices normally used in the algorithms. This contribution thus serves to improve those methods from a numerical and, presumably, statistical point of view. Second, we have chosen an estimation algorithm to illustrate in practice our improvements. The results we obtained in a simulation of VARMA models show that an increase in the size of the Hankel matrix beyond the theoretical bound proposed as valid does not necessarily lead to improved practical results. Therefore, for future research, we propose conducting similar studies using any of the linear system estimation methods that depend on Hankel matrices.

Keywords: covariances Hankel matrices, Kronecker indices, system identification, VARMA models

Procedia PDF Downloads 244
4447 Natural Regeneration Dynamics in Different Microsites within Gaps of Different Sizes

Authors: M. E. Hammond, R. Pokorny

Abstract:

Not much research has gone into the dynamics of natural regeneration of trees species in tropical forest regions. This study seeks to investigate the impact of gap sizes and light distribution in forest floors on the regeneration of Celtis mildbraedii (CEM), Nesogordonia papaverine (NES) and Terminalia superba (TES). These are selected economically important tree species with different shade tolerance attributes. The spatial distribution patterns and the potential regeneration competition index (RCI) among species using height to diameter ratio (HDR) have been assessed. Gap sizes ranging between 287 – 971 m² were selected at the Bia Tano forest reserve, a tropical moist semi-deciduous forest in Ghana. Four (4) transects in the cardinal directions were constructed from the center of each gap. Along each transect, ten 1 m² sampling zones at 2 m spacing were established. Then, three gap microsites (labeled ecozones I, II, III) were delineated within these sampling zones based on the varying temporal light distribution on the forest floor. Data on height (H), root collar diameter (RCD) and regeneration census were gathered from each of the ten sampling zones. CEM and NES seedlings (≤ 50 cm) and saplings (≥ 51 cm) were present in all ecozones of the large gaps. Seedlings of TES were observed in all ecozones of large and small gaps. Regression analysis showed a significant negative linear relationship between independent RCD and H growth variables on dependent HDR index in ecozones II and III of both large and small gaps. There was a correlation between RCD and H in both large and small gaps. A strong regeneration competition was observed among species in ecozone II in large (df 2, F=3.6, p=0.035) and small (df 2, F=17.9, p=0.000) gaps. These results contribute to the understanding of the natural regeneration of different species with regards to light regimes in forest floors.

Keywords: Celtis mildbraedii, ecozones, gaps, Nesogordonia papaverifera, regeneration, Terminalia superba

Procedia PDF Downloads 142
4446 Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass.

Keywords: acoustic emission technique, artificial neural network, surface roughness, ultra-high precision grinding

Procedia PDF Downloads 305
4445 A Novel Gateway Location Algorithm for Wireless Mesh Networks

Authors: G. M. Komba

Abstract:

The Internet Gateway (IGW) has extra ability than a simple Mesh Router (MR) and the responsibility to route mostly the all traffic from Mesh Clients (MCs) to the Internet backbone however, IGWs are more expensive. Choosing strategic locations for the Internet Gateways (IGWs) best location in Backbone Wireless Mesh (BWM) precarious to the Wireless Mesh Network (WMN) and the location of IGW can improve a quantity of performance related problem. In this paper, we propose a novel algorithm, namely New Gateway Location Algorithm (NGLA), which aims to achieve four objectives, decreasing the network cost effective, minimizing delay, optimizing the throughput capacity, Different from existing algorithms, the NGLA increasingly recognizes IGWs, allocates mesh routers (MRs) to identify IGWs and promises to find a feasible IGW location and install minimum as possible number of IGWs while regularly conserving the all Quality of Service (QoS) requests. Simulation results showing that the NGLA outperforms other different algorithms by comparing the number of IGWs with a large margin and it placed 40% less IGWs and 80% gain of throughput. Furthermore the NGLA is easy to implement and could be employed for BWM.

Keywords: Wireless Mesh Network, Gateway Location Algorithm, Quality of Service, BWM

Procedia PDF Downloads 373
4444 Quantifying Temporal Variation of Volatile Organic Compounds and Their Ozone Forming Potential at Rural Atmosphere in Delhi

Authors: Amit Kumar, Bhupendra Pratap Singh, Manoj Singh, Monika Punia, Krishan Kumar, V. K. Jain

Abstract:

Ambient concentrations of volatile organic compounds (VOCs) were investigated in order to find out temporal variations and their ozone forming potentials (OFP) at rural site in Delhi National Capital Region during summer 2013. Sampling was performed for continuous five days, to identify the differences in working days and weekend VOCs concentration levels. Sampling and analytical procedure for VOCs were done using National Institute for Occupational Safety and Health (NIOSH) standard method. On each sampling day, VOCs samples were collected for 3-hours in the morning, afternoon and evening. There has been observed a noticeable contrast in the concentration of VOCs levels between working days and weekend. However, most of the VOCs showed diurnal fluctuations with higher concentrations in the morning and evening as compared to afternoon which might be due to change in meteorology. The results showed that mean toluene/benzene and m-/p-xylene/benzene ratios were higher in the afternoon while it was lower during morning and evening. The relative contribution of the VOCs to ozone formation, total propylene equivalent concentrations and OFP were calculated. Toluene was the most contributing organic contaminant to ozone formation as well as ambient VOCs concentrations. Results obtained in current study demonstrate that ozone formation at rural site in Delhi is probably limited by the emissions of VOCs.

Keywords: VOCs, rural, NIOSH, ozone forming potential, propylene equivalent concentration

Procedia PDF Downloads 530
4443 Enhanced Imperialist Competitive Algorithm for the Cell Formation Problem Using Sequence Data

Authors: S. H. Borghei, E. Teymourian, M. Mobin, G. M. Komaki, S. Sheikh

Abstract:

Imperialist competitive algorithm (ICA) is a recent meta-heuristic method that is inspired by the social evolutions for solving NP-Hard problems. The ICA is a population based algorithm which has achieved a great performance in comparison to other meta-heuristics. This study is about developing enhanced ICA approach to solve the cell formation problem (CFP) using sequence data. In addition to the conventional ICA, an enhanced version of ICA, namely EICA, applies local search techniques to add more intensification aptitude and embed the features of exploration and intensification more successfully. Suitable performance measures are used to compare the proposed algorithms with some other powerful solution approaches in the literature. In the same way, for checking the proficiency of algorithms, forty test problems are presented. Five benchmark problems have sequence data, and other ones are based on 0-1 matrices modified to sequence based problems. Computational results elucidate the efficiency of the EICA in solving CFP problems.

Keywords: cell formation problem, group technology, imperialist competitive algorithm, sequence data

Procedia PDF Downloads 455
4442 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification

Authors: Cemil Turan, Mohammad Shukri Salman

Abstract:

The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.

Keywords: adaptive filtering, sparse system identification, TD-LMS algorithm, VSSLMS algorithm

Procedia PDF Downloads 361
4441 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet

Authors: Azene Zenebe

Abstract:

Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.

Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science

Procedia PDF Downloads 155
4440 Amharic Text News Classification Using Supervised Learning

Authors: Misrak Assefa

Abstract:

The Amharic language is the second most widely spoken Semitic language in the world. There are several new overloaded on the web. Searching some useful documents from the web on a specific topic, which is written in the Amharic language, is a challenging task. Hence, document categorization is required for managing and filtering important information. In the classification of Amharic text news, there is still a gap in the domain of information that needs to be launch. This study attempts to design an automatic Amharic news classification using a supervised learning mechanism on four un-touch classes. To achieve this research, 4,182 news articles were used. Naive Bayes (NB) and Decision tree (j48) algorithms were used to classify the given Amharic dataset. In this paper, k-fold cross-validation is used to estimate the accuracy of the classifier. As a result, it shows those algorithms can be applicable in Amharic news categorization. The best average accuracy result is achieved by j48 decision tree and naïve Bayes is 95.2345 %, and 94.6245 % respectively using three categories. This research indicated that a typical decision tree algorithm is more applicable to Amharic news categorization.

Keywords: text categorization, supervised machine learning, naive Bayes, decision tree

Procedia PDF Downloads 211
4439 Adaptive Energy-Aware Routing (AEAR) for Optimized Performance in Resource-Constrained Wireless Sensor Networks

Authors: Innocent Uzougbo Onwuegbuzie

Abstract:

Wireless Sensor Networks (WSNs) are crucial for numerous applications, yet they face significant challenges due to resource constraints such as limited power and memory. Traditional routing algorithms like Dijkstra, Ad hoc On-Demand Distance Vector (AODV), and Bellman-Ford, while effective in path establishment and discovery, are not optimized for the unique demands of WSNs due to their large memory footprint and power consumption. This paper introduces the Adaptive Energy-Aware Routing (AEAR) model, a solution designed to address these limitations. AEAR integrates reactive route discovery, localized decision-making using geographic information, energy-aware metrics, and dynamic adaptation to provide a robust and efficient routing strategy. We present a detailed comparative analysis using a dataset of 50 sensor nodes, evaluating power consumption, memory footprint, and path cost across AEAR, Dijkstra, AODV, and Bellman-Ford algorithms. Our results demonstrate that AEAR significantly reduces power consumption and memory usage while optimizing path weight. This improvement is achieved through adaptive mechanisms that balance energy efficiency and link quality, ensuring prolonged network lifespan and reliable communication. The AEAR model's superior performance underlines its potential as a viable routing solution for energy-constrained WSN environments, paving the way for more sustainable and resilient sensor network deployments.

Keywords: wireless sensor networks (WSNs), adaptive energy-aware routing (AEAR), routing algorithms, energy, efficiency, network lifespan

Procedia PDF Downloads 39
4438 Delaunay Triangulations Efficiency for Conduction-Convection Problems

Authors: Bashar Albaalbaki, Roger E. Khayat

Abstract:

This work is a comparative study on the effect of Delaunay triangulation algorithms on discretization error for conduction-convection conservation problems. A structured triangulation and many unstructured Delaunay triangulations using three popular algorithms for node placement strategies are used. The numerical method employed is the vertex-centered finite volume method. It is found that when the computational domain can be meshed using a structured triangulation, the discretization error is lower for structured triangulations compared to unstructured ones for only low Peclet number values, i.e. when conduction is dominant. However, as the Peclet number is increased and convection becomes more significant, the unstructured triangulations reduce the discretization error. Also, no statistical correlation between triangulation angle extremums and the discretization error is found using 200 samples of randomly generated Delaunay and non-Delaunay triangulations. Thus, the angle extremums cannot be an indicator of the discretization error on their own and need to be combined with other triangulation quality measures, which is the subject of further studies.

Keywords: conduction-convection problems, Delaunay triangulation, discretization error, finite volume method

Procedia PDF Downloads 104
4437 FlexPoints: Efficient Algorithm for Detection of Electrocardiogram Characteristic Points

Authors: Daniel Bulanda, Janusz A. Starzyk, Adrian Horzyk

Abstract:

The electrocardiogram (ECG) is one of the most commonly used medical tests, essential for correct diagnosis and treatment of the patient. While ECG devices generate a huge amount of data, only a small part of them carries valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the past years. However, the rapid development of new machine learning techniques poses new challenges. To address this class of problems, we created the FlexPoints algorithm that searches for characteristic points on the ECG signal and ignores all other points that do not carry relevant medical information. The conducted experiments proved that the presented algorithm can significantly reduce the number of data points which represents ECG signal without losing valuable medical information. These sparse but essential characteristic points (flex points) can be a perfect input for some modern machine learning models, which works much better using flex points as an input instead of raw data or data compressed by many popular algorithms.

Keywords: characteristic points, electrocardiogram, ECG, machine learning, signal compression

Procedia PDF Downloads 164
4436 Internal Evaluation of Architecture University Department in Architecture Engineering Bachelor's Level: A Case from Iran

Authors: Faranak Omidian

Abstract:

This study has been carried out to examine the status of architecture department at bachelor's level of engineering architecture in Islamic Azad University of Dezful in 2012-13 academic year. The present research is a descriptive cross sectional study and in terms of measurement, it is descriptive and analytical, which was done based on 7 steps and in 7 areas with 32 criteria and 169 indicators. The sample includes 201 students, 14 faculty members, 72 graduates and 39 employers. Simple random sampling method, complete enumeration method, network sampling (snowball sampling) were used for students, faculty members and graduates respectively. All sample responded to the questions. After data collection, the findings were ranked on Likert scale from desirable to undesirable with the scores ranging from 1 to 3.The results showed that the department with a score of 1.88 in regard to objectives, organizational status, management and organizations, with a score of 2 in relation to students, with a score of 1.8 in regard to faculty members was in a relatively desirable status. Regarding training courses and curriculum, it gained a score of 2.33 which indicates the desirable status of the department in this regard. It gained scores of 1.75, 2, and 1.8 with respect to educational and research facilities and equipment, teaching and learning strategies, and graduates respectively, all of which shows the relatively desirable status of the department. The results showed that the department of architecture, with an average score of 2.14 in all evaluated areas, was in a desirable situation. Therefore, although the department generally has a desirable status, it needs to put in more effort to tackle its weaknesses and shortages and corrects its defects in order to promote educational quality, taking to the desirable level.

Keywords: internal evaluation, architecture department in Islamic, Azad University, Dezful

Procedia PDF Downloads 444
4435 Comparison Between Genetic Algorithms and Particle Swarm Optimization Optimized Proportional Integral Derirative and PSS for Single Machine Infinite System

Authors: Benalia Nadia, Zerzouri Nora, Ben Si Ali Nadia

Abstract:

Abstract: Among the many different modern heuristic optimization methods, genetic algorithms (GA) and the particle swarm optimization (PSO) technique have been attracting a lot of interest. The GA has gained popularity in academia and business mostly because to its simplicity, ability to solve highly nonlinear mixed integer optimization problems that are typical of complex engineering systems, and intuitiveness. The mechanics of the PSO methodology, a relatively recent heuristic search tool, are modeled after the swarming or cooperative behavior of biological groups. It is suitable to compare the performance of the two techniques since they both aim to solve a particular objective function but make use of distinct computing methods. In this article, PSO and GA optimization approaches are used for the parameter tuning of the power system stabilizer and Proportional integral derivative regulator. Load angle and rotor speed variations in the single machine infinite bus bar system is used to measure the performance of the suggested solution.

Keywords: SMIB, genetic algorithm, PSO, transient stability, power system stabilizer, PID

Procedia PDF Downloads 84
4434 ACO-TS: an ACO-based Algorithm for Optimizing Cloud Task Scheduling

Authors: Fahad Y. Al-dawish

Abstract:

The current trend by a large number of organizations and individuals to use cloud computing. Many consider it a significant shift in the field of computing. Cloud computing are distributed and parallel systems consisting of a collection of interconnected physical and virtual machines. With increasing request and profit of cloud computing infrastructure, diverse computing processes can be executed on cloud environment. Many organizations and individuals around the world depend on the cloud computing environments infrastructure to carry their applications, platform, and infrastructure. One of the major and essential issues in this environment related to allocating incoming tasks to suitable virtual machine (cloud task scheduling). Cloud task scheduling is classified as optimization problem, and there are several meta-heuristic algorithms have been anticipated to solve and optimize this problem. Good task scheduler should execute its scheduling technique on altering environment and the types of incoming task set. In this research project a cloud task scheduling methodology based on ant colony optimization ACO algorithm, we call it ACO-TS Ant Colony Optimization for Task Scheduling has been proposed and compared with different scheduling algorithms (Random, First Come First Serve FCFS, and Fastest Processor to the Largest Task First FPLTF). Ant Colony Optimization (ACO) is random optimization search method that will be used for assigning incoming tasks to available virtual machines VMs. The main role of proposed algorithm is to minimizing the makespan of certain tasks set and maximizing resource utilization by balance the load among virtual machines. The proposed scheduling algorithm was evaluated by using Cloudsim toolkit framework. Finally after analyzing and evaluating the performance of experimental results we find that the proposed algorithm ACO-TS perform better than Random, FCFS, and FPLTF algorithms in each of the makespaan and resource utilization.

Keywords: cloud Task scheduling, ant colony optimization (ACO), cloudsim, cloud computing

Procedia PDF Downloads 422
4433 Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method

Authors: K. Tejasri, K. Suvarna Vani, S. Prathyusha, S. Ramya

Abstract:

Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms.

Keywords: proteins, secondary structure elements, beta-sheets, beta-strands, alpha-helices, machine learning algorithms

Procedia PDF Downloads 94
4432 Hidro-IA: An Artificial Intelligent Tool Applied to Optimize the Operation Planning of Hydrothermal Systems with Historical Streamflow

Authors: Thiago Ribeiro de Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite

Abstract:

The area of the electricity sector that deals with energy needs by the hydroelectric in a coordinated manner is called Operation Planning of Hydrothermal Power Systems (OPHPS). The purpose of this is to find a political operative to provide electrical power to the system in a given period, with reliability and minimal cost. Therefore, it is necessary to determine an optimal schedule of generation for each hydroelectric, each range, so that the system meets the demand reliably, avoiding rationing in years of severe drought, and that minimizes the expected cost of operation during the planning, defining an appropriate strategy for thermal complementation. Several optimization algorithms specifically applied to this problem have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. An alternative to these challenges is the development of techniques for simulation optimization and more sophisticated and reliable, it can assist the planning of the operation. Thus, this paper presents the development of a computational tool, namely Hydro-IA for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique is Genetic Algorithm (GA) and programming language is Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The results with the Genetic Algorithms were compared with the optimization technique nonlinear programming (NLP). Tests were conducted with seven hydroelectric plants interconnected hydraulically with historical stream flow from 1953 to 1955. The results of comparison between the GA and NLP techniques shows that the cost of operating the GA becomes increasingly smaller than the NLP when the number of hydroelectric plants interconnected increases. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.

Keywords: energy, optimization, hydrothermal power systems, artificial intelligence and genetic algorithms

Procedia PDF Downloads 420
4431 Assessment of the Physical Activity Level and the Nutritional Status among Students in Bowen University, Iwo, Osun State, Nigeria

Authors: Fakunle Egbo, Kammalchukwu A., Akinremi T.

Abstract:

Physical activity and nutritional status influence the health status and cognition of young adults. Lack of physical activity increases the likelihood of developing obesity which leads to the risk of heart diseases and other risk factors like high blood pressure, high blood cholesterol, diabetes etc. The study employed a cross-sectional study design. The study used a multi stage sampling technique multi- stage sampling technique; Purposive, for the selection of colleges that would be used, stratified random sampling for stratifying the colleges into departments and the simple random sampling for the selection of each respondent from the departments. Structured questionnaires were used to obtain data from the respondents and pre-tested anthropometric instruments were used to get the weight and height of the respondents and statistically analyzed using SPSS version 22.0 and the TDA (Total dietary allowance) software which was used to analyze the nutrient intake of the respondents. This study showed that they comprised of 50.1% males and 40.9% females. Slightly above average 51.8% were between ages of 15-19 with mean age being 19.57 years; ages 20-24 were slightly below average at 45.7%. The male students 58.7% had vigorous physical activity, whereas majority of females 76.5% had light physical activity level. 39.1% of the male students carried out physical activity 2-3 times per week while One third of the female students (38.3%) carried out physical activity 6-7 times per week. Majority of the respondents had Inadequate Protein- 63.8%, Carbohydrate- 60.2%, and Dietary fiber- 88.8. 36% eat rice 4-6 times per week. Majority of the respondents had inadequate fruit and vegetables (Efo, Banana,) at 47.7%, 40.6% respectively. Using Body mass index, (63.2%) have normal weight. 22.9% are overweight, 6.8% are underweight, 5.4% have grade 1 obesity and 1.6% have grade II obesity. There was a statistically significant association between the physical activity of the respondents with their nutritional status (p=0.037), physical activity and sex (p=0.000), nutritional status and amount spent on food daily (p=0.007). The study concluded that the physical activity level of the respondents, most especially the females were low; One third of the students were malnourished therefore, there should be an urgent need for improving the overall health status of students by providing the students with well-equipped gyms and other sporting equipment’s that would make them participate actively and keep fit.

Keywords: physical activity, nutritional status, undergraduates, dietary pattern

Procedia PDF Downloads 68
4430 Thai Tourists’ Satisfaction and Tourist’s Decision Making Process in Southern of Thailand

Authors: Rewadee Waiyawassana

Abstract:

The objectives of the research on Thai tourists’ satisfaction of visiting Southern of Thailand are i) to study the Thai tourists’ satisfaction who select southern of Thailand as their destinations ii) to study their tourist’s decision making process in Southern of Thailand. The samples of the study are 619 Thai visitors at Southern of Thailand by accidental sampling technic and focus group interview for 12 key informant by purposive sampling. The data analysis includes Percentage, Frequency and One-way ANOVA. The findings from the research are the satisfaction of Thai visitors on southern of Thailand ranks from the resources of the destination, transportation, convenience, security, and promotion and public relations; with the high level of satisfaction on all the factors the government or responsible agencies should also modernize the marketing and public relation with increasing public relations, the potential visitors shall be updated with new information and alternative tourist destination also.

Keywords: public relations, Southern of Thailand, Thai Tourists’ satisfaction, Tourist’s decision making process

Procedia PDF Downloads 328
4429 Gas Monitoring and Soil Control at the Natural Gas Storage Site (Minerbio, Italy)

Authors: Ana Maria Carmen Ilie, Carmela Vaccaro

Abstract:

Gas migration through wellbore failure, in particular from abandoned wells, is repeatedly identified as the highest risk mechanism. The vadose zone was subject to monitoring system close to the wellbore in Minerbio, methane storage site. The new technology has been well-developed and used with the purpose to provide reliable estimates of leakage parameters. Of these techniques, soil flux sampling at the soil surface, via the accumulation chamber method and soil flux sampling at the depths of 100cm below the ground surface, have been an important technique for characterizing the gas concentrations at the gas storage site. We present results of soil Radon Bq/m3, CO2%, CH4% and O2% concentration gases. Measurements have been taken for radon concentrations with an Durridge RAD7 Company, Inc., USA, instrument. We used for air and soil quality an Biogas ETG instrument monitoring system, with NDIR CO2, CH4 gas sensor and electrochemical O2 gas sensor. The measurements started in September-October 2015, where no outliers have been identified. The measurements have continued in March-April-July-August-September 2016, almost at the same time in the same place around the gas storage site, values measured 15 minutes for each sampling, to determine their concentration, their distribution and to understand the relationship among gases and atmospheric conditions. At a depth of 100 cm, the maximum soil radon gas concentrations were found to be 1770 ±±582 Bq/m3, the soil consists of 64.31% sand, 20.75% silt and 14.94% clay, and with 0.526 ppm of Uranium. The maximum concentration (September 2016), in soil at 100cm below the ground surface, with 83% sand, 8.96% silt and 7.89% clay, was about 0.06% CH4, and in atmosphere 0.06% CH4 at 40°C (T). In the other months the values have been on the range of 0.01% to 0.03% CH4. Since we did not have outliers in the gas storage site, soil-gas samples for isotopic analysis have not been done.

Keywords: leakage gas monitoring, lithology, soil gas, methane

Procedia PDF Downloads 441
4428 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures

Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad

Abstract:

This paper covers application of an elitist selfadaptive
step-size search (ESASS) to optimum design of steel
skeletal structures. In the ESASS two approaches are considered for
improving the convergence accuracy as well as the computational
efficiency of the original technique namely the so called selfadaptive
step-size search (SASS). Firstly, an additional randomness
is incorporated into the sampling step of the technique to preserve
exploration capability of the algorithm during the optimization.
Moreover, an adaptive sampling scheme is introduced to improve the
quality of final solutions. Secondly, computational efficiency of the
technique is accelerated via avoiding unnecessary analyses during the
optimization process using an upper bound strategy. The numerical
results demonstrate the usefulness of the ESASS in the sizing
optimization problems of steel truss and frame structures.

Keywords: structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames

Procedia PDF Downloads 375
4427 Improving the Performances of the nMPRA Architecture by Implementing Specific Functions in Hardware

Authors: Ionel Zagan, Vasile Gheorghita Gaitan

Abstract:

Minimizing the response time to asynchronous events in a real-time system is an important factor in increasing the speed of response and an interesting concept in designing equipment fast enough for the most demanding applications. The present article will present the results regarding the validation of the nMPRA (Multi Pipeline Register Architecture) architecture using the FPGA Virtex-7 circuit. The nMPRA concept is a hardware processor with the scheduler implemented at the processor level; this is done without affecting a possible bus communication, as is the case with the other CPU solutions. The implementation of static or dynamic scheduling operations in hardware and the improvement of handling interrupts and events by the real-time executive described in the present article represent a key solution for eliminating the overhead of the operating system functions. The nMPRA processor is capable of executing a preemptive scheduling, using various algorithms without a software scheduler. Therefore, we have also presented various scheduling methods and algorithms used in scheduling the real-time tasks.

Keywords: nMPRA architecture, pipeline processor, preemptive scheduling, real-time system

Procedia PDF Downloads 370
4426 Maximum Likelihood Estimation Methods on a Two-Parameter Rayleigh Distribution under Progressive Type-Ii Censoring

Authors: Daniel Fundi Murithi

Abstract:

Data from economic, social, clinical, and industrial studies are in some way incomplete or incorrect due to censoring. Such data may have adverse effects if used in the estimation problem. We propose the use of Maximum Likelihood Estimation (MLE) under a progressive type-II censoring scheme to remedy this problem. In particular, maximum likelihood estimates (MLEs) for the location (µ) and scale (λ) parameters of two Parameter Rayleigh distribution are realized under a progressive type-II censoring scheme using the Expectation-Maximization (EM) and the Newton-Raphson (NR) algorithms. These algorithms are used comparatively because they iteratively produce satisfactory results in the estimation problem. The progressively type-II censoring scheme is used because it allows the removal of test units before the termination of the experiment. Approximate asymptotic variances and confidence intervals for the location and scale parameters are derived/constructed. The efficiency of EM and the NR algorithms is compared given root mean squared error (RMSE), bias, and the coverage rate. The simulation study showed that in most sets of simulation cases, the estimates obtained using the Expectation-maximization algorithm had small biases, small variances, narrower/small confidence intervals width, and small root of mean squared error compared to those generated via the Newton-Raphson (NR) algorithm. Further, the analysis of a real-life data set (data from simple experimental trials) showed that the Expectation-Maximization (EM) algorithm performs better compared to Newton-Raphson (NR) algorithm in all simulation cases under the progressive type-II censoring scheme.

Keywords: expectation-maximization algorithm, maximum likelihood estimation, Newton-Raphson method, two-parameter Rayleigh distribution, progressive type-II censoring

Procedia PDF Downloads 163
4425 Human-Wildlife Conflicts in Urban Areas of Zimbabwe

Authors: Davie G. Dave, Prisca H. Mugabe, Tonderai Mutibvu

Abstract:

Globally, HWCs are on the rise. Such is the case with urban areas in Zimbabwe, yet little has been documented about it. This study was done to provide insights into the occurrence of human-wildlife conflicts in urban areas. The study was carried out in Harare, Bindura, Masvingo, Beitbridge, and Chiredzi to determine the cause, nature, extent, and frequency of occurrence of HWC, to determine the key wildlife species involved in conflicts and management practices done to combat wildlife conflicts in these areas. Several sampling techniques encompassing multi-stage sampling, stratified random, purposive, and simple random sampling were employed for placing residential areas into three strata according to population density, selecting residential areas, and selecting actual participants. Data were collected through a semi-structured questionnaire and key informant interviews. The results revealed that property destruction and crop damage were the most prevalent conflicts. Of the 15 animals that were cited, snakes, baboons, and monkeys were associated with the most conflicts. The occurrence of HWCs was mainly attributed to the increase in both animal and human populations. To curtail these HWCs, the local people mainly used non-lethal methods, whilst lethal methods were used by authorities for some of the reported cases. The majority of the conflicts were seasonal and less severe. There were growing concerns by respondents on the issues of wildlife conflicts, especially in those areas that had primates, such as Warren Park in Harare and Limpopo View in Beitbridge. There are HWCs hotspots in urban areas, and to ameliorate this, suggestions are that there is a need for a multi-action approach that includes general awareness campaigns on HWCs and land use planning that involves the creation of green spaces to ease wildlife management.

Keywords: human-wildlife conflicts, mitigation measures, residential areas, types of conflicts, urban areas

Procedia PDF Downloads 68
4424 Detecting Model Financial Statement Fraud by Auditor Industry Specialization with Fraud Triangle Analysis

Authors: Reskino Resky

Abstract:

This research purposes to create a model to detecting financial statement fraud. This research examines the variable of fraud triangle and auditor industry specialization with financial statement fraud. This research used sample of company which is listed in Indonesian Stock Exchange that have sanctions and cases by Financial Services Authority in 2011-2013. The number of company that were became in this research were 30 fraud company and 30 non-fraud company. The method of determining the sample is by using purposive sampling method with judgement sampling, while the data processing methods used by researcher are mann-whitney u and discriminants analysis. This research have two from five variable that can be process with discriminant analysis. The result shows the financial targets can be detect financial statement fraud, while financial stability can’t be detect financial statement fraud.

Keywords: fraud triangle analysis, financial targets, financial stability, auditor industry specialization, financial statement fraud

Procedia PDF Downloads 458
4423 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application

Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob

Abstract:

Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.

Keywords: robotic vision, image processing, applications of robotics, artificial intelligent

Procedia PDF Downloads 97
4422 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules

Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima

Abstract:

Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.

Keywords: Box-Jenkins's problem, double-input rule module, fuzzy inference model, obstacle avoidance, single-input rule module

Procedia PDF Downloads 353
4421 Machine Learning Approach for Yield Prediction in Semiconductor Production

Authors: Heramb Somthankar, Anujoy Chakraborty

Abstract:

This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.

Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis

Procedia PDF Downloads 110