Search results for: predictive decision
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4865

Search results for: predictive decision

4325 Predictive Value of ¹⁸F-Fluorodeoxyglucose Accumulation in Visceral Fat Activity to Detect Epithelial Ovarian Cancer Metastases

Authors: A. F. Suleimanov, A. B. Saduakassova, V. S. Pokrovsky, D. V. Vinnikov

Abstract:

Relevance: Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, with relapse occurring in about 70% of advanced cases with poor prognoses. The aim of the study was to evaluate functional visceral fat activity (VAT) evaluated by ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography/computed tomography (PET/CT) as a predictor of metastases in epithelial ovarian cancer (EOC). Materials and methods: We assessed 53 patients with histologically confirmed EOC who underwent ¹⁸F-FDG PET/CT after a surgical treatment and courses of chemotherapy. Age, histology, stage, and tumor grade were recorded. Functional VAT activity was measured by maximum standardized uptake value (SUVₘₐₓ) using ¹⁸F-FDG PET/CT and tested as a predictor of later metastases in eight abdominal locations (RE – Epigastric Region, RLH – Left Hypochondriac Region, RRL – Right Lumbar Region, RU – Umbilical Region, RLL – Left Lumbar Region, RRI – Right Inguinal Region, RP – Hypogastric (Pubic) Region, RLI – Left Inguinal Region) and pelvic cavity (P) in the adjusted regression models. We also identified the best areas under the curve (AUC) for SUVₘₐₓ with the corresponding sensitivity (Se) and specificity (Sp). Results: In both adjusted-for regression models and ROC analysis, ¹⁸F-FDG accumulation in RE (cut-off SUVₘₐₓ 1.18; Se 64%; Sp 64%; AUC 0.669; p = 0.035) could predict later metastases in EOC patients, as opposed to age, sex, primary tumor location, tumor grade, and histology. Conclusions: VAT SUVₘₐₓ is significantly associated with later metastases in EOC patients and can be used as their predictor.

Keywords: ¹⁸F-FDG, PET/CT, EOC, predictive value

Procedia PDF Downloads 64
4324 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic

Authors: Fei Gao, Rodolfo C. Raga Jr.

Abstract:

This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.

Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle

Procedia PDF Downloads 75
4323 Action Research through Drama in Education on Adolescents’ Career Self-Efficacy and Decision-Making Skills Development

Authors: Christina Zourna, Ioanna Papavassiliou-Alexiou

Abstract:

The purpose of this multi-phased action research PhD study in Greece was to investigate if and how Drama in Education (DiE) – used as an innovative group counselling method – may have positive effects on secondary education students’career self-efficacy and career decision-making skills development. Using both quantitative and qualitative research tools, high quality data were gathered at various stages of the research and were analysed through multivariate methods and open-source computer aided data analysis software such as R Studio, QualCoder, and SPSS packages. After a five-month-long educational intervention based on DiE method, it was found that 9th, 10th, and 11th gradersameliorated their self-efficacy and learned the process of making an informed career decision – through targeted information gathering about themselves and possible study paths – thus, developing career problem-solving and career management skills. Gender differences were non statistically important, while differences in grades showed a minor influence on some of the measured factorssuch as general career indecisiveness and self-evaluation. Students in the 11th grade scored significantly higher than younger students in the career self-efficacy scale and have stronger faith in their abilities e.g., choosing general over vocational school and major study orientation. The study has shown that DiE can be effective in group career guidance, especially concerning the pillars of self-awareness, self-efficacy, and career decision-making processes.

Keywords: career decision-making skills, career self-efficacy, CDDQ scale, CDMSE-SF scale, drama in education method

Procedia PDF Downloads 123
4322 Neuromarketing: Discovering the Somathyc Marker in the Consumer´s Brain

Authors: Mikel Alonso López, María Francisca Blasco López, Víctor Molero Ayala

Abstract:

The present study explains the somatic marker theory of Antonio Damasio, which indicates that when making a decision, the stored or possible future scenarios (future memory) images allow people to feel for a moment what would happen when they make a choice, and how this is emotionally marked. This process can be conscious or unconscious. The development of new Neuromarketing techniques such as functional magnetic resonance imaging (fMRI), carries a greater understanding of how the brain functions and consumer behavior. In the results observed in different studies using fMRI, the evidence suggests that the somatic marker and future memories influence the decision-making process, adding a positive or negative emotional component to the options. This would mean that all decisions would involve a present emotional component, with a rational cost-benefit analysis that can be performed later.

Keywords: emotions, decision making, somatic marker, consumer´s brain

Procedia PDF Downloads 403
4321 Analysis of Preferences in Decision Making in a Bilateral Negotiation Context: An Experimental Approach from Game Theory

Authors: Laura V. Gonzalez, Juan B. Duarte, Luis A. Palacio

Abstract:

Decision making can be conditioned by factors such as the environments, circumstances, behavioral biases, emotions, beliefs and preferences of the participants. The objective of this paper is to analyze the effect ‘amount of information’ and ‘number of options’, on the behavior of competitors under a bilateral negotiation context. For the above, it has been designed an experiment as a classroom game where they negotiate goods, under the condition that none of the players knows exactly the real value of the asset. The game is designed under the concept of zero-sum (non-cooperative game) and focuses on the fact that agents must anticipate the strategies of their opponent to improve their chances of winning in the negotiation. The empirical results show that, contrary to the traditional view of expected utility theory, players prefer to obtain low profits and losses, when faced with a higher expectation of losses, using sub-optimal strategies not in accordance with game theory.

Keywords: bilateral negotiation, classroom game, decision making, game theory

Procedia PDF Downloads 263
4320 Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System

Authors: Y. Kourd, D. Lefebvre

Abstract:

The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults.

Keywords: decision tree, residuals analysis, ANFIS, fault diagnosis

Procedia PDF Downloads 625
4319 Predictive Analytics of Student Performance Determinants

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: student performance, supervised machine learning, classification, cross-validation, prediction

Procedia PDF Downloads 126
4318 Virtual Simulation as a Teaching Method for Community Health Nursing: An Investigation of Student Performance

Authors: Omar Mayyas

Abstract:

Clinical decision-making (CDM) is essential to community health nursing (CHN) education. For this reason, nursing educators are responsible for developing these skills among nursing students because nursing students are exposed to highly critical conditions after graduation. However, due to limited exposure to real-world situations, many nursing students need help developing clinical decision-making skills in this area. Therefore, the impact of Virtual Simulation (VS) on community health nursing students' clinical decision-making in nursing education has to be investigated. This study aims to examine the difference in CDM ability among CHN students who received traditional education compared to those who received VS classes, to identify the factors that may influence CDM ability differences between CHN students who received a traditional education and VS classes, and to provide recommendations for educational programs that can enhance the CDM ability of CHN students and improve the quality of care provided in community settings. A mixed-method study will conduct. A randomized controlled trial will compare the CDM ability of CHN students who received 1hr traditional class with another group who received 1hr VS scenario about diabetic patient nursing care. Sixty-four students in each group will randomly select to be exposed to the intervention from undergraduate nursing students who completed the CHN course at York University. The participants will receive the same Clinical Decision Making in Nursing Scale (CDMNS) questionnaire. The study intervention will follow the Medical Research Council (MRC) approach. SPSS and content analysis will use for data analysis.

Keywords: clinical decision-making, virtual simulation, community health nursing students, community health nursing education

Procedia PDF Downloads 67
4317 Attributes That Influence Respondents When Choosing a Mate in Internet Dating Sites: An Innovative Matching Algorithm

Authors: Moti Zwilling, Srečko Natek

Abstract:

This paper aims to present an innovative predictive analytics analysis in order to find the best combination between two consumers who strive to find their partner or in internet sites. The methodology shown in this paper is based on analysis of consumer preferences and involves data mining and machine learning search techniques. The study is composed of two parts: The first part examines by means of descriptive statistics the correlations between a set of parameters that are taken between man and women where they intent to meet each other through the social media, usually the internet. In this part several hypotheses were examined and statistical analysis were taken place. Results show that there is a strong correlation between the affiliated attributes of man and woman as long as concerned to how they present themselves in a social media such as "Facebook". One interesting issue is the strong desire to develop a serious relationship between most of the respondents. In the second part, the authors used common data mining algorithms to search and classify the most important and effective attributes that affect the response rate of the other side. Results exhibit that personal presentation and education background are found as most affective to achieve a positive attitude to one's profile from the other mate.

Keywords: dating sites, social networks, machine learning, decision trees, data mining

Procedia PDF Downloads 293
4316 Discerning Divergent Nodes in Social Networks

Authors: Mehran Asadi, Afrand Agah

Abstract:

In data mining, partitioning is used as a fundamental tool for classification. With the help of partitioning, we study the structure of data, which allows us to envision decision rules, which can be applied to classification trees. In this research, we used online social network dataset and all of its attributes (e.g., Node features, labels, etc.) to determine what constitutes an above average chance of being a divergent node. We used the R statistical computing language to conduct the analyses in this report. The data were found on the UC Irvine Machine Learning Repository. This research introduces the basic concepts of classification in online social networks. In this work, we utilize overfitting and describe different approaches for evaluation and performance comparison of different classification methods. In classification, the main objective is to categorize different items and assign them into different groups based on their properties and similarities. In data mining, recursive partitioning is being utilized to probe the structure of a data set, which allow us to envision decision rules and apply them to classify data into several groups. Estimating densities is hard, especially in high dimensions, with limited data. Of course, we do not know the densities, but we could estimate them using classical techniques. First, we calculated the correlation matrix of the dataset to see if any predictors are highly correlated with one another. By calculating the correlation coefficients for the predictor variables, we see that density is strongly correlated with transitivity. We initialized a data frame to easily compare the quality of the result classification methods and utilized decision trees (with k-fold cross validation to prune the tree). The method performed on this dataset is decision trees. Decision tree is a non-parametric classification method, which uses a set of rules to predict that each observation belongs to the most commonly occurring class label of the training data. Our method aggregates many decision trees to create an optimized model that is not susceptible to overfitting. When using a decision tree, however, it is important to use cross-validation to prune the tree in order to narrow it down to the most important variables.

Keywords: online social networks, data mining, social cloud computing, interaction and collaboration

Procedia PDF Downloads 157
4315 Analytic Network Process in Location Selection and Its Application to a Real Life Problem

Authors: Eylem Koç, Hasan Arda Burhan

Abstract:

Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.

Keywords: analytic network process (ANP), BOCR, multi-actor decision making, multi-criteria decision making, real-life problem, location selection

Procedia PDF Downloads 470
4314 BIM Data and Digital Twin Framework: Preserving the Past and Predicting the Future

Authors: Mazharuddin Syed Ahmed

Abstract:

This research presents a framework used to develop The Ara Polytechnic College of Architecture Studies building “Kahukura” which is Green Building certified. This framework integrates the development of a smart building digital twin by utilizing Building Information Modelling (BIM) and its BIM maturity levels, including Levels of Development (LOD), eight dimensions of BIM, Heritage-BIM (H-BIM) and Facility Management BIM (FM BIM). The research also outlines a structured approach to building performance analysis and integration with the circular economy, encapsulated within a five-level digital twin framework. Starting with Level 1, the Descriptive Twin provides a live, editable visual replica of the built asset, allowing for specific data inclusion and extraction. Advancing to Level 2, the Informative Twin integrates operational and sensory data, enhancing data verification and system integration. At Level 3, the Predictive Twin utilizes operational data to generate insights and proactive management suggestions. Progressing to Level 4, the Comprehensive Twin simulates future scenarios, enabling robust “what-if” analyses. Finally, Level 5, the Autonomous Twin, represents the pinnacle of digital twin evolution, capable of learning and autonomously acting on behalf of users.

Keywords: building information modelling, circular economy integration, digital twin, predictive analytics

Procedia PDF Downloads 43
4313 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning

Authors: Jun Wang, Ge Zhang

Abstract:

Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.

Keywords: machine learning, ETF prediction, dynamic trading, asset allocation

Procedia PDF Downloads 98
4312 Unpleasant Symptom Clusters Influencing Quality of Life among Patients with Chronic Kidney Disease

Authors: Anucha Taiwong, Nirobol Kanogsunthornrat

Abstract:

This predictive research aimed to investigate the symptom clusters that influence the quality of life among patients with chronic kidney disease, as indicated in the Theory of Unpleasant Symptoms. The purposive sample consisted of 150 patients with stage 3-4 chronic kidney disease who received care at an outpatient chronic kidney disease clinic of a tertiary hospital in Roi-Et province. Data were collected from January to March 2016 by using a patient general information form, unpleasant symptom form, and quality of life (SF-36) and were analyzed by using descriptive statistics, factor analysis, and multiple regression analysis. Findings revealed six core symptom clusters including symptom cluster of the mental and emotional conditions, peripheral nerves abnormality, fatigue, gastro-intestinal tract, pain and, waste congestion. Significant predictors for quality of life were the two symptom clusters of pain (Beta = -.220; p < .05) and the mental and emotional conditions (Beta=-.204; p<.05) which had predictive value of 19.10% (R2=.191, p<.05). This study indicated that the symptom cluster of pain and the mental and emotional conditions would worsen the patients’ quality of life. Nurses should be attentive in managing the two symptom clusters to facilitate the quality of life among patients with chronic kidney disease.

Keywords: chronic kidney disease, symptom clusters, predictors of quality of life, pre-dialysis

Procedia PDF Downloads 318
4311 Usage of “Flowchart of Diagnosis and Treatment” Software in Medical Education

Authors: Boy Subirosa Sabarguna, Aria Kekalih, Irzan Nurman

Abstract:

Introduction: Software in the form of Clinical Decision Support System could help students in understanding the mind set of decision-making in diagnosis and treatment at the stage of general practitioners. This could accelerate and ease the learning process which previously took place by using books and experience. Method: Gather 1000 members of the National Medical Multimedia Digital Community (NM2DC) who use the “flowchart of diagnosis and treatment” software, and analyse factors related to: display, speed in learning, convenience in learning, helpfulness and usefulness in the learning process, by using the Likert Scale through online questionnaire which will further be processed using percentage. Results and Discussions: Out of the 1000 members of NM2DC, apparently: 97.0% of the members use the software and 87.5% of them are students. In terms of the analysed factors related to: display, speed in learning, convenience in learning, helpfulness and usefulness of the software’s usage, the results indicate a 90.7% of fairly good performance. Therefore, the “Flowchart of Diagnosis and Treatment” software has helped students in understanding the decision-making of diagnosis and treatment. Conclusion: the use of “Flowchart of Diagnosis and Treatment” software indicates a positive role in helping students understand decision-making of diagnosis and treatment.

Keywords: usage, software, diagnosis and treatment, medical education

Procedia PDF Downloads 359
4310 A Fuzzy Analytic Hierarchy Process Approach for the Decision of Maintenance Priorities of Building Entities: A Case Study in a Facilities Management Company

Authors: Wai Ho Darrell Kwok

Abstract:

Building entities are valuable assets of a society, however, all of them are suffered from the ravages of weather and time. Facilitating onerous maintenance activities is the only way to either maintain or enhance the value and contemporary standard of the premises. By the way, maintenance budget is always bounded by the corresponding threshold limit. In order to optimize the limited resources allocation in carrying out maintenance, there is a substantial need to prioritize maintenance work. This paper reveals the application of Fuzzy AHP in a Facilities Management Company determining the maintenance priorities on the basis of predetermined criteria, viz., Building Status (BS), Effects on Fabrics (EF), Effects on Sustainability (ES), Effects on Users (EU), Importance of Usage (IU) and Physical Condition (PC) in dealing with categorized 8 predominant building components maintenance aspects for building premises. From the case study, it is found that ‘building exterior repainting or re-tiling’, ‘spalling concrete repair works among exterior area’ and ‘lobby renovation’ are the top three maintenance priorities from facilities manager and maintenance expertise personnel. Through the application of the Fuzzy AHP for maintenance priorities decision algorithm, a more systemic and easier comparing scalar linearity factors being explored even in considering other multiple criteria decision scenarios of building maintenance issue.

Keywords: building maintenance, fuzzy AHP, maintenance priority, multi-criteria decision making

Procedia PDF Downloads 243
4309 Computational Model of Human Cardiopulmonary System

Authors: Julian Thrash, Douglas Folk, Michael Ciracy, Audrey C. Tseng, Kristen M. Stromsodt, Amber Younggren, Christopher Maciolek

Abstract:

The cardiopulmonary system is comprised of the heart, lungs, and many dynamic feedback mechanisms that control its function based on a multitude of variables. The next generation of cardiopulmonary medical devices will involve adaptive control and smart pacing techniques. However, testing these smart devices on living systems may be unethical and exceedingly expensive. As a solution, a comprehensive computational model of the cardiopulmonary system was implemented in Simulink. The model contains over 240 state variables and over 100 equations previously described in a series of published articles. Simulink was chosen because of its ease of introducing machine learning elements. Initial results indicate that physiologically correct waveforms of pressures and volumes were obtained in the simulation. With the development of a comprehensive computational model, we hope to pioneer the future of predictive medicine by applying our research towards the initial stages of smart devices. After validation, we will introduce and train reinforcement learning agents using the cardiopulmonary model to assist in adaptive control system design. With our cardiopulmonary model, we will accelerate the design and testing of smart and adaptive medical devices to better serve those with cardiovascular disease.

Keywords: adaptive control, cardiopulmonary, computational model, machine learning, predictive medicine

Procedia PDF Downloads 179
4308 Analysis of Conditional Effects of Forms of Upward versus Downward Counterfactual Reasoning on Gambling Cognition and Decision of Nigerians

Authors: Larry O. Awo, George N. Duru

Abstract:

There are growing public and mental health concerns over the availability of gambling platforms and shops in Nigeria and the high level of youth involvement in gambling. Early theorizing maintained that gambling involvement was driven by a quest for resource gains. However, evidence shows that the economic model of gambling tends to explain the involvement of the gambling business owners (sport lottery operators: SLOs) as most gamblers lose more than they win. This loss, according to the law of effect, ought to discourage decisions to gamble. However, the quest to recover losses has often initiated prolonged gambling sessions. Therefore, the need to investigate mental contemplations (such as counterfactual reasoning (upward versus downward) of what “would, should, or could” have been, and feeling of the illusion of control; IOC) over gambling outcomes as risk or protective factors in gambling decisions became pertinent. The present study sought to understand the differential contributions and conditional effects of upward versus downward counterfactual reasoning as pathways through which the association between IOC and gambling decisions of Nigerian youths (N = 120, mean age = 18.05, SD = 3.81) could be explained. The study adopted a randomized group design, and data were obtained by means of stimulus material (the Gambling Episode; GE) and self-report measures of IOC and Gambling Decision. One-way analysis of variance (ANOVA) result showed that participants in the upward counterfactual reasoning group (M = 22.08) differed from their colleagues in the downward counterfactual reasoning group (M = 17.33) on the decision to gamble, and this difference was significant [F(1,112) = 23, P < .01]. HAYES PROCESS macro moderation analysis results showed that 1) IOC and upward counterfactual reasoning were positively associated with the decision to gamble (B = 14.21, t = 6.10, p < .01 and B = 7.22, t = 2.07, p <.05, respectively), 2) downward counterfactual reasoning was negatively associated with the decision to gamble more to recover losses (B = 10.03, t = 3.21, p < .01), 3) upward counterfactual reasoning did not moderate the association between IOC and gambling decision (p > .05), and 4) downward counterfactual reasoning negatively moderated the association between IOC and gambling decision (B = 07, t = 2.18, p < .05) such that the association was strong at the low level of downward counterfactual, but wane at high levels of downward counterfactual reasoning. The implication of these findings is that IOC and upward counterfactual reasoning were risk factors and promoted gambling behavior, while downward counterfactual reasoning protects individuals from gambling activities. Thus, it is concluded that downward counterfactual reasoning strategies should be included in gambling therapy and treatment packages as it could diminish feelings of both IOC and negative feelings of missed positive outcomes and the urge to gamble.

Keywords: counterfactual reasoning, gambling cognition, gambling decision, Nigeria, youths

Procedia PDF Downloads 90
4307 An Influence of Marketing Mix on Hotel Booking Decision: Japanese Senior Traveler Case

Authors: Kingkan Pongsiri

Abstract:

The study of marketing mix influencing on hotel booking decision making: Japanese senior traveler case aims to study the individual factors that are involved in the decision-making reservation for Japanese elderly travelers. Then, it aims to study other factors that influence the decision of tourists booking elderly Japanese people. This is a quantitative research methods, total of 420 completed questionnaires were collect via a Non-Probability sampling techniques. The study found that the majority of samples were female, 53.3 percent of 224 people aged between 66-70 years were 197, representing a 46.9 percent majority, the marital status of marriage is 212 per cent.50.5. Majority of samples have a bachelor degree of education with number of 326 persons (77.6 percentages) 50 percentages of samples (210 people) have monthly income in between 1,501-2,000 USD. The Samples mostly have a length of stay in a short period between 1-14 days counted as 299 people which representing 71.2 percentages of samples. The senior Japanese tourists apparently sensitive to the factors of products/services the most. Then they seem to be sensitive to the price, the marketing promotion and people, respectively. There are two factors identified as moderately influence to the Japanese senior tourists are places or distribution channels and physical evidences.

Keywords: Japanese senior traveler, marketing mix, senior tourist, hotel booking

Procedia PDF Downloads 297
4306 Steps toward the Support Model of Decision-Making in Hungary: The Impact of the Article 12 of the UN Convention on the Rights of Persons with Disabilities on the Hungarian National Legislation

Authors: Szilvia Halmos

Abstract:

Hungary was one of the first countries to sign and ratify the UN Convention on the Rights of Persons with Disabilities (hereinafter: CRPD). Consequently, Hungary assumed an obligation under international law to review the national law in the light of the Article 12 of the CRPD requiring the States parties to guarantee the equality of persons with disabilities in terms of legal capacity, and to replace the regimes of substitute decision-making by the instruments of supported decision-making. This article is often characterized as one of the key norms of the CRPD, since the legal autonomy of the persons with disabilities is an essential precondition of their participation in the social life on an equal basis with others, envisaged by the social paradigm of disability. This paper examines the impact of the CRPD on the relevant Hungarian national legal norms, with special focus on the relevant rules of the recently codified Civil Code. The employed research methodologies include (1) the specification of the implementation requirements imposed by the Article 12 of the CRPD, (2) the determination of the indicators of the appropriate implementation, (3) the critical analysis of compliance of the relevant Hungarian legal regulation with the indicators, (4) with respect to the relevant case law of the Hungarian Constitutional Court and ordinary courts, the European Court of Human Rights and the Committee of Rights of Persons with Disabilities and (5) to the available empirical figures on the functioning of substitute and supported decision-making regimes. It will be established that the new Civil Code has made large steps toward the equality of persons with disabilities in terms of legal capacity and the support model of decision-making by the introduction of some specific instruments of supported decision-making and the restriction of the application of guardianship. Nevertheless, the regulation currently in effect fails to represent some crucial principles of the Article 12 of the CRPD, such as the non-discrimination of persons with psycho-social disabilities, the support of the articulation of the will and preferences of the individual instead of his/her best interest in the course of decision-making. The changes in the practice of the substitute and the support model brought about by the new legal norms can also be assessed as significant, however, so far unsatisfactory. The number of registered supporters is rather low, and the preconditions of the effective functioning of the support (e.g. the proper training of the supporters) are not ensured.

Keywords: Article 12 of the UN CRPD, Hungarian law on legal capacity, persons with intellectual and psycho-social disabilities, supported decision-making

Procedia PDF Downloads 289
4305 Reliability Assessment and Failure Detection in a Complex Human-Machine System Using Agent-Based and Human Decision-Making Modeling

Authors: Sanjal Gavande, Thomas Mazzuchi, Shahram Sarkani

Abstract:

In a complex aerospace operational environment, identifying failures in a procedure involving multiple human-machine interactions are difficult. These failures could lead to accidents causing loss of hardware or human life. The likelihood of failure further increases if operational procedures are tested for a novel system with multiple human-machine interfaces and with no prior performance data. The existing approach in the literature of reviewing complex operational tasks in a flowchart or tabular form doesn’t provide any insight into potential system failures due to human decision-making ability. To address these challenges, this research explores an agent-based simulation approach for reliability assessment and fault detection in complex human-machine systems while utilizing a human decision-making model. The simulation will predict the emergent behavior of the system due to the interaction between humans and their decision-making capability with the varying states of the machine and vice-versa. Overall system reliability will be evaluated based on a defined set of success-criteria conditions and the number of recorded failures over an assigned limit of Monte Carlo runs. The study also aims at identifying high-likelihood failure locations for the system. The research concludes that system reliability and failures can be effectively calculated when individual human and machine agent states are clearly defined. This research is limited to the operations phase of a system lifecycle process in an aerospace environment only. Further exploration of the proposed agent-based and human decision-making model will be required to allow for a greater understanding of this topic for application outside of the operations domain.

Keywords: agent-based model, complex human-machine system, human decision-making model, system reliability assessment

Procedia PDF Downloads 168
4304 Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process

Authors: Viliam Makis, Farnoosh Naderkhani, Leila Jafari

Abstract:

In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example.

Keywords: Bayesian control chart, semi-Markov decision process, quality control, partially observable process

Procedia PDF Downloads 318
4303 Evaluation and Selection of SaaS Product Based on User Preferences

Authors: Boussoualim Nacira, Aklouf Youcef

Abstract:

Software as a Service (SaaS) is a software delivery paradigm in which the product is not installed on-premise, but it is available on Internet and Web. The customers do not pay to possess the software itself but rather to use it. This concept of pay per use is very attractive. Hence, we see increasing number of organizations adopting SaaS. However, each customer is unique, which leads to a very large variation in the requirements off the software. As several suppliers propose SaaS products, the choice of this latter becomes a major issue. When multiple criteria are involved in decision making, we talk about a problem of «Multi-Criteria Decision-Making» (MCDM). Therefore, this paper presents a method to help customers to choose a better SaaS product satisfying most of their conditions and alternatives. Also, we know that a good method of adaptive selection should be based on the correct definition of the different parameters of choice. This is why we started by extraction and analysis the various parameters involved in the process of the selection of a SaaS application.

Keywords: cloud computing, business operation, Multi-Criteria Decision-Making (MCDM), Software as a Service (SaaS)

Procedia PDF Downloads 483
4302 Predictive Semi-Empirical NOx Model for Diesel Engine

Authors: Saurabh Sharma, Yong Sun, Bruce Vernham

Abstract:

Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model.  Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.

Keywords: diesel engine, machine learning, NOₓ emission, semi-empirical

Procedia PDF Downloads 114
4301 Modeling of Tool Flank Wear in Finish Hard Turning of AISI D2 Using Genetic Programming

Authors: V. Pourmostaghimi, M. Zadshakoyan

Abstract:

Efficiency and productivity of the finish hard turning can be enhanced impressively by utilizing accurate predictive models for cutting tool wear. However, the ability of genetic programming in presenting an accurate analytical model is a notable characteristic which makes it more applicable than other predictive modeling methods. In this paper, the genetic equation for modeling of tool flank wear is developed with the use of the experimentally measured flank wear values and genetic programming during finish turning of hardened AISI D2. Series of tests were conducted over a range of cutting parameters and the values of tool flank wear were measured. On the basis of obtained results, genetic model presenting connection between cutting parameters and tool flank wear were extracted. The accuracy of the genetically obtained model was assessed by using two statistical measures, which were root mean square error (RMSE) and coefficient of determination (R²). Evaluation results revealed that presented genetic model predicted flank wear over the study area accurately (R² = 0.9902 and RMSE = 0.0102). These results allow concluding that the proposed genetic equation corresponds well with experimental data and can be implemented in real industrial applications.

Keywords: cutting parameters, flank wear, genetic programming, hard turning

Procedia PDF Downloads 178
4300 The Study of Security Techniques on Information System for Decision Making

Authors: Tejinder Singh

Abstract:

Information system is the flow of data from different levels to different directions for decision making and data operations in information system (IS). Data can be violated by different manner like manual or technical errors, data tampering or loss of integrity. Security system called firewall of IS is effected by such type of violations. The flow of data among various levels of Information System is done by networking system. The flow of data on network is in form of packets or frames. To protect these packets from unauthorized access, virus attacks, and to maintain the integrity level, network security is an important factor. To protect the data to get pirated, various security techniques are used. This paper represents the various security techniques and signifies different harmful attacks with the help of detailed data analysis. This paper will be beneficial for the organizations to make the system more secure, effective, and beneficial for future decisions making.

Keywords: information systems, data integrity, TCP/IP network, vulnerability, decision, data

Procedia PDF Downloads 307
4299 Development of a System for Fitting Clothes and Accessories Using Augmented Reality

Authors: Dinmukhamed T., Vassiliy S.

Abstract:

This article suggests the idea of fitting clothes and accessories based on augmented reality. A logical data model has been developed, taking into account the decision-making module (colors, style, type, material, popularity, etc.) based on personal data (age, gender, weight, height, leg size, hoist length, geolocation, photogrammetry, number of purchases of certain types of clothing, etc.) and statistical data of the purchase history (number of items, price, size, color, style, etc.). Also, in order to provide information to the user, it is planned to develop an augmented reality system using a QR code. This system of selection and fitting of clothing and accessories based on augmented reality will be used in stores to reduce the time for the buyer to make a decision on the choice of clothes.

Keywords: augmented reality, online store, decision-making module, like QR code, clothing store, queue

Procedia PDF Downloads 157
4298 Power Control in Solar Battery Charging Station Using Fuzzy Decision Support System

Authors: Krishnan Manickavasagam, Manikandan Shanmugam

Abstract:

Clean and abundant renewable energy sources (RES) such as solar energy is seen as the best solution to replace conventional energy source. Unpredictable power generation is a major issue in the penetration of solar energy, as power generated is governed by the irradiance received. Controlling the power generated from solar PV (SPV) panels to battery and load is a challenging task. In this paper, power flow control from SPV to load and energy storage device (ESD) is controlled by a fuzzy decision support system (FDSS) on the availability of solar irradiation. The results show that FDSS implemented with the energy management system (EMS) is capable of managing power within the area, and if excess power is available, then shared with the neighboring area.

Keywords: renewable energy sources, fuzzy decision support system, solar photovoltaic, energy storage device, energy management system

Procedia PDF Downloads 100
4297 Data-driven Decision-Making in Digital Entrepreneurship

Authors: Abeba Nigussie Turi, Xiangming Samuel Li

Abstract:

Data-driven business models are more typical for established businesses than early-stage startups that strive to penetrate a market. This paper provided an extensive discussion on the principles of data analytics for early-stage digital entrepreneurial businesses. Here, we developed data-driven decision-making (DDDM) framework that applies to startups prone to multifaceted barriers in the form of poor data access, technical and financial constraints, to state some. The startup DDDM framework proposed in this paper is novel in its form encompassing startup data analytics enablers and metrics aligning with startups' business models ranging from customer-centric product development to servitization which is the future of modern digital entrepreneurship.

Keywords: startup data analytics, data-driven decision-making, data acquisition, data generation, digital entrepreneurship

Procedia PDF Downloads 328
4296 A Fuzzy Hybrıd Decısıon Support System for Naval Base Place Selectıon in a Foreıgn Country

Authors: Latif Yanar, Muharrem Kaçan

Abstract:

In this study, an Analytic Hierarchy Process and Analytic Network Process Decision Support System (DSS) model for determination of a navy base place in another country is proposed together with a decision support software (DESTEC 1.0) developed using C Sharp programming language. The proposed software also has the ability of performing the fuzzy models (Fuzzy AHP and Fuzzy ANP) of the proposed DSS to cope with the ambiguous and linguistic nature of the model. The AHP and ANP model, for a decision support for selecting the best place among the alternatives, including the criteria and alternatives, is developed and solved by the experts from Turkish Navy and Turkish academicians related to international relations branches of the universities in Turkey. Also, the questionnaires used for weighting of the criteria and the alternatives are filled by these experts.Some of our alternatives are: economic and political stability of the third country, the effect of another super power in that country, historical relations, security in that country, social facilities in the city in which the base will be built, the transportation security and difficulty from a main city that have an airport to the city will have the base etc. Over 20 criteria like these are determined which are categorized in social, political, economic and military aspects. As a result all the criteria and three alternatives are evaluated by different people who have background and experience to weight the criteria and alternatives as it must be in AHP and ANP evaluation system. The alternatives got their degrees all between 0 – 1 and the total is 1. At the end the DSS advices one of the alternatives as the best one to the decision maker according to the developed model and the evaluations of the experts.

Keywords: analytic hierarchical process, analytic network process, fuzzy logic, naval base place selection, multiple criteria decision making

Procedia PDF Downloads 391