Search results for: adaptive and non-adaptive spectral estimation
3025 Heavy Vehicle Traffic Estimation Using Automatic Traffic Recorders/Weigh-In-Motion Data: Current Practice and Proposed Methods
Authors: Muhammad Faizan Rehman Qureshi, Ahmed Al-Kaisy
Abstract:
Accurate estimation of traffic loads is critical for pavement and bridge design, among other transportation applications. Given the disproportional impact of heavier axle loads on pavement and bridge structures, truck and heavy vehicle traffic is expected to be a major determinant of traffic load estimation. Further, heavy vehicle traffic is also a major input in transportation planning and economic studies. The traditional method for estimating heavy vehicle traffic primarily relies on AADT estimation using Monthly Day of the Week (MDOW) adjustment factors as well as the percent heavy vehicles observed using statewide data collection programs. The MDOW factors are developed using daily and seasonal (or monthly) variation patterns for total traffic, consisting predominantly of passenger cars and other smaller vehicles. Therefore, while using these factors may yield reasonable estimates for total traffic (AADT), such estimates may involve a great deal of approximation when applied to heavy vehicle traffic. This research aims at assessing the approximation involved in estimating heavy vehicle traffic using MDOW adjustment factors for total traffic (conventional approach) along with three other methods of using MDOW adjustment factors for total trucks (class 5-13), combination-unit trucks (class 8-13), as well as adjustment factors for each vehicle class separately. Results clearly indicate that the conventional method was outperformed by the other three methods by a large margin. Further, using the most detailed and data intensive method (class-specific adjustment factors) does not necessarily yield a more accurate estimation of heavy vehicle traffic.Keywords: traffic loads, heavy vehicles, truck traffic, adjustment factors, traffic data collection
Procedia PDF Downloads 233024 The Influence of Covariance Hankel Matrix Dimension on Algorithms for VARMA Models
Authors: Celina Pestano-Gabino, Concepcion Gonzalez-Concepcion, M. Candelaria Gil-Fariña
Abstract:
Some estimation methods for VARMA models, and Multivariate Time Series Models in general, rely on the use of a Hankel matrix. It is known that if the data sample is populous enough and the dimension of the Hankel matrix is unnecessarily large, this may result in an unnecessary number of computations as well as in numerical problems. In this sense, the aim of this paper is two-fold. First, we provide some theoretical results for these matrices which translate into a lower dimension for the matrices normally used in the algorithms. This contribution thus serves to improve those methods from a numerical and, presumably, statistical point of view. Second, we have chosen an estimation algorithm to illustrate in practice our improvements. The results we obtained in a simulation of VARMA models show that an increase in the size of the Hankel matrix beyond the theoretical bound proposed as valid does not necessarily lead to improved practical results. Therefore, for future research, we propose conducting similar studies using any of the linear system estimation methods that depend on Hankel matrices.Keywords: covariances Hankel matrices, Kronecker indices, system identification, VARMA models
Procedia PDF Downloads 2433023 Spectral Mapping of Hydrothermal Alteration Minerals for Geothermal Exploration Using Advanced Spaceborne Thermal Emission and Reflection Radiometer Short Wave Infrared Data
Authors: Aliyu J. Abubakar, Mazlan Hashim, Amin B. Pour
Abstract:
Exploiting geothermal resources for either power, home heating, Spa, greenhouses, industrial or tourism requires an initial identification of suitable areas. This can be done cost-effectively using remote sensing satellite imagery which has synoptic capabilities of covering large areas in real time and by identifying possible areas of hydrothermal alteration and minerals related to Geothermal systems. Earth features and minerals are known to have unique diagnostic spectral reflectance characteristics that can be used to discriminate them. The focus of this paper is to investigate the applicability of mapping hydrothermal alteration in relation to geothermal systems (thermal springs) at Yankari Park Northeastern Nigeria, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data for resource exploration. The ASTER Short Wave Infrared (SWIR) bands are used to highlight and discriminate alteration areas by employing sophisticated digital image processing techniques including image transformations and spectral mapping methods. Field verifications are conducted at the Yankari Park using hand held Global Positioning System (GPS) monterra to identify locations of hydrothermal alteration and rock samples obtained at the vicinity and surrounding areas of the ‘Mawulgo’ and ‘Wikki’ thermal springs. X-Ray Diffraction (XRD) results of rock samples obtained from the field validated hydrothermal alteration by the presence of indicator minerals including; Dickite, Kaolinite, Hematite and Quart. The study indicated the applicability of mapping geothermal anomalies for resource exploration in unmapped sparsely vegetated savanna environment characterized by subtle surface manifestations such as thermal springs. The results could have implication for geothermal resource exploration especially at the prefeasibility stages by narrowing targets for comprehensive surveys and in unexplored savanna regions where expensive airborne surveys are unaffordable.Keywords: geothermal exploration, image enhancement, minerals, spectral mapping
Procedia PDF Downloads 3633022 Using New Machine Algorithms to Classify Iranian Musical Instruments According to Temporal, Spectral and Coefficient Features
Authors: Ronak Khosravi, Mahmood Abbasi Layegh, Siamak Haghipour, Avin Esmaili
Abstract:
In this paper, a study on classification of musical woodwind instruments using a small set of features selected from a broad range of extracted ones by the sequential forward selection method was carried out. Firstly, we extract 42 features for each record in the music database of 402 sound files belonging to five different groups of Flutes (end blown and internal duct), Single –reed, Double –reed (exposed and capped), Triple reed and Quadruple reed. Then, the sequential forward selection method is adopted to choose the best feature set in order to achieve very high classification accuracy. Two different classification techniques of support vector machines and relevance vector machines have been tested out and an accuracy of up to 96% can be achieved by using 21 time, frequency and coefficient features and relevance vector machine with the Gaussian kernel function.Keywords: coefficient features, relevance vector machines, spectral features, support vector machines, temporal features
Procedia PDF Downloads 3203021 A Non-Destructive Estimation Method for Internal Time in Perilla Leaf Using Hyperspectral Data
Authors: Shogo Nagano, Yusuke Tanigaki, Hirokazu Fukuda
Abstract:
Vegetables harvested early in the morning or late in the afternoon are valued in plant production, and so the time of harvest is important. The biological functions known as circadian clocks have a significant effect on this harvest timing. The purpose of this study was to non-destructively estimate the circadian clock and so construct a method for determining a suitable harvest time. We took eight samples of green busil (Perilla frutescens var. crispa) every 4 hours, six times for 1 day and analyzed all samples at the same time. A hyperspectral camera was used to collect spectrum intensities at 141 different wavelengths (350–1050 nm). Calculation of correlations between spectrum intensity of each wavelength and harvest time suggested the suitability of the hyperspectral camera for non-destructive estimation. However, even the highest correlated wavelength had a weak correlation, so we used machine learning to raise the accuracy of estimation and constructed a machine learning model to estimate the internal time of the circadian clock. Artificial neural networks (ANN) were used for machine learning because this is an effective analysis method for large amounts of data. Using the estimation model resulted in an error between estimated and real times of 3 min. The estimations were made in less than 2 hours. Thus, we successfully demonstrated this method of non-destructively estimating internal time.Keywords: artificial neural network (ANN), circadian clock, green busil, hyperspectral camera, non-destructive evaluation
Procedia PDF Downloads 2993020 Maximum Likelihood Estimation Methods on a Two-Parameter Rayleigh Distribution under Progressive Type-Ii Censoring
Authors: Daniel Fundi Murithi
Abstract:
Data from economic, social, clinical, and industrial studies are in some way incomplete or incorrect due to censoring. Such data may have adverse effects if used in the estimation problem. We propose the use of Maximum Likelihood Estimation (MLE) under a progressive type-II censoring scheme to remedy this problem. In particular, maximum likelihood estimates (MLEs) for the location (µ) and scale (λ) parameters of two Parameter Rayleigh distribution are realized under a progressive type-II censoring scheme using the Expectation-Maximization (EM) and the Newton-Raphson (NR) algorithms. These algorithms are used comparatively because they iteratively produce satisfactory results in the estimation problem. The progressively type-II censoring scheme is used because it allows the removal of test units before the termination of the experiment. Approximate asymptotic variances and confidence intervals for the location and scale parameters are derived/constructed. The efficiency of EM and the NR algorithms is compared given root mean squared error (RMSE), bias, and the coverage rate. The simulation study showed that in most sets of simulation cases, the estimates obtained using the Expectation-maximization algorithm had small biases, small variances, narrower/small confidence intervals width, and small root of mean squared error compared to those generated via the Newton-Raphson (NR) algorithm. Further, the analysis of a real-life data set (data from simple experimental trials) showed that the Expectation-Maximization (EM) algorithm performs better compared to Newton-Raphson (NR) algorithm in all simulation cases under the progressive type-II censoring scheme.Keywords: expectation-maximization algorithm, maximum likelihood estimation, Newton-Raphson method, two-parameter Rayleigh distribution, progressive type-II censoring
Procedia PDF Downloads 1633019 A Comparative Study to Evaluate Chronological Age and Dental Age in the North Indian Population Using Cameriere's Method
Authors: Ranjitkumar Patil
Abstract:
Age estimation has importance in forensic dentistry. Dental age estimation has emerged as an alternative to skeletal age determination. The methods based on stages of tooth formation, as appreciated on radiographs, seem to be more appropriate in the assessment of age than those based on skeletal development. The study was done to evaluate dental age in the north Indian population using Cameriere’s method. Aims/Objectives: The study was conducted to assess the dental age of North Indian children using Cameriere’s method and to compare the chronological age and dental age for validation of the Cameriere’s method in the north Indian population. A comparative study of 02-year duration on the OPG (using PLANMECA Promax 3D) data of 497 individuals with ages ranging from 5 to 15 years was done based on simple random technique ethical approval obtained from institutional ethical committee. The data was obtained based on inclusion and exclusion criteria and was analyzed by software for dental age estimation. Statistical analysis: The student’s t-test was used to compare the morphological variables of males with those of females and to compare observed age with estimated age. The regression formula was also calculated. Results: Present study was a comparative study of 497 subjects with a distribution between males and females, with their dental age assessed by using a Panoramic radiograph, following the method described by Cameriere, which is widely accepted. Statistical analysis in our study indicated that gender does not have a significant influence on age estimation. (R2= 0.787). Conclusion: This infers that Cameriere’s method can be effectively applied to the north Indian population.Keywords: forensic, dental age, skeletal age, chronological age, Cameriere’s method
Procedia PDF Downloads 1153018 The Estimation Method of Inter-Story Drift for Buildings Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to reduce seismic damage. The inter-story drift ratio which is the major index of the seismic capacity assessment is employed for estimating the seismic damage of buildings. Meanwhile, seismic response analysis to estimate the structural responses of building demands significantly high computational cost due to increasing number of high-rise and large buildings. To estimate the inter-story drift ratio of buildings from the earthquake efficiently, this paper suggests the estimation method of inter-story drift for buildings using an artificial neural network (ANN). In the method, the radial basis function neural network (RBFNN) is integrated with optimization algorithm to optimize the variable through evolutionary learning that refers to evolutionary radial basis function neural network (ERBFNN). The estimation method estimates the inter-story drift without seismic response analysis when the new earthquakes are subjected to buildings. The effectiveness of the estimation method is verified through a simulation using multi-degree of freedom system.Keywords: structural health monitoring, inter-story drift ratio, artificial neural network, radial basis function neural network, genetic algorithm
Procedia PDF Downloads 3273017 A New Optimization Algorithm for Operation of a Microgrid
Authors: Sirus Mohammadi, Rohala Moghimi
Abstract:
The main advantages of microgrids are high energy efficiency through the application of Combined Heat and Power (CHP), high quality and reliability of the delivered electric energy and environmental and economic advantages. This study presents an energy management system (EMS) to optimize the operation of the microgrid (MG). In this paper an Adaptive Modified Firefly Algorithm (AMFA) is presented for optimal operation of a typical MG with renewable energy sources (RESs) accompanied by a back-up Micro-Turbine/Fuel Cell/Battery hybrid power source to level the power mismatch or to store the energy surplus when it’s needed. The problem is formulated as a nonlinear constraint problem to minimize the total operating cost. The management of Energy storage system (ESS), economic load dispatch and operation optimization of distributed generation (DG) are simplified into a single-object optimization problem in the EMS. The proposed algorithm is tested on a typical grid-connected MG including WT/PV/Micro Turbine/Fuel Cell and Energy Storage Devices (ESDs) then its superior performance is compared with those from other evolutionary algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Fuzzy Self Adaptive PSO (FSAPSO), Chaotic Particle PSO (CPSO), Adaptive Modified PSO (AMPSO), and Firefly Algorithm (FA).Keywords: microgrid, operation management, optimization, firefly algorithm (AMFA)
Procedia PDF Downloads 3413016 Low-Cost Image Processing System for Evaluating Pavement Surface Distress
Authors: Keerti Kembhavi, M. R. Archana, V. Anjaneyappa
Abstract:
Most asphalt pavement condition evaluation use rating frameworks in which asphalt pavement distress is estimated by type, extent, and severity. Rating is carried out by the pavement condition rating (PCR), which is tedious and expensive. This paper presents the development of a low-cost technique for image pavement distress analysis that permits the identification of pothole and cracks. The paper explores the application of image processing tools for the detection of potholes and cracks. Longitudinal cracking and pothole are detected using Fuzzy-C- Means (FCM) and proceeded with the Spectral Theory algorithm. The framework comprises three phases, including image acquisition, processing, and extraction of features. A digital camera (Gopro) with the holder is used to capture pavement distress images on a moving vehicle. FCM classifier and Spectral Theory algorithms are used to compute features and classify the longitudinal cracking and pothole. The Matlab2016Ra Image preparing tool kit utilizes performance analysis to identify the viability of pavement distress on selected urban stretches of Bengaluru city, India. The outcomes of image evaluation with the utilization semi-computerized image handling framework represented the features of longitudinal crack and pothole with an accuracy of about 80%. Further, the detected images are validated with the actual dimensions, and it is seen that dimension variability is about 0.46. The linear regression model y=1.171x-0.155 is obtained using the existing and experimental / image processing area. The R2 correlation square obtained from the best fit line is 0.807, which is considered in the linear regression model to be ‘large positive linear association’.Keywords: crack detection, pothole detection, spectral clustering, fuzzy-c-means
Procedia PDF Downloads 1813015 Composition Dependent Spectroscopic Studies of Sm3+-Doped Alkali Fluoro Tungsten Tellurite Glasses
Authors: K. Swapna, Sk. Mahamuda, Ch, Annapurna, A. Srinivasa Rao, G. Vijaya Prakash
Abstract:
Samarium ions doped Alkali Fluoro Tungsten Tellurite (AFTT) Glasses have been prepared by using the melt quenching technique and characterized through various spectroscopic techniques such as optical absorption, excitation, emission and decay spectral studies. From the measured absorption spectra of Sm3+ ions in AFTT glasses, the optical band gap and Urbach energies have been evaluated. The spectroscopic parameters such as oscillator strengths (f), Judd-Ofelt (J-O) intensity parameters (Ωλ), spontaneous emission probability (AR), branching ratios (βR) and radiative lifetimes (τR) of various excited levels have been determined from the absorption spectrum by using J-O analysis. A strong luminescence in the reddish-orange spectral region has been observed for all the Sm3+ ions doped AFTT glasses. It consisting four emission transitions occurring from the 4G5/2metastable state to the lower lying states 6H5/2, 6H7/2, 6H9/2 and 6H11/2 upon exciting the sample with a 478 nm line of an argon ion laser. The stimulated emission cross-sections (σe) and branching ratios (βmeas) were estimated from the emission spectra for all emission transitions. Correlation of the radiative lifetime with the experimental lifetime measured from the day curves allows us to measure the quantum efficiency of the prepared glasses. In order to know the colour emission of the prepared glasses under near UV excitation, the emission intensities were analyzed using CIE 1931 colour chromaticity diagram. The aforementioned spectral studies carried out on Sm3+ ions doped AFTT glasses allowed us to conclude that, these glasses are best suited for orange-red visible lasers.Keywords: fluoro tungsten tellurite glasses, judd-ofelt intensity parameters, lifetime, stimulated emission cross-section
Procedia PDF Downloads 2773014 Estimating Gait Parameter from Digital RGB Camera Using Real Time AlphaPose Learning Architecture
Authors: Murad Almadani, Khalil Abu-Hantash, Xinyu Wang, Herbert Jelinek, Kinda Khalaf
Abstract:
Gait analysis is used by healthcare professionals as a tool to gain a better understanding of the movement impairment and track progress. In most circumstances, monitoring patients in their real-life environments with low-cost equipment such as cameras and wearable sensors is more important. Inertial sensors, on the other hand, cannot provide enough information on angular dynamics. This research offers a method for tracking 2D joint coordinates using cutting-edge vision algorithms and a single RGB camera. We provide an end-to-end comprehensive deep learning pipeline for marker-less gait parameter estimation, which, to our knowledge, has never been done before. To make our pipeline function in real-time for real-world applications, we leverage the AlphaPose human posture prediction model and a deep learning transformer. We tested our approach on the well-known GPJATK dataset, which produces promising results.Keywords: gait analysis, human pose estimation, deep learning, real time gait estimation, AlphaPose, transformer
Procedia PDF Downloads 1183013 Effects of Thermal Radiation on Mixed Convection in a MHD Nanofluid Flow over a Stretching Sheet Using a Spectral Relaxation Method
Authors: Nageeb A. H. Haroun, Sabyasachi Mondal, Precious Sibanda
Abstract:
The effects of thermal radiation, Soret and Dufour parameters on mixed convection and nanofluid flow over a stretching sheet in the presence of a magnetic field are investigated. The flow is subject to temperature dependent viscosity and a chemical reaction parameter. It is assumed that the nanoparticle volume fraction at the wall may be actively controlled. The physical problem is modelled using systems of nonlinear differential equations which have been solved numerically using a spectral relaxation method. In addition to the discussion on heat and mass transfer processes, the velocity, nanoparticles volume fraction profiles as well as the skin friction coefficient are determined for different important physical parameters. A comparison of current findings with previously published results for some special cases of the problem shows an excellent agreement.Keywords: non-isothermal wedge, thermal radiation, nanofluid, magnetic field, soret and dufour effects
Procedia PDF Downloads 2353012 A Study on the Synthesis and Antioxidant Activity of Hybrid Pyrazoline Integrated with Pyrazole and Thiazole Nuclei
Authors: Desta Gebretekle Shiferaw, Balakrishna Kalluraya
Abstract:
Pyrazole is an aromatic five-membered heterocycle with two nitrogen and three carbon atoms in its ring structure. According to the literature, pyrazoline, pyrazole, and thiazole-containing moieties are found in various drug structures and are responsible for nearly all pharmacological effects. The pyrazoline linked to pyrazole moiety carbothioamides was synthesized via the reaction of pyrazole-bearing chalcones (3-(5-chloro-3-methyl-¹-phenyl-1H-pyrazol-4-yl)-¹-(substituted aryl) prop-2-ene-¹-one derivatives) with a nucleophile thiosemicarbohyrazide by heating in ethanol using fused sodium acetate as a catalyst. Then the carbothioamide derivatives were converted into the pyrazoline hybrid to pyrazole and thiazole derivatives by condensing with substituted phenacyl bromide in alcohol in a basic medium. Next, the chemical structure of the newly synthesized molecules was confirmed by IR, 1H-NMR, and mass spectral data. Further, they were screened for their in vitro antioxidant activity. Compared to butylated hydroxy anisole (BHA)., the antioxidant data showed that the synthesized compounds had good to moderate activity.Keywords: pyrazoline-pyrazole carbothioamide derivatives, pyrazoline-pyrazole-thiazole derivatives, spectral studies, antioxidant activity
Procedia PDF Downloads 723011 A New Evolutionary Algorithm for Multi-Objective Cylindrical Spur Gear Design Optimization
Authors: Hammoudi Abderazek
Abstract:
The present paper introduces a modified adaptive mixed differential evolution (MAMDE) to select the main geometry parameters of specific cylindrical spur gear. The developed algorithm used the self-adaptive mechanism in order to update the values of mutation and crossover factors. The feasibility rules are used in the selection phase to improve the search exploration of MAMDE. Moreover, the elitism is performed to keep the best individual found in each generation. For the constraints handling the normalization method is used to treat each constraint design equally. The finite element analysis is used to confirm the optimization results for the maximum bending resistance. The simulation results reached in this paper indicate clearly that the proposed algorithm is very competitive in precision gear design optimization.Keywords: evolutionary algorithm, spur gear, tooth profile, meta-heuristics
Procedia PDF Downloads 1313010 Estimation of Greenhouse Gas (GHG) Reductions from Solar Cell Technology Using Bottom-up Approach and Scenario Analysis in South Korea
Authors: Jaehyung Jung, Kiman Kim, Heesang Eum
Abstract:
Solar cell is one of the main technologies to reduce greenhouse gas (GHG). Thereby, accurate estimation of greenhouse gas reduction by solar cell technology is crucial to consider strategic applications of the solar cell. The bottom-up approach using operating data such as operation time and efficiency is one of the methodologies to improve the accuracy of the estimation. In this study, alternative GHG reductions from solar cell technology were estimated by a bottom-up approach to indirect emission source (scope 2) in Korea, 2015. In addition, the scenario-based analysis was conducted to assess the effect of technological change with respect to efficiency improvement and rate of operation. In order to estimate GHG reductions from solar cell activities in operating condition levels, methodologies were derived from 2006 IPCC guidelines for national greenhouse gas inventories and guidelines for local government greenhouse inventories published in Korea, 2016. Indirect emission factors for electricity were obtained from Korea Power Exchange (KPX) in 2011. As a result, the annual alternative GHG reductions were estimated as 21,504 tonCO2eq, and the annual average value was 1,536 tonCO2eq per each solar cell technology. Those results of estimation showed to be 91% levels versus design of capacity. Estimation of individual greenhouse gases (GHGs) showed that the largest gas was carbon dioxide (CO2), of which up to 99% of the total individual greenhouse gases. The annual average GHG reductions from solar cell per year and unit installed capacity (MW) were estimated as 556 tonCO2eq/yr•MW. Scenario analysis of efficiency improvement by 5%, 10%, 15% increased as much as approximately 30, 61, 91%, respectively, and rate of operation as 100% increased 4% of the annual GHG reductions.Keywords: bottom-up approach, greenhouse gas (GHG), reduction, scenario, solar cell
Procedia PDF Downloads 2203009 Research on Pilot Sequence Design Method of Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing System Based on High Power Joint Criterion
Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang
Abstract:
For the pilot design of the sparse channel estimation model in Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems, the observation matrix constructed according to the matrix cross-correlation criterion, total correlation criterion and other optimization criteria are not optimal, resulting in inaccurate channel estimation and high bit error rate at the receiver. This paper proposes a pilot design method combining high-power sum and high-power variance criteria, which can more accurately estimate the channel. First, the pilot insertion position is designed according to the high-power variance criterion under the condition of equal power. Then, according to the high power sum criterion, the pilot power allocation is converted into a cone programming problem, and the power allocation is carried out. Finally, the optimal pilot is determined by calculating the weighted sum of the high power sum and the high power variance. Compared with the traditional pilot frequency, under the same conditions, the constructed MIMO-OFDM system uses the optimal pilot frequency for channel estimation, and the communication bit error rate performance obtains a gain of 6~7dB.Keywords: MIMO-OFDM, pilot optimization, compressed sensing, channel estimation
Procedia PDF Downloads 1493008 Mathematical Properties of the Resonance of the Inner Waves in Rotating Stratified Three-Dimensional Fluids
Authors: A. Giniatoulline
Abstract:
We consider the internal oscillations of the ocean which are caused by the gravity force and the Coriolis force, for different models with changeable density, heat transfer, and salinity. Traditionally, the mathematical description of the resonance effect is related to the growing amplitude as a result of input vibrations. We offer a different approach: the study of the relation between the spectrum of the internal oscillations and the properties of the limiting amplitude of the solution for the harmonic input vibrations of the external forces. Using the results of the spectral theory of self-adjoint operators in Hilbert functional spaces, we prove that there exists an explicit relation between the localization of the frequency of the external input vibrations with respect to the essential spectrum of proper inner oscillations and the non-uniqueness of the limiting amplitude. The results may find their application in various problems concerning mathematical modeling of turbulent flows in the ocean.Keywords: computational fluid dynamics, essential spectrum, limiting amplitude, rotating fluid, spectral theory, stratified fluid, the uniqueness of solutions of PDE equations
Procedia PDF Downloads 2583007 Estimation of Time Loss and Costs of Traffic Congestion: The Contingent Valuation Method
Authors: Amira Mabrouk, Chokri Abdennadher
Abstract:
The reduction of road congestion which is inherent to the use of vehicles is an obvious priority to public authority. Therefore, assessing the willingness to pay of an individual in order to save trip-time is akin to estimating the change in price which was the result of setting up a new transport policy to increase the networks fluidity and improving the level of social welfare. This study holds an innovative perspective. In fact, it initiates an economic calculation that has the objective of giving an estimation of the monetized time value during the trips made in Sfax. This research is founded on a double-objective approach. The aim of this study is to i) give an estimation of the monetized value of time; an hour dedicated to trips, ii) determine whether or not the consumer considers the environmental variables to be significant, iii) analyze the impact of applying a public management of the congestion via imposing taxation of city tolls on urban dwellers. This article is built upon a rich field survey led in the city of Sfax. With the use of the contingent valuation method, we analyze the “declared time preferences” of 450 drivers during rush hours. Based on the fond consideration of attributed bias of the applied method, we bring to light the delicacy of this approach with regards to the revelation mode and the interrogative techniques by following the NOAA panel recommendations bearing the exception of the valorization point and other similar studies about the estimation of transportation externality.Keywords: willingness to pay, contingent valuation, time value, city toll
Procedia PDF Downloads 4343006 Estimation of Synchronous Machine Synchronizing and Damping Torque Coefficients
Authors: Khaled M. EL-Naggar
Abstract:
Synchronizing and damping torque coefficients of a synchronous machine can give a quite clear picture for machine behavior during transients. These coefficients are used as a power system transient stability measurement. In this paper, a crow search optimization algorithm is presented and implemented to study the power system stability during transients. The algorithm makes use of the machine responses to perform the stability study in time domain. The problem is formulated as a dynamic estimation problem. An objective function that minimizes the error square in the estimated coefficients is designed. The method is tested using practical system with different study cases. Results are reported and a thorough discussion is presented. The study illustrates that the proposed method can estimate the stability coefficients for the critical stable cases where other methods may fail. The tests proved that the proposed tool is an accurate and reliable tool for estimating the machine coefficients for assessment of power system stability.Keywords: optimization, estimation, synchronous, machine, crow search
Procedia PDF Downloads 1403005 Influence of Convective Boundary Condition on Chemically Reacting Micropolar Fluid Flow over a Truncated Cone Embedded in Porous Medium
Authors: Pradeepa Teegala, Ramreddy Chitteti
Abstract:
This article analyzes the mixed convection flow of chemically reacting micropolar fluid over a truncated cone embedded in non-Darcy porous medium with convective boundary condition. In addition, heat generation/absorption and Joule heating effects are taken into consideration. The similarity solution does not exist for this complex fluid flow problem, and hence non-similarity transformations are used to convert the governing fluid flow equations along with related boundary conditions into a set of nondimensional partial differential equations. Many authors have been applied the spectral quasi-linearization method to solve the ordinary differential equations, but here the resulting nonlinear partial differential equations are solved for non-similarity solution by using a recently developed method called the spectral quasi-linearization method (SQLM). Comparison with previously published work on special cases of the problem is performed and found to be in excellent agreement. The effect of pertinent parameters namely, Biot number, mixed convection parameter, heat generation/absorption, Joule heating, Forchheimer number, chemical reaction, micropolar and magnetic field on physical quantities of the flow are displayed through graphs and the salient features are explored in detail. Further, the results are analyzed by comparing with two special cases, namely, vertical plate and full cone wherever possible.Keywords: chemical reaction, convective boundary condition, joule heating, micropolar fluid, mixed convection, spectral quasi-linearization method
Procedia PDF Downloads 2773004 Quantification of Effects of Shape of Basement Topography below the Circular Basin on the Ground Motion Characteristics and Engineering Implications
Authors: Kamal, Dinesh Kumar, J. P. Narayan, Komal Rani
Abstract:
This paper presents the effects of shape of basement topography on the characteristics of the basin-generated surface (BGS) waves and associated average spectral amplification (ASA) in the 3D basins having circular surface area. Seismic responses were computed using a recently developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm based on parsimonious staggered-grid approximation of 3D viscoelastic wave equations. An increase of amplitude amplification and ASA towards the centre of different considered basins was obtained. Further, it may be concluded that ASA in basin very much depends on the impedance contrast, exposure area of basement to the incident wave front, edge-slope, focusing of the BGS-waves and sediment-damping. There is an urgent need of incorporation of a map of differential ground motion (DGM) caused by the BGS-waves as one of the output maps of the seismic microzonation.Keywords: 3D viscoelastic simulation, basin-generated surface waves, maximum displacement, average spectral amplification
Procedia PDF Downloads 2973003 Performance Analysis of a Combined Ordered Successive and Interference Cancellation Using Zero-Forcing Detection over Rayleigh Fading Channels in Mimo Systems
Authors: Jamal R. Elbergali
Abstract:
Multiple Input Multiple Output (MIMO) systems are wireless systems with multiple antenna elements at both ends of the link. Wireless communication systems demand high data rate and spectral efficiency with increased reliability. MIMO systems have been popular techniques to achieve these goals because increased data rate is possible through spatial multiplexing scheme and diversity. Spatial Multiplexing (SM) is used to achieve higher possible throughput than diversity. In this paper, we propose a Zero-Forcing (ZF) detection using a combination of Ordered Successive Interference Cancellation (OSIC) and Zero Forcing using Interference Cancellation (ZF-IC). The proposed method used an OSIC based on Signal to Noise Ratio (SNR) ordering to get the estimation of last symbol (x ̃_(N_T )), then the estimated last symbol is considered to be an input to the ZF-IC. We analyze the Bit Error Rate (BER) performance of the proposed MIMO system over Rayleigh Fading Channel, using Binary Phase Shift Keying (BPSK) modulation scheme. The results show better performance than the previous methods.Keywords: SNR, BER, BPSK, MIMO, modulation, zero forcing (ZF), OSIC, ZF-IC, spatial multiplexing (SM)
Procedia PDF Downloads 4233002 Role of Adaptive Support Ventilation in Weaning of COPD Patients
Authors: A. Kamel Abd Elaziz Mohamed, B. Sameh Kamal el Maraghi
Abstract:
Introduction: Adaptive support ventilation (ASV) is an improved closed-loop ventilation mode that provides both pressure-controlled ventilation and PSV according to the patient’s needs. Aim of the work: To compare the short-term effects of Adaptive support ventilation (ASV), with conventional Pressure support ventilation (PSV) in weaning of intubated COPD patients. Patients and methods: Fifty patients admitted in the intensive care with acute exacerbation of COPD and needing intubation were included in the study. All patients were initially ventilated with control/assist control mode, in a stepwise manner and were receiving standard medical therapy. Patients were randomized into two groups to receive either ASV or PSV. Results: Out of fifty patients included in the study forty one patients in both studied groups were weaned successfully according to their ABG data and weaning indices. APACHE II score showed no significant difference in both groups. There were statistically significant differences between the groups in term of, duration of mechanical ventilation, weaning hours and length of ICU stay being shorter in (group 1) weaned by ASV. Re-intubation and mortality rate were higher in (group 11) weaned by conventional PSV, however the differences were not significant. Conclusion: ASV can provide automated weaning and achieve shorter weaning time for COPD patients hence leading to reduction in the total duration of MV, length of stay, and hospital costs.Keywords: COPD patients, ASV, PSV, mechanical ventilation (MV)
Procedia PDF Downloads 3903001 Engineering Seismological Studies in and around Zagazig City, Sharkia, Egypt
Authors: M. El-Eraki, A. A. Mohamed, A. A. El-Kenawy, M. S. Toni, S. I. Mustafa
Abstract:
The aim of this paper is to study the ground vibrations using Nakamura technique to evaluate the relation between the ground conditions and the earthquake characteristics. Microtremor measurements were carried out at 55 sites in and around Zagazig city. The signals were processed using horizontal to vertical spectral ratio (HVSR) technique to estimate the fundamental frequencies of the soil deposits and its corresponding H/V amplitude. Seismic measurements were acquired at nine sites for recording the surface waves. The recorded waveforms were processed using the multi-channel analysis of surface waves (MASW) method to infer the shear wave velocity profile. The obtained fundamental frequencies were found to be ranging from 0.7 to 1.7 Hz and the maximum H/V amplitude reached 6.4. These results together with the average shear wave velocity in the surface layers were used for the estimation of the thickness of the upper most soft cover layers (depth to bedrock). The sediment thickness generally increases at the northeastern and southwestern parts of the area, which is in good agreement with the local geological structure. The results of this work showed the zones of higher potential damage in the event of an earthquake in the study area.Keywords: ambient vibrations, fundamental frequency, surface waves, zagazig
Procedia PDF Downloads 2833000 Sensitivity Assessment of Spectral Salinity Indices over Desert Sabkha of Western UAE
Authors: Rubab Ammad, Abdelgadir Abuelgasim
Abstract:
UAE typically lies in one of the aridest regions of the world and is thus home to geologic features common to such climatic conditions including vast open deserts, sand dunes, saline soils, inland Sabkha and coastal Sabkha. Sabkha are characteristic salt flats formed in arid environment due to deposition and precipitation of salt and silt over sand surface because of low laying water table and rates of evaporation exceeding rates of precipitation. The study area, which comprises of western UAE, is heavily concentrated with inland Sabkha. Remote sensing is conventionally used to study the soil salinity of agriculturally degraded lands but not so broadly for Sabkha. The focus of this study was to identify these highly saline Sabkha areas on remotely sensed data, using salinity indices. The existing salinity indices in the literature have been designed for agricultural soils and they have not frequently used the spectral response of short-wave infra-red (SWIR1 and SWIR2) parts of electromagnetic spectrum. Using Landsat 8 OLI data and field ground truthing, this study formulated indices utilizing NIR-SWIR parts of spectrum and compared the results with existing salinity indices. Most indices depict reasonably good relationship between salinity and spectral index up until a certain value of salinity after which the reflectance reaches a saturation point. This saturation point varies with index. However, the study findings suggest a role of incorporating near infra-red and short-wave infra-red in salinity index with a potential of showing a positive relationship between salinity and reflectance up to a higher salinity value, compared to rest.Keywords: Sabkha, salinity index, saline soils, Landsat 8, SWIR1, SWIR2, UAE desert
Procedia PDF Downloads 2142999 Modeling of Anisotropic Hardening Based on Crystal Plasticity Theory and Virtual Experiments
Authors: Bekim Berisha, Sebastian Hirsiger, Pavel Hora
Abstract:
Advanced material models involving several sets of model parameters require a big experimental effort. As models are getting more and more complex like e.g. the so called “Homogeneous Anisotropic Hardening - HAH” model for description of the yielding behavior in the 2D/3D stress space, the number and complexity of the required experiments are also increasing continuously. In the context of sheet metal forming, these requirements are even more pronounced, because of the anisotropic behavior or sheet materials. In addition, some of the experiments are very difficult to perform e.g. the plane stress biaxial compression test. Accordingly, tensile tests in at least three directions, biaxial tests and tension-compression or shear-reverse shear experiments are performed to determine the parameters of the macroscopic models. Therefore, determination of the macroscopic model parameters based on virtual experiments is a very promising strategy to overcome these difficulties. For this purpose, in the framework of multiscale material modeling, a dislocation density based crystal plasticity model in combination with a FFT-based spectral solver is applied to perform virtual experiments. Modeling of the plastic behavior of metals based on crystal plasticity theory is a well-established methodology. However, in general, the computation time is very high and therefore, the computations are restricted to simplified microstructures as well as simple polycrystal models. In this study, a dislocation density based crystal plasticity model – including an implementation of the backstress – is used in a spectral solver framework to generate virtual experiments for three deep drawing materials, DC05-steel, AA6111-T4 and AA4045 aluminum alloys. For this purpose, uniaxial as well as multiaxial loading cases, including various pre-strain histories, has been computed and validated with real experiments. These investigations showed that crystal plasticity modeling in the framework of Representative Volume Elements (RVEs) can be used to replace most of the expensive real experiments. Further, model parameters of advanced macroscopic models like the HAH model can be determined from virtual experiments, even for multiaxial deformation histories. It was also found that crystal plasticity modeling can be used to model anisotropic hardening more accurately by considering the backstress, similar to well-established macroscopic kinematic hardening models. It can be concluded that an efficient coupling of crystal plasticity models and the spectral solver leads to a significant reduction of the amount of real experiments needed to calibrate macroscopic models. This advantage leads also to a significant reduction of computational effort needed for the optimization of metal forming process. Further, due to the time efficient spectral solver used in the computation of the RVE models, detailed modeling of the microstructure are possible.Keywords: anisotropic hardening, crystal plasticity, micro structure, spectral solver
Procedia PDF Downloads 3142998 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning
Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu
Abstract:
This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning
Procedia PDF Downloads 782997 Empirical Model for the Estimation of Global Solar Radiation on Horizontal Surface in Algeria
Authors: Malika Fekih, Abdenour Bourabaa, Rafika Hariti, Mohamed Saighi
Abstract:
In Algeria the global solar radiation and its components is not available for all locations due to which there is a requirement of using different models for the estimation of global solar radiation that use climatological parameters of the locations. Empirical constants for these models have been estimated and the results obtained have been tested statistically. The results show encouraging agreement between estimated and measured values.Keywords: global solar radiation, empirical model, semi arid areas, climatological parameters
Procedia PDF Downloads 5022996 ANFIS Based Technique to Estimate Remnant Life of Power Transformer by Predicting Furan Contents
Authors: Priyesh Kumar Pandey, Zakir Husain, R. K. Jarial
Abstract:
Condition monitoring and diagnostic is important for testing of power transformer in order to estimate the remnant life. Concentration of furan content in transformer oil can be a promising indirect measurement of the aging of transformer insulation. The oil gets contaminated mainly due to ageing. The present paper introduces adaptive neuro fuzzy technique to correlate furanic compounds obtained by high performance liquid chromatography (HPLC) test and remnant life of the power transformer. The results are obtained by conducting HPLC test at TIFAC-CORE lab, NIT Hamirpur on thirteen power transformer oil samples taken from Himachal State Electricity Board, India.Keywords: adaptive neuro fuzzy technique, furan compounds, remnant life, transformer oil
Procedia PDF Downloads 464