Search results for: distance measurement error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6229

Search results for: distance measurement error

679 Spectrophotometric Detection of Histidine Using Enzyme Reaction and Examination of Reaction Conditions

Authors: Akimitsu Kugimiya, Kouhei Iwato, Toru Saito, Jiro Kohda, Yasuhisa Nakano, Yu Takano

Abstract:

The measurement of amino acid content is reported to be useful for the diagnosis of several types of diseases, including lung cancer, gastric cancer, colorectal cancer, breast cancer, prostate cancer, and diabetes. The conventional detection methods for amino acid are high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS), but they have several drawbacks as the equipment is cumbersome and the techniques are costly in terms of time and costs. In contrast, biosensors and biosensing methods provide more rapid and facile detection strategies that use simple equipment. The authors have reported a novel approach for the detection of each amino acid that involved the use of aminoacyl-tRNA synthetase (aaRS) as a molecular recognition element because aaRS is expected to a selective binding ability for corresponding amino acid. The consecutive enzymatic reactions used in this study are as follows: aaRS binds to its cognate amino acid and releases inorganic pyrophosphate. Hydrogen peroxide (H₂O₂) was produced by the enzyme reactions of inorganic pyrophosphatase and pyruvate oxidase. The Trinder’s reagent was added into the reaction mixture, and the absorbance change at 556 nm was measured using a microplate reader. In this study, an amino acid-sensing method using histidyl-tRNA synthetase (HisRS; histidine-specific aaRS) as molecular recognition element in combination with the Trinder’s reagent spectrophotometric method was developed. The quantitative performance and selectivity of the method were evaluated, and the optimal enzyme reaction and detection conditions were determined. The authors developed a simple and rapid method for detecting histidine with a combination of enzymatic reaction and spectrophotometric detection. In this study, HisRS was used to detect histidine, and the reaction and detection conditions were optimized for quantitation of these amino acids in the ranges of 1–100 µM histidine. The detection limits are sufficient to analyze these amino acids in biological fluids. This work was partly supported by Hiroshima City University Grant for Special Academic Research (General Studies).

Keywords: amino acid, aminoacyl-tRNA synthetase, biosensing, enzyme reaction

Procedia PDF Downloads 285
678 Comparing Xbar Charts: Conventional versus Reweighted Robust Estimation Methods for Univariate Data Sets

Authors: Ece Cigdem Mutlu, Burak Alakent

Abstract:

Maintaining the quality of manufactured products at a desired level depends on the stability of process dispersion and location parameters and detection of perturbations in these parameters as promptly as possible. Shewhart control chart is the most widely used technique in statistical process monitoring to monitor the quality of products and control process mean and variability. In the application of Xbar control charts, sample standard deviation and sample mean are known to be the most efficient conventional estimators in determining process dispersion and location parameters, respectively, based on the assumption of independent and normally distributed datasets. On the other hand, there is no guarantee that the real-world data would be normally distributed. In the cases of estimated process parameters from Phase I data clouded with outliers, efficiency of traditional estimators is significantly reduced, and performance of Xbar charts are undesirably low, e.g. occasional outliers in the rational subgroups in Phase I data set may considerably affect the sample mean and standard deviation, resulting a serious delay in detection of inferior products in Phase II. For more efficient application of control charts, it is required to use robust estimators against contaminations, which may exist in Phase I. In the current study, we present a simple approach to construct robust Xbar control charts using average distance to the median, Qn-estimator of scale, M-estimator of scale with logistic psi-function in the estimation of process dispersion parameter, and Harrell-Davis qth quantile estimator, Hodge-Lehmann estimator and M-estimator of location with Huber psi-function and logistic psi-function in the estimation of process location parameter. Phase I efficiency of proposed estimators and Phase II performance of Xbar charts constructed from these estimators are compared with the conventional mean and standard deviation statistics both under normality and against diffuse-localized and symmetric-asymmetric contaminations using 50,000 Monte Carlo simulations on MATLAB. Consequently, it is found that robust estimators yield parameter estimates with higher efficiency against all types of contaminations, and Xbar charts constructed using robust estimators have higher power in detecting disturbances, compared to conventional methods. Additionally, utilizing individuals charts to screen outlier subgroups and employing different combination of dispersion and location estimators on subgroups and individual observations are found to improve the performance of Xbar charts.

Keywords: average run length, M-estimators, quality control, robust estimators

Procedia PDF Downloads 190
677 Towards Sustainable Concrete: Maturity Method to Evaluate the Effect of Curing Conditions on the Strength Development in Concrete Structures under Kuwait Environmental Conditions

Authors: F. Al-Fahad, J. Chakkamalayath, A. Al-Aibani

Abstract:

Conventional methods of determination of concrete strength under controlled laboratory conditions will not accurately represent the actual strength of concrete developed under site curing conditions. This difference in strength measurement will be more in the extreme environment in Kuwait as it is characterized by hot marine environment with normal temperature in summer exceeding 50°C accompanied by dry wind in desert areas and salt laden wind on marine and on shore areas. Therefore, it is required to have test methods to measure the in-place properties of concrete for quality assurance and for the development of durable concrete structures. The maturity method, which defines the strength of a given concrete mix as a function of its age and temperature history, is an approach for quality control for the production of sustainable and durable concrete structures. The unique harsh environmental conditions in Kuwait make it impractical to adopt experiences and empirical equations developed from the maturity methods in other countries. Concrete curing, especially in the early age plays an important role in developing and improving the strength of the structure. This paper investigates the use of maturity method to assess the effectiveness of three different types of curing methods on the compressive and flexural strength development of one high strength concrete mix of 60 MPa produced with silica fume. This maturity approach was used to predict accurately, the concrete compressive and flexural strength at later ages under different curing conditions. Maturity curves were developed for compressive and flexure strengths for a commonly used concrete mix in Kuwait, which was cured using three different curing conditions, including water curing, external spray coating and the use of internal curing compound during concrete mixing. It was observed that the maturity curve developed for the same mix depends on the type of curing conditions. It can be used to predict the concrete strength under different exposure and curing conditions. This study showed that concrete curing with external spray curing method cannot be recommended to use as it failed to aid concrete in reaching accepted values of strength, especially for flexural strength. Using internal curing compound lead to accepted levels of strength when compared with water cuing. Utilization of the developed maturity curves will help contactors and engineers to determine the in-place concrete strength at any time, and under different curing conditions. This will help in deciding the appropriate time to remove the formwork. The reduction in construction time and cost has positive impacts towards sustainable construction.

Keywords: curing, durability, maturity, strength

Procedia PDF Downloads 304
676 DFT Theoretical Investigation for Evaluating Global Scalar Properties and Validating with Quantum Chemical Based COSMO-RS Theory for Dissolution of Bituminous and Anthracite Coal in Ionic Liquid

Authors: Debanjan Dey, Tamal Banerjee, Kaustubha Mohanty

Abstract:

Global scalar properties are calculated based on higher occupied molecular orbital (HOMO) and lower unoccupied molecular orbital (LUMO) energy to study the interaction between ionic liquids with Bituminous and Anthracite coal using density function theory (DFT) method. B3LYP/6-31G* calculation predicts HOMO-LUMO energy gap, electronegativity, global hardness, global softness, chemical potential and global softness for individual compounds with their clusters. HOMO-LUMO interaction, electron delocalization, electron donating and accepting is the main source of attraction between individual compounds with their complexes. Cation used in this study: 1-butyl-1-methylpyrrolidinium [BMPYR], 1-methyl -3-propylimmidazolium [MPIM], Tributylmethylammonium [TMA] and Tributylmethylphosphonium [MTBP] with the combination of anion: bis(trifluromethylsulfonyl)imide [Tf2N], methyl carbonate [CH3CO3], dicyanamide [N(CN)2] and methylsulfate [MESO4]. Basically three-tier approach comprising HOMO/LUMO energy, Scalar quantity and infinite dilution activity coefficient (IDAC) by sigma profile generation with COSMO-RS (Conductor like screening model for real solvent) model was chosen for simultaneous interaction. [BMPYR]CH3CO3] (1-butyl-1-methylpyrrolidinium methyl carbonate) and [MPIM][CH3CO3] (1-methyl -3-propylimmidazolium methyl carbonate ) are the best effective ILs on the basis of HOMO-LUMO band gap for Anthracite and Bituminous coal respectively and the corresponding band gap is 0.10137 hartree for Anthracite coal and 0.12485 hartree for Bituminous coal. Further ionic liquids are screened quantitatively with all the scalar parameters and got the same result based on CH-π interaction which is found for HOMO-LUMO gap. To check our findings IDAC were predicted using quantum chemical based COSMO-RS methodology which gave the same trend as observed our scalar quantity calculation. Thereafter a qualitative measurement is doing by sigma profile analysis which gives complementary behavior between IL and coal that means highly miscible with each other.

Keywords: coal-ionic liquids cluster, COSMO-RS, DFT method, HOMO-LUMO interaction

Procedia PDF Downloads 304
675 Envisioning The Future of Language Learning: Virtual Reality, Mobile Learning and Computer-Assisted Language Learning

Authors: Jasmin Cowin, Amany Alkhayat

Abstract:

This paper will concentrate on a comparative analysis of both the advantages and limitations of using digital learning resources (DLRs). DLRs covered will be Virtual Reality (VR), Mobile Learning (M-learning) and Computer-Assisted Language Learning (CALL) together with their subset, Mobile Assisted Language Learning (MALL) in language education. In addition, best practices for language teaching and the application of established language teaching methodologies such as Communicative Language Teaching (CLT), the audio-lingual method, or community language learning will be explored. Education has changed dramatically since the eruption of the pandemic. Traditional face-to-face education was disrupted on a global scale. The rise of distance learning brought new digital tools to the forefront, especially web conferencing tools, digital storytelling apps, test authoring tools, and VR platforms. Language educators raced to vet, learn, and implement multiple technology resources suited for language acquisition. Yet, questions remain on how to harness new technologies, digital tools, and their ubiquitous availability while using established methods and methodologies in language learning paired with best teaching practices. In M-learning language, learners employ portable computing devices such as smartphones or tablets. CALL is a language teaching approach using computers and other technologies through presenting, reinforcing, and assessing language materials to be learned or to create environments where teachers and learners can meaningfully interact. In VR, a computer-generated simulation enables learner interaction with a 3D environment via screen, smartphone, or a head mounted display. Research supports that VR for language learning is effective in terms of exploration, communication, engagement, and motivation. Students are able to relate through role play activities, interact with 3D objects and activities such as field trips. VR lends itself to group language exercises in the classroom with target language practice in an immersive, virtual environment. Students, teachers, schools, language institutes, and institutions benefit from specialized support to help them acquire second language proficiency and content knowledge that builds on their cultural and linguistic assets. Through the purposeful application of different language methodologies and teaching approaches, language learners can not only make cultural and linguistic connections in DLRs but also practice grammar drills, play memory games or flourish in authentic settings.

Keywords: language teaching methodologies, computer-assisted language learning, mobile learning, virtual reality

Procedia PDF Downloads 239
674 Characterizing Solid Glass in Bending, Torsion and Tension: High-Temperature Dynamic Mechanical Analysis up to 950 °C

Authors: Matthias Walluch, José Alberto Rodríguez, Christopher Giehl, Gunther Arnold, Daniela Ehgartner

Abstract:

Dynamic mechanical analysis (DMA) is a powerful method to characterize viscoelastic properties and phase transitions for a wide range of materials. It is often used to characterize polymers and their temperature-dependent behavior, including thermal transitions like the glass transition temperature Tg, via determination of storage and loss moduli in tension (Young’s modulus, E) and shear or torsion (shear modulus, G) or other testing modes. While production and application temperatures for polymers are often limited to several hundred degrees, material properties of glasses usually require characterization at temperatures exceeding 600 °C. This contribution highlights a high temperature setup for rotational and oscillatory rheometry as well as for DMA in different modes. The implemented standard convection oven enables the characterization of glass in different loading modes at temperatures up to 950 °C. Three-point bending, tension and torsional measurements on different glasses, with E and G moduli as a function of frequency and temperature, are presented. Additional tests include superimposing several frequencies in a single temperature sweep (“multiwave”). This type of test results in a considerable reduction of the experiment time and allows to evaluate structural changes of the material and their frequency dependence. Furthermore, DMA in torsion and tension was performed to determine the complex Poisson’s ratio as a function of frequency and temperature within a single test definition. Tests were performed in a frequency range from 0.1 to 10 Hz and temperatures up to the glass transition. While variations in the frequency did not reveal significant changes of the complex Poisson’s ratio of the glass, a monotonic increase of this parameter was observed when increasing the temperature. This contribution outlines the possibilities of DMA in bending, tension and torsion for an extended temperature range. It allows the precise mechanical characterization of material behavior from room temperature up to the glass transition and the softening temperature interval. Compared to other thermo-analytical methods, like Dynamic Scanning Calorimetry (DSC) where mechanical stress is neglected, the frequency-dependence links measurement results (e.g. relaxation times) to real applications

Keywords: dynamic mechanical analysis, oscillatory rheometry, Poisson's ratio, solid glass, viscoelasticity

Procedia PDF Downloads 83
673 Suspended Sediment Concentration and Water Quality Monitoring Along Aswan High Dam Reservoir Using Remote Sensing

Authors: M. Aboalazayem, Essam A. Gouda, Ahmed M. Moussa, Amr E. Flifl

Abstract:

Field data collecting is considered one of the most difficult work due to the difficulty of accessing large zones such as large lakes. Also, it is well known that the cost of obtaining field data is very expensive. Remotely monitoring of lake water quality (WQ) provides an economically feasible approach comparing to field data collection. Researchers have shown that lake WQ can be properly monitored via Remote sensing (RS) analyses. Using satellite images as a method of WQ detection provides a realistic technique to measure quality parameters across huge areas. Landsat (LS) data provides full free access to often occurring and repeating satellite photos. This enables researchers to undertake large-scale temporal comparisons of parameters related to lake WQ. Satellite measurements have been extensively utilized to develop algorithms for predicting critical water quality parameters (WQPs). The goal of this paper is to use RS to derive WQ indicators in Aswan High Dam Reservoir (AHDR), which is considered Egypt's primary and strategic reservoir of freshwater. This study focuses on using Landsat8 (L-8) band surface reflectance (SR) observations to predict water-quality characteristics which are limited to Turbidity (TUR), total suspended solids (TSS), and chlorophyll-a (Chl-a). ArcGIS pro is used to retrieve L-8 SR data for the study region. Multiple linear regression analysis was used to derive new correlations between observed optical water-quality indicators in April and L-8 SR which were atmospherically corrected by values of various bands, band ratios, and or combinations. Field measurements taken in the month of May were used to validate WQP obtained from SR data of L-8 Operational Land Imager (OLI) satellite. The findings demonstrate a strong correlation between indicators of WQ and L-8 .For TUR, the best validation correlation with OLI SR bands blue, green, and red, were derived with high values of Coefficient of correlation (R2) and Root Mean Square Error (RMSE) equal 0.96 and 3.1 NTU, respectively. For TSS, Two equations were strongly correlated and verified with band ratios and combinations. A logarithm of the ratio of blue and green SR was determined to be the best performing model with values of R2 and RMSE equal to 0.9861 and 1.84 mg/l, respectively. For Chl-a, eight methods were presented for calculating its value within the study area. A mix of blue, red, shortwave infrared 1(SWR1) and panchromatic SR yielded the greatest validation results with values of R2 and RMSE equal 0.98 and 1.4 mg/l, respectively.

Keywords: remote sensing, landsat 8, nasser lake, water quality

Procedia PDF Downloads 93
672 The Effects of Geographical and Functional Diversity of Collaborators on Quality of Knowledge Generated

Authors: Ajay Das, Sandip Basu

Abstract:

Introduction: There is increasing recognition that diverse streams of knowledge can often be recombined in novel ways to generate new knowledge. However, knowledge recombination theory has not been applied to examine the effects of collaborator diversity on the quality of knowledge such collaborators produce. This is surprising because one would expect that a collaborative team with certain aspects of diversity should be able to recombine process elements related to knowledge development, which are relatively tacit, but also complementary because of the collaborator’s varying backgrounds. Theory and Hypotheses: We propose to examine two aspects of diversity in the environments of collaborative teams to try and capture such potential recombinations of relatively tacit, process knowledge. The first aspect of diversity in team members’ environments is geographical. Collaborators with more geographical distance between them (perhaps working in different countries) often have more autonomy in the processes they adopt for knowledge development. In the absence of overt monitoring, such collaborators are likely to adopt differing approaches to knowledge development. The sharing of such varying approaches among collaborators is likely to result in greater quality of the common collaborative pursuit. The second aspect is diversity in the work backgrounds of team members. Such diversity can also increase the potential for knowledge recombination. For example, if one or more members are from a manufacturing center (versus all of them being from a purely R&D center), such members will provide unique perspectives on the implementation of innovative ideas. Again, knowledge that has been evaluated from these diverse perspectives is likely to be of a higher quality. In addition to the above aspects of environmental diversity among team members, we also plan to examine the extent to which individual collaborators are in different environments from the primary innovation center of their employing firms. Proposed Methods: We will test our model on a sample of firms in the semiconductor industry. Our level of analysis will be individual patents generated by these firms and the teams involved in the generation of these. Information on manufacturing activities of our sample firms will be obtained from SEMI, a proprietary database of the semiconductor industry, as well as company 10-K reports. Conclusion: We believe that our results will represent a preliminary attempt to understand how various forms of diversity in collaborative teams impact the knowledge development process. Our dependent variable of knowledge quality is important to study since higher values of this variable can not only drive firm performance but the broader development of regions and societies through spillover impacts on future innovation. The results of this study will, therefore, inform future research and practice in innovation, geographical location, and vertical integration.

Keywords: innovation, manufacturing strategy, knowledge, diversity

Procedia PDF Downloads 352
671 Transverse Behavior of Frictional Flat Belt Driven by Tapered Pulley -Change of Transverse Force Under Driving State–

Authors: Satoko Fujiwara, Kiyotaka Obunai, Kazuya Okubo

Abstract:

A skew is one of important problems for designing the conveyor and transmission with frictional flat belt, in which running belt is deviated in width direction due to the transverse force applied to the belt. The skew often not only degrades the stability of the path of belt but also causes some damages of the belt and auxiliary machines. However, the transverse behavior such as the skew has not been discussed quantitatively in detail for frictional belts. The objective of this study is to clarify the transverse behavior of frictional flat belt driven by tapered pulley. Commercially available rubber flat belt reinforced by polyamide film was prepared as the test belt where the thickness and length were 1.25 mm and 630 mm, respectively. Test belt was driven between two pulleys made of aluminum alloy, where diameter and inter-axial length were 50 mm and 150 mm, respectively. Some tapered pulleys were applied where tapered angles were 0 deg (for comparison), 2 deg, 4 deg, and 6 deg. In order to alternatively investigate the transverse behavior, the transverse force applied to the belt was measured when the skew was constrained at the string under driving state. The transverse force was measured by a load cell having free rollers contacting on the side surface of the belt when the displacement in the belt width direction was constrained. The conditions of observed bending stiffness in-plane of the belt were changed by preparing three types of belts (the width of the belt was 20, 30, and 40 mm) where their observed stiffnesses were changed. The contributions of the bending stiffness in-plane of belt and initial inter-axial force to the transverse were discussed in experiments. The inter-axial force was also changed by setting a distance (about 240 mm) between the two pulleys. Influence of observed bending stiffness in-plane of the belt and initial inter-axial force on the transverse force were investigated. The experimental results showed that the transverse force was increased with an increase of observed bending stiffness in-plane of the belt and initial inter-axial force. The transverse force acting on the belt running on the tapered pulley was classified into multiple components. Those were components of forces applied with the deflection of the inter-axial force according to the change of taper angle, the resultant force by the bending moment applied on the belt winding around the tapered pulley, and the reaction force applied due to the shearing deformation. The calculation result of the transverse force was almost agreed with experimental data when those components were formulated. It was also shown that the most contribution was specified to be the shearing deformation, regardless of the test conditions. This study found that transverse behavior of frictional flat belt driven by tapered pulley was explained by the summation of those components of forces.

Keywords: skew, frictional flat belt, transverse force, tapered pulley

Procedia PDF Downloads 147
670 An Audit on the Role of Sentinel Node Biopsy in High-Risk Ductal Carcinoma in Situ and Intracystic Papillary Carcinoma

Authors: M. Sulieman, H. Arabiyat, H. Ali, K. Potiszil, I. Abbas, R. English, P. King, I. Brown, P. Drew

Abstract:

Introduction: The incidence of breast ductal Carcinoma in Situ (DCIS) has been increasing; it currently represents up 20-25% of all breast carcinomas. Some aspects of DCIS management are still controversial, mainly due to the heterogeneity of its clinical presentation and of its biological and pathological characteristics. In DCIS, histological diagnosis obtained preoperatively, carries the risk of sampling error if the presence of invasive cancer is subsequently diagnosed. The mammographic extent over than 4–5 cm and the presence of architectural distortion, focal asymmetric density or mass on mammography are proven important risk factors of preoperative histological under staging. Intracystic papillary cancer (IPC) is a rare form of breast carcinoma. Despite being previously compared to DCIS it has been shown to present histologically with invasion of the basement membrane and even metastasis. SLNB – Carries the risk of associated comorbidity that should be considered when planning surgery for DCIS and IPC. Objectives: The aim of this Audit was to better define a ‘high risk’ group of patients with pre-op diagnosis of non-invasive cancer undergoing breast conserving surgery, who would benefit from sentinel node biopsy. Method: Retrospective data collection of all patients with ductal carcinoma in situ over 5 years. 636 patients identified, and after exclusion criteria applied: 394 patients were included. High risk defined as: Extensive micro-calcification >40mm OR any mass forming DCIS. IPC: Winpath search from for the term ‘papillary carcinoma’ in any breast specimen for 5 years duration;.29 patients were included in this group. Results: DCIS: 188 deemed high risk due to >40mm calcification or a mass forming (radiological or palpable) 61% of those had a mastectomy and 32% BCS. Overall, in that high-risk group - the number with invasive disease was 38%. Of those high-risk DCIS pts 85% had a SLN - 80% at the time of surgery and 5% at a second operation. For the BCS patients - 42% had SLN at time of surgery and 13% (8 patients) at a second operation. 15 (7.9%) pts in the high-risk group had a positive SLNB, 11 having a mastectomy and 4 having BCS. IPC: The provisional diagnosis of encysted papillary carcinoma is upgraded to an invasive carcinoma on final histology in around a third of cases. This has may have implications when deciding whether to offer sentinel node removal at the time of therapeutic surgery. Conclusions: We have defined a ‘high risk’ group of pts with pre-op diagnosis of non-invasive cancer undergoing BCS, who would benefit from SLNB at the time of the surgery. In patients with high-risk features; the risk of invasive disease is up to 40% but the risk of nodal involvement is approximately 8%. The risk of morbidity from SLN is up to about 5% especially the risk of lymphedema.

Keywords: breast ductal carcinoma in Situ (DCIS), intracystic papillary carcinoma (IPC), sentinel node biopsy (SLNB), high-risk, non-invasive, cancer disease

Procedia PDF Downloads 111
669 Aquatic Therapy Improving Balance Function of Individuals with Stroke: A Systematic Review with Meta-Analysis

Authors: Wei-Po Wu, Wen-Yu Liu, Wei−Ting Lin, Hen-Yu Lien

Abstract:

Introduction: Improving balance function for individuals after stroke is a crucial target in physiotherapy. Aquatic therapy which challenges individual’s postural control in an unstable fluid environment may be beneficial in enhancing balance functions. The purposes of the systematic review with meta-analyses were to validate the effects of aquatic therapy in improving balance functions for individuals with strokes in contrast to conventional physiotherapy. Method: Available studies were explored from three electronic databases: PubMed, Scopus, and Web of Science. During literature search, the published date of studies was not limited. The study design of the included studies should be randomized controlled trials (RCTs) and the studies should contain at least one outcome measurement of balance function. The PEDro scale was adopted to assess the quality of included studies, while the 'Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence' was used to evaluate the level of evidence. After the data extraction, studies with same outcome measures were pooled together for meta-analysis. Result: Ten studies with 282 participants were included in analyses. The research qualities of the studies were ranged from fair to good (4 to 8 points). Levels of evidence of the included studies were graded as level 2 and 3. Finally, scores of Berg Balance Scale (BBS), Eye closed force plate center of pressure velocity (anterior-posterior, medial-lateral axis) and Timed up and Go test were pooled and analyzed separately. The pooled results shown improvement in balance function (BBS mean difference (MD): 1.39 points; 95% confidence interval (CI): 0.05-2.29; p=0.002) (Eye closed force plate center of pressure velocity (anterior-posterior axis) MD: 1.39 mm/s; 95% confidence interval (CI): 0.93-1.86; p<0.001) (Eye closed force plate center of pressure velocity (medial-lateral) MD: 1.48 mm/s; 95% confidence interval (CI): 0.15-2.82; p=0.03) and mobility (MD: 0.9 seconds; 95% CI: 0.07-1.73; p=0.03) of stroke individuals after aquatic therapy compared to conventional therapy. Although there were significant differences between two treatment groups, the differences in improvement were relatively small. Conclusion: The aquatic therapy improved general balance function and mobility in the individuals with stroke better than conventional physiotherapy.

Keywords: aquatic therapy, balance function, meta-analysis, stroke, systematic review

Procedia PDF Downloads 201
668 Urban Noise and Air Quality: Correlation between Air and Noise Pollution; Sensors, Data Collection, Analysis and Mapping in Urban Planning

Authors: Massimiliano Condotta, Paolo Ruggeri, Chiara Scanagatta, Giovanni Borga

Abstract:

Architects and urban planners, when designing and renewing cities, have to face a complex set of problems, including the issues of noise and air pollution which are considered as hot topics (i.e., the Clean Air Act of London and the Soundscape definition). It is usually taken for granted that these problems go by together because the noise pollution present in cities is often linked to traffic and industries, and these produce air pollutants as well. Traffic congestion can create both noise pollution and air pollution, because NO₂ is mostly created from the oxidation of NO, and these two are notoriously produced by processes of combustion at high temperatures (i.e., car engines or thermal power stations). We can see the same process for industrial plants as well. What have to be investigated – and is the topic of this paper – is whether or not there really is a correlation between noise pollution and air pollution (taking into account NO₂) in urban areas. To evaluate if there is a correlation, some low-cost methodologies will be used. For noise measurements, the OpeNoise App will be installed on an Android phone. The smartphone will be positioned inside a waterproof box, to stay outdoor, with an external battery to allow it to collect data continuously. The box will have a small hole to install an external microphone, connected to the smartphone, which will be calibrated to collect the most accurate data. For air, pollution measurements will be used the AirMonitor device, an Arduino board to which the sensors, and all the other components, are plugged. After assembling the sensors, they will be coupled (one noise and one air sensor) and placed in different critical locations in the area of Mestre (Venice) to map the existing situation. The sensors will collect data for a fixed period of time to have an input for both week and weekend days, in this way it will be possible to see the changes of the situation during the week. The novelty is that data will be compared to check if there is a correlation between the two pollutants using graphs that should show the percentage of pollution instead of the values obtained with the sensors. To do so, the data will be converted to fit on a scale that goes up to 100% and will be shown thru a mapping of the measurement using GIS methods. Another relevant aspect is that this comparison can help to choose which are the right mitigation solutions to be applied in the area of the analysis because it will make it possible to solve both the noise and the air pollution problem making only one intervention. The mitigation solutions must consider not only the health aspect but also how to create a more livable space for citizens. The paper will describe in detail the methodology and the technical solution adopted for the realization of the sensors, the data collection, noise and pollution mapping and analysis.

Keywords: air quality, data analysis, data collection, NO₂, noise mapping, noise pollution, particulate matter

Procedia PDF Downloads 212
667 Effect of Different Phosphorus Levels on Vegetative Growth of Maize Variety

Authors: Tegene Nigussie

Abstract:

Introduction: Maize is the most domesticated of all the field crops. Wild maize has not been found to date and there has been much speculation on its origin. Regardless of the validity of different theories, it is generally agreed that the center of origin of maize is Central America, primarily Mexico and the Caribbean. Maize in Africa is of a recent introduction although data suggest that it was present in Nigeria even before Columbus voyages. After being taken to Europe in 1493, maize was introduced to Africa and distributed (spread through the continent by different routes. Maize is an important cereal crop in Ethiopia in general, it is the primarily stable food, and rural households show strong preference. For human food, the important constituents of grain are carbohydrates (starch and sugars), protein, fat or oil (in the embryo) and minerals. About 75 percent of the kernel is starch, a range of 60.80 percent but low protein content (8-15%). In Ethiopia, the introduction of modern farming techniques appears to be a priority. However, the adoption of modern inputs by peasant farmers is found to be very slow, for example, the adoption rate of fertilizer, an input that is relatively adopted, is very slow. The difference in socio-economic factors lay behind the low rate of technological adoption, including price & marketing input. Objective: The aim of the study is to determine the optimum application rate or level of different phosphorus fertilizers for the vegetative growth of maize and to identify the effect of different phosphorus rates on the growth and development of maize. Methods: The vegetative parameter (above ground) measurement from five plants randomly sampled from the middle rows of each plot. Results: The interaction of nitrogen and maize variety showed a significant at (p<0.01) effect on plant height, with the application of 60kg/ha and BH140 maize variety in combination and root length with the application of 60kg/ha of nitrogen and BH140 variety of maize. The highest mean (12.33) of the number of leaves per plant and mean (7.1) of the number of nodes per plant can be used as an alternative for better vegetative growth of maize. Conclusion and Recommendation: Maize is one of the popular and cultivated crops in Ethiopia. This study was conducted to investigate the best dosage of phosphorus for vegetative growth, yield, and better quality of maize variety and to recommend a level of phosphorus rate and the best variety adaptable to the specific soil condition or area.

Keywords: leaf, carbohydrate protein, adoption, sugar

Procedia PDF Downloads 12
666 An Investigation of the Structural and Microstructural Properties of Zn1-xCoxO Thin Films Applied as Gas Sensors

Authors: Ariadne C. Catto, Luis F. da Silva, Khalifa Aguir, Valmor Roberto Mastelaro

Abstract:

Zinc oxide (ZnO) pure or doped are one of the most promising metal oxide semiconductors for gas sensing applications due to the well-known high surface-to-volume area and surface conductivity. It was shown that ZnO is an excellent gas-sensing material for different gases such as CO, O2, NO2 and ethanol. In this context, pure and doped ZnO exhibiting different morphologies and a high surface/volume ratio can be a good option regarding the limitations of the current commercial sensors. Different studies showed that the sensitivity of metal-doped ZnO (e.g. Co, Fe, Mn,) enhanced its gas sensing properties. Motivated by these considerations, the aim of this study consisted on the investigation of the role of Co ions on structural, morphological and the gas sensing properties of nanostructured ZnO samples. ZnO and Zn1-xCoxO (0 < x < 5 wt%) thin films were obtained via the polymeric precursor method. The sensitivity, selectivity, response time and long-term stability gas sensing properties were investigated when the sample was exposed to a different concentration range of ozone (O3) at different working temperatures. The gas sensing property was probed by electrical resistance measurements. The long and short-range order structure around Zn and Co atoms were investigated by X-ray diffraction and X-ray absorption spectroscopy. X-ray photoelectron spectroscopy measurement was performed in order to identify the elements present on the film surface as well as to determine the sample composition. Microstructural characteristics of the films were analyzed by a field-emission scanning electron microscope (FE-SEM). Zn1-xCoxO XRD patterns were indexed to the wurtzite ZnO structure and any second phase was observed even at a higher cobalt content. Co-K edge XANES spectra revealed the predominance of Co2+ ions. XPS characterization revealed that Co-doped ZnO samples possessed a higher percentage of oxygen vacancies than the ZnO samples, which also contributed to their excellent gas sensing performance. Gas sensor measurements pointed out that ZnO and Co-doped ZnO samples exhibit a good gas sensing performance concerning the reproducibility and a fast response time (around 10 s). Furthermore, the Co addition contributed to reduce the working temperature for ozone detection and improve the selective sensing properties.

Keywords: cobalt-doped ZnO, nanostructured, ozone gas sensor, polymeric precursor method

Procedia PDF Downloads 247
665 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 41
664 Promoting Self-Esteem and Social Integration in Secondary German Schools: An Evaluation Study

Authors: Susanne Manes, Anni Glaeser, Katharina Wick, Bernhard Strauss, Uwe Berger

Abstract:

Introduction: Over the last decades growing rates of mental health concerns among children and adolescents have been observed. At the same time, physical well-being of children and adolescents becomes increasingly impaired as well. Schools play an important role in preventing mental and physical disorders and in promoting well-being. Self-esteem, as well as social integration, are vital influence factors for mental and physical well-being. The purpose of this study was to develop and evaluate the program 'VorteilJena' for secondary schools in Germany focusing on self-esteem and social integration to improve mental and physical well-being. Method: The school-based health promotion program was designed for students in 5th grade and higher. It consists of several short pedagogical exercises instructed by a teacher and were integrated into the regular class over the course of ten weeks. The exercises focused on fostering social integration using either tasks improving team spirit or exercises that increase tolerance and sense of belonging. Other exercises focused on strengthening the self-esteem of the students. Additionally, the program included a poster exhibition titled 'Belonging' which was put up in the school buildings. The exhibition comprised ten posters which addressed relevant risk factors and resources related to social integration and self-esteem. The study was a randomized controlled sequential study with a pre and post measurement conducted in ten German schools. A total of 1642 students (44% male) were recruited. Their age ranged from 9 to 21 years (M=12.93 years; SD= 2.11). The program was conducted in classes ranging from 5th to 12th grade. Results: The program improved wellbeing, self-esteem and social integration of the involved students compared to the control group. Differential effects depending on implementation rates or age of the students will be analyzed. Moreover, implications for future school-based health promotion programs targeting self-esteem and social integration will be discussed. Conclusion: Social integration considerably influences self-esteem and well-being of students and can be targeted by school-based programs including short and modest exercises. Since a sufficient implementation of health promotion programs is essential, the present program due to its practicability represents a good opportunity to install health promotion focusing on social integration in schools.

Keywords: social integration, well-being, health promotion in schools, self-esteem

Procedia PDF Downloads 197
663 A Model of the Universe without Expansion of Space

Authors: Jia-Chao Wang

Abstract:

A model of the universe without invoking space expansion is proposed to explain the observed redshift-distance relation and the cosmic microwave background radiation (CMB). The main hypothesized feature of the model is that photons traveling in space interact with the CMB photon gas. This interaction causes the photons to gradually lose energy through dissipation and, therefore, experience redshift. The interaction also causes some of the photons to be scattered off their track toward an observer and, therefore, results in beam intensity attenuation. As observed, the CMB exists everywhere in space and its photon density is relatively high (about 410 per cm³). The small average energy of the CMB photons (about 6.3×10⁻⁴ eV) can reduce the energies of traveling photons gradually and will not alter their momenta drastically as in, for example, Compton scattering, to totally blur the images of distant objects. An object moving through a thermalized photon gas, such as the CMB, experiences a drag. The cause is that the object sees a blue shifted photon gas along the direction of motion and a redshifted one in the opposite direction. An example of this effect can be the observed CMB dipole: The earth travels at about 368 km/s (600 km/s) relative to the CMB. In the all-sky map from the COBE satellite, radiation in the Earth's direction of motion appears 0.35 mK hotter than the average temperature, 2.725 K, while radiation on the opposite side of the sky is 0.35 mK colder. The pressure of a thermalized photon gas is given by Pγ = Eγ/3 = αT⁴/3, where Eγ is the energy density of the photon gas and α is the Stefan-Boltzmann constant. The observed CMB dipole, therefore, implies a pressure difference between the two sides of the earth and results in a CMB drag on the earth. By plugging in suitable estimates of quantities involved, such as the cross section of the earth and the temperatures on the two sides, this drag can be estimated to be tiny. But for a photon traveling at the speed of light, 300,000 km/s, the drag can be significant. In the present model, for the dissipation part, it is assumed that a photon traveling from a distant object toward an observer has an effective interaction cross section pushing against the pressure of the CMB photon gas. For the attenuation part, the coefficient of the typical attenuation equation is used as a parameter. The values of these two parameters are determined by fitting the 748 µ vs. z data points compiled from 643 supernova and 105 γ-ray burst observations with z values up to 8.1. The fit is as good as that obtained from the lambda cold dark matter (ΛCDM) model using online cosmological calculators and Planck 2015 results. The model can be used to interpret Hubble's constant, Olbers' paradox, the origin and blackbody nature of the CMB radiation, the broadening of supernova light curves, and the size of the observable universe.

Keywords: CMB as the lowest energy state, model of the universe, origin of CMB in a static universe, photon-CMB photon gas interaction

Procedia PDF Downloads 134
662 The Flooding Management Strategy in Urban Areas: Reusing Public Facilities Land as Flood-Detention Space for Multi-Purpose

Authors: Hsiao-Ting Huang, Chang Hsueh-Sheng

Abstract:

Taiwan is an island country which is affected by the monsoon deeply. Under the climate change, the frequency of extreme rainstorm by typhoon becomes more and more often Since 2000. When the extreme rainstorm comes, it will cause serious damage in Taiwan, especially in urban area. It is suffered by the flooding and the government take it as the urgent issue. On the past, the land use of urban planning does not take flood-detention into consideration. With the development of the city, the impermeable surface increase and most of the people live in urban area. It means there is the highly vulnerability in the urban area, but it cannot deal with the surface runoff and the flooding. However, building the detention pond in hydraulic engineering way to solve the problem is not feasible in urban area. The land expropriation is the most expensive construction of the detention pond in the urban area, and the government cannot afford it. Therefore, the management strategy of flooding in urban area should use the existing resource, public facilities land. It can archive the performance of flood-detention through providing the public facilities land with the detention function. As multi-use public facilities land, it also can show the combination of the land use and water agency. To this purpose, this research generalizes the factors of multi-use for public facilities land as flood-detention space with literature review. The factors can be divided into two categories: environmental factors and conditions of public facilities. Environmental factors including three factors: the terrain elevation, the inundation potential and the distance from the drainage system. In the other hand, there are six factors for conditions of public facilities, including area, building rate, the maximum of available ratio etc. Each of them will be according to it characteristic to given the weight for the land use suitability analysis. This research selects the rules of combination from the logical combination. After this process, it can be classified into three suitability levels. Then, three suitability levels will input to the physiographic inundation model for simulating the evaluation of flood-detention respectively. This study tries to respond the urgent issue in urban area and establishes a model of multi-use for public facilities land as flood-detention through the systematic research process of this study. The result of this study can tell which combination of the suitability level is more efficacious. Besides, The model is not only standing on the side of urban planners but also add in the point of view from water agency. Those findings may serve as basis for land use indicators and decision-making references for concerned government agencies.

Keywords: flooding management strategy, land use suitability analysis, multi-use for public facilities land, physiographic inundation model

Procedia PDF Downloads 358
661 Building User Behavioral Models by Processing Web Logs and Clustering Mechanisms

Authors: Madhuka G. P. D. Udantha, Gihan V. Dias, Surangika Ranathunga

Abstract:

Today Websites contain very interesting applications. But there are only few methodologies to analyze User navigations through the Websites and formulating if the Website is put to correct use. The web logs are only used if some major attack or malfunctioning occurs. Web Logs contain lot interesting dealings on users in the system. Analyzing web logs has become a challenge due to the huge log volume. Finding interesting patterns is not as easy as it is due to size, distribution and importance of minor details of each log. Web logs contain very important data of user and site which are not been put to good use. Retrieving interesting information from logs gives an idea of what the users need, group users according to their various needs and improve site to build an effective and efficient site. The model we built is able to detect attacks or malfunctioning of the system and anomaly detection. Logs will be more complex as volume of traffic and the size and complexity of web site grows. Unsupervised techniques are used in this solution which is fully automated. Expert knowledge is only used in validation. In our approach first clean and purify the logs to bring them to a common platform with a standard format and structure. After cleaning module web session builder is executed. It outputs two files, Web Sessions file and Indexed URLs file. The Indexed URLs file contains the list of URLs accessed and their indices. Web Sessions file lists down the indices of each web session. Then DBSCAN and EM Algorithms are used iteratively and recursively to get the best clustering results of the web sessions. Using homogeneity, completeness, V-measure, intra and inter cluster distance and silhouette coefficient as parameters these algorithms self-evaluate themselves to input better parametric values to run the algorithms. If a cluster is found to be too large then micro-clustering is used. Using Cluster Signature Module the clusters are annotated with a unique signature called finger-print. In this module each cluster is fed to Associative Rule Learning Module. If it outputs confidence and support as value 1 for an access sequence it would be a potential signature for the cluster. Then the access sequence occurrences are checked in other clusters. If it is found to be unique for the cluster considered then the cluster is annotated with the signature. These signatures are used in anomaly detection, prevent cyber attacks, real-time dashboards that visualize users, accessing web pages, predict actions of users and various other applications in Finance, University Websites, News and Media Websites etc.

Keywords: anomaly detection, clustering, pattern recognition, web sessions

Procedia PDF Downloads 288
660 Performance Evaluation of the CSAN Pronto Point-of-Care Whole Blood Analyzer for Regular Hematological Monitoring During Clozapine Treatment

Authors: Farzana Esmailkassam, Usakorn Kunanuvat, Zahraa Mohammed Ali

Abstract:

Objective: The key barrier in Clozapine treatment of treatment-resistant schizophrenia (TRS) includes frequent bloods draws to monitor neutropenia, the main drug side effect. WBC and ANC monitoring must occur throughout treatment. Accurate WBC and ANC counts are necessary for clinical decisions to halt, modify or continue clozapine treatment. The CSAN Pronto point-of-care (POC) analyzer generates white blood cells (WBC) and absolute neutrophils (ANC) through image analysis of capillary blood. POC monitoring offers significant advantages over central laboratory testing. This study evaluated the performance of the CSAN Pronto against the Beckman DxH900 Hematology laboratory analyzer. Methods: Forty venous samples (EDTA whole blood) with varying concentrations of WBC and ANC as established on the DxH900 analyzer were tested in duplicates on three CSAN Pronto analyzers. Additionally, both venous and capillary samples were concomitantly collected from 20 volunteers and assessed on the CSAN Pronto and the DxH900 analyzer. The analytical performance including precision using liquid quality controls (QCs) as well as patient samples near the medical decision points, and linearity using a mix of high and low patient samples to create five concentrations was also evaluated. Results: In the precision study for QCs and whole blood, WBC and ANC showed CV inside the limits established according to manufacturer and laboratory acceptability standards. WBC and ANC were found to be linear across the measurement range with a correlation of 0.99. WBC and ANC from all analyzers correlated well in venous samples on the DxH900 across the tested sample ranges with a correlation of > 0.95. Mean bias in ANC obtained on the CSAN pronto versus the DxH900 was 0.07× 109 cells/L (95% L.O.A -0.25 to 0.49) for concentrations <4.0 × 109 cells/L, which includes decision-making cut-offs for continuing clozapine treatment. Mean bias in WBC obtained on the CSAN pronto versus the DxH900 was 0.34× 109 cells/L (95% L.O.A -0.13 to 0.72) for concentrations <5.0 × 109 cells/L. The mean bias was higher (-11% for ANC, 5% for WBC) at higher concentrations. The correlations between capillary and venous samples showed more variability with mean bias of 0.20 × 109 cells/L for the ANC. Conclusions: The CSAN pronto showed acceptable performance in WBC and ANC measurements from venous and capillary samples and was approved for clinical use. This testing will facilitate treatment decisions and improve clozapine uptake and compliance.

Keywords: absolute neutrophil counts, clozapine, point of care, white blood cells

Procedia PDF Downloads 94
659 Metagenomic Assessment of the Effects of Genetically Modified Crops on Microbial Ecology and Physicochemical Properties of Soil

Authors: Falana Yetunde Olaitan, Ijah U. J. J, Solebo Shakirat O.

Abstract:

Genetically modified crops are already phenomenally successful and are grown worldwide in more than eighteen countries on more than 67 million hectares. Nigeria, in October 2018, approved Bacillus thuringiensis (Bt) cotton and maize; therefore, the need to carry out environmental risk assessment studies. A total of 15 4L octagonal ceramic pots were filled with 4kg of soil and placed on the bench in 2 rows of 10 pots each and the 3rd row of 5 pots, 1st-row pots were used to plant GM cotton seeds, while the 2nd-row pots were used for non-GM cotton seeds and the 3rd row of 5 pots served as control, all in the screen house. Soil samples for metagenomic DNA extraction were collected at random and at the monthly interval after planting at a distance of 2mm from the plant’s root and at a depth of 10cm using a sterile spatula. Soil samples for physicochemical analysis were collected before planting and after harvesting the GM and non-GM crops as well as from the control soil. The DNA was extracted, quantified and sequenced; Sample 1A (DNA from GM cotton Soil at 1st interval) gave the lowest sequence read with 0.853M while sample 2B (DNA from GM cotton Soil at 2nd interval) gave the highest with 5.785M, others gave between 1.8M and 4.7M. The samples treatment were grouped into four, Group 1 (GM cotton soil from 1 to 3 intervals) had between 800,000 and 5,700,000 strains of microbes (SOM), Group 2 (non GM cotton soil from 1 to 3 intervals) had between 1,400,600 and 4,200,000 SOM, Group 3 (control soil) had between 900,000 and 3,600,000 SOM and Group 4 (initial soil) had between 3,700,000 and 4,000,000 SOM. The microbes observed were predominantly bacteria (including archaea), fungi, dark matter alongside protists and phages. The predominant bacterial groups were the Terrabacteria (Bacillus funiculus, Bacillus sp.), the Proteobacteria (Microvirga massiliensis, sphingomonas sp.) and the Archaea (Nitrososphaera sp.), while the fungi were Aspergillus fischeri and Fusarium falciforme. The comparative analysis between groups was done using JACCARD PERMANOVA beta diversity analysis at P-value not more than 0.76 and there was no significant pair found. The pH for initial, GM cotton, non-GM cotton and control soil were 6.28, 6.26, 7.25, 8.26 and the percentage moisture was 0.63, 0.78, 0.89 and 0.82, respectively, while the percentage Nitrogen was observed to be 17.79, 1.14, 1.10 and 0.56 respectively. Other parameters include, varying concentrations of Potassium (0.46, 1,284.47, 1,785.48, 1,252.83 mg/kg) and Phosphorus (18.76, 17.76, 16.87, 15.23 mg/kg) were recorded for the four treatments respectively. The soil consisted mainly of silt (32.09 to 34.66%) and clay (58.89 to 60.23%), reflecting the soil texture as silty – clay. The results were then tested with ANOVA at less than 0.05 P-value and no pair was found to be significant as well. The results suggest that the GM crops have no significant effect on microbial ecology and physicochemical properties of the soil and, in turn, no direct or indirect effects on human health.

Keywords: genetically modified crop, microbial ecology, physicochemical properties, metagenomics, DNA, soil

Procedia PDF Downloads 145
658 Digitalization, Economic Growth and Financial Sector Development in Africa

Authors: Abdul Ganiyu Iddrisu

Abstract:

Digitization is the process of transforming analog material into digital form, especially for storage and use in a computer. Significant development of information and communication technology (ICT) over the past years has encouraged many researchers to investigate its contribution to promoting economic growth, and reducing poverty. Yet compelling empirical evidence on the effects of digitization on economic growth remains weak, particularly in Africa. This is because extant studies that explicitly evaluate digitization and economic growth nexus are mostly reports and desk reviews. This points out an empirical knowledge gap in the literature. Hypothetically, digitization influences financial sector development which in turn influences economic growth. Digitization has changed the financial sector and its operating environment. Obstacles to access to financing, for instance, physical distance, minimum balance requirements, low-income flows among others can be circumvented. Savings have increased, micro-savers have opened bank accounts, and banks are now able to price short-term loans. This has the potential to develop the financial sector, however, empirical evidence on digitization-financial development nexus is dearth. On the other hand, a number of studies maintained that financial sector development greatly influences growth of economies. We therefore argue that financial sector development is one of the transmission mechanisms through which digitization affects economic growth. Employing macro-country-level data from African countries and using fixed effects, random effects and Hausman-Taylor estimation approaches, this paper contributes to the literature by analysing economic growth in Africa focusing on the role of digitization, and financial sector development. First, we assess how digitization influence financial sector development in Africa. From an economic policy perspective, it is important to identify digitization determinants of financial sector development so that action can be taken to reduce the economic shocks associated with financial sector distortions. This nexus is rarely examined empirically in the literature. Secondly, we examine the effect of domestic credit to private sector and stock market capitalization as a percentage of GDP as used to proxy for financial sector development on 2 economic growth. Digitization is represented by the volume of digital/ICT equipment imported and GDP growth is used to proxy economic growth. Finally, we examine the effect of digitization on economic growth in the light of financial sector development. The following key results were found; first, digitalization propels financial sector development in Africa. Second, financial sector development enhances economic growth. Finally, contrary to our expectation, the results also indicate that digitalization conditioned on financial sector development tends to reduce economic growth in Africa. However, results of the net effects suggest that digitalization, overall, improves economic growth in Africa. We, therefore, conclude that, digitalization in Africa does not only develop the financial sector but unconditionally contributes the growth of the continent’s economies.

Keywords: digitalization, economic growth, financial sector development, Africa

Procedia PDF Downloads 103
657 Monolithic Integrated GaN Resonant Tunneling Diode Pair with Picosecond Switching Time for High-speed Multiple-valued Logic System

Authors: Fang Liu, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun, JunShuai Xue

Abstract:

The explosive increasing needs of data processing and information storage strongly drive the advancement of the binary logic system to multiple-valued logic system. Inherent negative differential resistance characteristic, ultra-high-speed switching time, and robust anti-irradiation capability make III-nitride resonant tunneling diode one of the most promising candidates for multi-valued logic devices. Here we report the monolithic integration of GaN resonant tunneling diodes in series to realize multiple negative differential resistance regions, obtaining at least three stable operating states. A multiply-by-three circuit is achieved by this combination, increasing the frequency of the input triangular wave from f0 to 3f0. The resonant tunneling diodes are grown by plasma-assistedmolecular beam epitaxy on free-standing c-plane GaN substrates, comprising double barriers and a single quantum well both at the atomic level. Device with a peak current density of 183kA/cm² in conjunction with a peak-to-valley current ratio (PVCR) of 2.07 is observed, which is the best result reported in nitride-based resonant tunneling diodes. Microwave oscillation event at room temperature was discovered with a fundamental frequency of 0.31GHz and an output power of 5.37μW, verifying the high repeatability and robustness of our device. The switching behavior measurement was successfully carried out, featuring rise and fall times in the order of picoseconds, which can be used in high-speed digital circuits. Limited by the measuring equipment and the layer structure, the switching time can be further improved. In general, this article presents a novel nitride device with multiple negative differential regions driven by the resonant tunneling mechanism, which can be used in high-speed multiple value logic field with reduced circuit complexity, demonstrating a new solution of nitride devices to break through the limitations of binary logic.

Keywords: GaN resonant tunneling diode, negative differential resistance, multiple-valued logic system, switching time, peak-to-valley current ratio

Procedia PDF Downloads 100
656 Architecture for Hearing Impaired: A Study on Conducive Learning Environments for Deaf Children with Reference to Sri Lanka

Authors: Champa Gunawardana, Anishka Hettiarachchi

Abstract:

Conducive Architecture for learning environments is an area of interest for many scholars around the world. Loss of sense of hearing leads to the assumption that deaf students are visual learners. Comprehending favorable non-hearing attributes of architecture can lead to effective, rich and friendly learning environments for hearing impaired. The objective of the current qualitative investigation is to explore the nature and parameters of a sense of place of deaf children to support optimal learning. The investigation was conducted with hearing-impaired children (age: between 8-19, Gender: 15 male and 15 female) of Yashodhara deaf and blind school at Balangoda, Sri Lanka. A sensory ethnography study was adopted to identify the nature of perception and the parameters of most preferred and least preferred spaces of the learning environment. The common perceptions behind most preferred places in the learning environment were found as being calm and quiet, sense of freedom, volumes characterized by openness and spaciousness, sense of safety, wide spaces, privacy and belongingness, less crowded, undisturbed, availability of natural light and ventilation, sense of comfort and the view of green colour in the surroundings. On the other hand, the least preferred spaces were found to be perceived as dark, gloomy, warm, crowded, lack of freedom, smells (bad), unsafe and having glare. Perception of space by deaf considering the hierarchy of sensory modalities involved was identified as; light - color perception (34 %), sight - visual perception (32%), touch - haptic perception (26%), smell - olfactory perception (7%) and sound – auditory perception (1%) respectively. Sense of freedom (32%) and sense of comfort (23%) were the predominant psychological parameters leading to an optimal sense of place perceived by hearing impaired. Privacy (16%), rhythm (14%), belonging (9%) and safety (6%) were found as secondary factors. Open and wide flowing spaces without visual barriers, transparent doors and windows or open port holes to ease their communication, comfortable volumes, naturally ventilated spaces, natural lighting or diffused artificial lighting conditions without glare, sloping walkways, wider stairways, walkways and corridors with ample distance for signing were identified as positive characteristics of the learning environment investigated.

Keywords: deaf, visual learning environment, perception, sensory ethnography

Procedia PDF Downloads 230
655 Risks and Values in Adult Safeguarding: An Examination of How Social Workers Screen Safeguarding Referrals from Residential Homes

Authors: Jeremy Dixon

Abstract:

Safeguarding adults forms a core part of social work practice. The Government in England and Wales has made efforts to standardise practices through The Care Act 2014. The Act states that local authorities have duties to make inquiries in cases where an adult with care or support needs is experiencing or at risk of abuse and is unable to protect themselves from abuse or neglect. Despite the importance given to safeguarding adults within law there remains little research about how social workers conduct such decisions on the ground. This presentation reports on findings from a pilot research study conducted within two social work teams in a Local Authority in England. The objective of the project was to find out how social workers interpreted safeguarding duties as laid out by The Care Act 2014 with a particular focus on how workers assessed and managed risk. Ethnographic research methods were used throughout the project. This paper focusses specifically on decisions made by workers in the assessment team. The paper reports on qualitative observation and interviews with five workers within this team. Drawing on governmentality theory, this paper analyses the techniques used by workers to manage risk from a distance. A high proportion of safeguarding referrals came from care workers or managers in residential care homes. Social workers conducting safeguarding assessments were aware that they had a duty to work in partnership with these agencies. However, their duty to safeguard adults also meant that they needed to view them as potential abusers. In making judgments about when it was proportionate to refer for a safeguarding assessment workers drew on a number of common beliefs about residential care workers which were then tested in conversations with them. Social workers held the belief that residential homes acted defensively, leading them to report any accident or danger. Social workers therefore encouraged residential workers to consider whether statutory criteria had been met and to use their own procedures to manage risk. In addition social workers carried out an assessment of the workers’ motives; specifically whether they were using safeguarding procedures as a shortcut for avoiding other assessments or as a means of accessing extra resources. Where potential abuse was identified social workers encouraged residential homes to use disciplinary policies as a means of isolating and managing risk. The study has implications for understanding risk within social work practice. It shows that whilst social workers use law to govern individuals, these laws are interpreted against cultural values. Additionally they also draw on assumptions about the culture of others.

Keywords: adult safeguarding, governmentality, risk, risk assessment

Procedia PDF Downloads 289
654 The Development of Traffic Devices Using Natural Rubber in Thailand

Authors: Weeradej Cheewapattananuwong, Keeree Srivichian, Godchamon Somchai, Wasin Phusanong, Nontawat Yoddamnern

Abstract:

Natural rubber used for traffic devices in Thailand has been developed and researched for several years. When compared with Dry Rubber Content (DRC), the quality of Rib Smoked Sheet (RSS) is better. However, the cost of admixtures, especially CaCO₃ and sulphur, is higher than the cost of RSS itself. In this research, Flexible Guideposts and Rubber Fender Barriers (RFB) are taken into consideration. In case of flexible guideposts, the materials used are both RSS and DRC60%, but for RFB, only RSS is used due to the controlled performance tests. The objective of flexible guideposts and RFB is to decrease a number of accidents, fatal rates, and serious injuries. Functions of both devices are to save road users and vehicles as well as to absorb impact forces from vehicles so as to decrease of serious road accidents. This leads to the mitigation methods to remedy the injury of motorists, form severity to moderate one. The solution is to find the best practice of traffic devices using natural rubber under the engineering concepts. In addition, the performances of materials, such as tensile strength and durability, are calculated for the modulus of elasticity and properties. In the laboratory, the simulation of crashes, finite element of materials, LRFD, and concrete technology methods are taken into account. After calculation, the trials' compositions of materials are mixed and tested in the laboratory. The tensile test, compressive test, and weathering or durability test are followed and based on ASTM. Furthermore, the Cycle-Repetition Test of Flexible Guideposts will be taken into consideration. The final decision is to fabricate all materials and have a real test section in the field. In RFB test, there will be 13 crash tests, 7 Pickup Truck tests, and 6 Motorcycle Tests. The test of vehicular crashes happens for the first time in Thailand, applying the trial and error methods; for example, the road crash test under the standard of NCHRP-TL3 (100 kph) is changed to the MASH 2016. This is owing to the fact that MASH 2016 is better than NCHRP in terms of speed, types, and weight of vehicles and the angle of crash. In the processes of MASH, Test Level 6 (TL-6), which is composed of 2,270 kg Pickup Truck, 100 kph, and 25 degree of crash-angle is selected. The final test for real crash will be done, and the whole system will be evaluated again in Korea. The researchers hope that the number of road accidents will decrease, and Thailand will be no more in the top tenth ranking of road accidents in the world.

Keywords: LRFD, load and resistance factor design, ASTM, american society for testing and materials, NCHRP, national cooperation highway research program, MASH, manual for assessing safety hardware

Procedia PDF Downloads 128
653 Preparation and CO2 Permeation Properties of Carbonate-Ceramic Dual-Phase Membranes

Authors: H. Ishii, S. Araki, H. Yamamoto

Abstract:

In recent years, the carbon dioxide (CO2) separation technology is required in terms of the reduction of emission of global warming gases and the efficient use of fossil fuels. Since the emission amount of CO2 gas occupies the large part of greenhouse effect gases, it is considered that CO2 have the most influence on global warming. Therefore, we need to establish the CO2 separation technologies with high efficiency at low cost. In this study, we focused on the membrane separation compared with conventional separation technique such as distillation or cryogenic separation. In this study, we prepared carbonate-ceramic dual-phase membranes to separate CO2 at high temperature. As porous ceramic substrate, the (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+σ, La0.6Sr0.4Ti0.3 Fe0.7O3 and Ca0.8Sr0.2Ti0.7Fe0.3O3-α (PLNCG, LSTF and CSTF) were examined. PLNCG, LSTF and CSTF have the perovskite structure. The perovskite structure has high stability and shows ion-conducting doped by another metal ion. PLNCG, LSTF and CSTF have perovskite structure and has high stability and high oxygen ion diffusivity. PLNCG, LSTF and CSTF powders were prepared by a solid-phase process using the appropriate carbonates or oxides. To prepare porous substrates, these powders mixed with carbon black (20 wt%) and a few drops of polyvinyl alcohol (5 wt%) aqueous solution. The powder mixture were packed into stainless steel mold (13 mm) and uniaxially pressed into disk shape under a pressure of 20 MPa for 1 minute. PLNCG, LSTF and CSTF disks were calcined in air for 6 h at 1473, 1573 and 1473 K, respectively. The carbonate mixture (Li2CO3/Na2CO3/K2CO3: 42.5/32.5/25 in mole percent ratio) was placed inside a crucible and heated to 793 K. Porous substrates were infiltrated with the molten carbonate mixture at 793 K. Crystalline structures of the fresh membranes and after the infiltration with the molten carbonate mixtures were determined by X-ray diffraction (XRD) measurement. We confirmed the crystal structure of PLNCG and CSTF slightly changed after infiltration with the molten carbonate mixture. CO2 permeation experiments with PLNCG-carbonate, LSTF-carbonate and CSTF-carbonate membranes were carried out at 773-1173 K. The gas mixture of CO2 (20 mol%) and He was introduced at the flow rate of 50 ml/min to one side of membrane. The permeated CO2 was swept by N2 (50 ml/min). We confirmed the effect of ceramic materials and temperature on the CO2 permeation at high temperature.

Keywords: membrane, perovskite structure, dual-phase, carbonate

Procedia PDF Downloads 367
652 The Scientific Study of the Relationship Between Physicochemical and Microstructural Properties of Ultrafiltered Cheese: Protein Modification and Membrane Separation

Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh

Abstract:

The loss of curd cohesiveness and syneresis are two common problems in the ultrafiltered cheese industry. In this study, by using membrane technology and protein modification, a modified cheese was developed and its properties were compared with a control sample. In order to decrease the lactose content and adjust the protein, acidity, dry matter and milk minerals, a combination of ultrafiltration, nanofiltration and reverse osmosis technologies was employed. For protein modification, a two-stage chemical and enzymatic reaction was employed before and after ultrafiltration. The physicochemical and microstructural properties of the modified ultrafiltered cheese were compared with the control one. Results showed that the modified protein enhanced the functional properties of the final cheese significantly (pvalue< 0.05), even if the protein content was 50% lower than the control one. The modified cheese showed 21 ± 0.70, 18 ± 1.10 & 25±1.65% higher hardness, cohesiveness and water-holding capacity values, respectively, than the control sample. This behavior could be explained by the developed microstructure of the gel network. Furthermore, chemical-enzymatic modification of milk protein induced a significant change in the network parameter of the final cheese. In this way, the indices of network linkage strength, network linkage density, and time scale of junctions were 10.34 ± 0.52, 68.50 ± 2.10 & 82.21 ± 3.85% higher than the control sample, whereas the distance between adjacent linkages was 16.77 ± 1.10% lower than the control sample. These results were supported by the results of the textural analysis. A non-linear viscoelastic study showed a triangle waveform stress of the modified protein contained cheese, while the control sample showed rectangular waveform stress, which suggested a better sliceability of the modified cheese. Moreover, to study the shelf life of the products, the acidity, as well as molds and yeast population, were determined in 120 days. It’s worth mentioning that the lactose content of modified cheese was adjusted at 2.5% before fermentation, while the lactose of the control one was at 4.5%. The control sample showed 8 weeks shelf life, while the shelf life of the modified cheese was 18 weeks in the refrigerator. During 18 weeks, the acidity of modified and control samples increased from 82 ± 1.50 to 94 ± 2.20 °D and 88 ± 1.64 to 194 ± 5.10 °D, respectively. The mold and yeast populations, with time, followed the semicircular shape model (R2 = 0.92, R2adj = 0.89, RMSE = 1.25). Furthermore, the mold and yeast counts and their growth rate in the modified cheese were lower than those for control one; Aforementioned result could be explained by the shortage of the source of energy for the microorganism in the modified cheese. The lactose content of the modified sample was less than 0.2 ± 0.05% at the end of fermentation, while this was 3.7 ± 0.68% in the control sample.

Keywords: non-linear viscoelastic, protein modification, semicircular shape model, ultrafiltered cheese

Procedia PDF Downloads 74
651 Experimental Research of High Pressure Jet Interaction with Supersonic Crossflow

Authors: Bartosz Olszanski, Zbigniew Nosal, Jacek Rokicki

Abstract:

An experimental study of cold-jet (nitrogen) reaction control jet system has been carried out to investigate the flow control efficiency for low to moderate jet pressure ratios (total jet pressure p0jet over free stream static pressure in the wind tunnel p∞) and different angles of attack for infinite Mach number equal to 2. An investigation of jet influence was conducted on a flat plate geometry placed in the test section of intermittent supersonic wind tunnel of Department of Aerodynamics, WUT. Various convergent jet nozzle geometries to obtain different jet momentum ratios were tested on the same test model geometry. Surface static pressure measurements, Schlieren flow visualizations (using continuous and photoflash light source), load cell measurements gave insight into the supersonic crossflow interaction for different jet pressure and jet momentum ratios and their influence on the efficiency of side jet control as described by the amplification factor (actual to theoretical net force generated by the control nozzle). Moreover, the quasi-steady numerical simulations of flow through the same wind tunnel geometry (convergent-divergent nozzle plus test section) were performed using ANSYS Fluent basing on Reynolds-Averaged Navier-Stokes (RANS) solver incorporated with k-ω Shear Stress Transport (SST) turbulence model to assess the possible spurious influence of test section walls over the jet exit near field area of interest. The strong bow shock, barrel shock, and Mach disk as well as lambda separation region in front of nozzle were observed as images taken by high-speed camera examine the interaction of the jet and the free stream. In addition, the development of large-scale vortex structures (counter-rotating vortex pair) was detected. The history of complex static pressure pattern on the plate was recorded and compared to the force measurement data as well as numerical simulation data. The analysis of the obtained results, especially in the wake of the jet showed important features of the interaction mechanisms between the lateral jet and the flow field.

Keywords: flow visualization techniques, pressure measurements, reaction control jet, supersonic cross flow

Procedia PDF Downloads 299
650 Analyzing the Contamination of Some Food Crops Due to Mineral Deposits in Ondo State, Nigeria

Authors: Alexander Chinyere Nwankpa, Nneka Ngozi Nwankpa

Abstract:

In Nigeria, the Federal government is trying to make sure that everyone has access to enough food that is nutritiously adequate and safe. But in the southwest of Nigeria, notably in Ondo State, the most valuable minerals such as oil and gas, bitumen, kaolin, limestone talc, columbite, tin, gold, coal, and phosphate are abundant. Therefore, some regions of Ondo State are now linked to large quantities of natural radioactivity as a result of the mineral presence. In this work, the baseline radioactivity levels in some of the most important food crops in Ondo State were analyzed, allowing for the prediction of probable radiological health impacts. To this effect, maize (Zea mays), yam (Dioscorea alata) and cassava (Manihot esculenta) tubers were collected from the farmlands in the State because they make up the majority of food's nutritional needs. Ondo State was divided into eight zones in order to provide comprehensive coverage of the research region. At room temperature, the maize (Zea mays), yam (Dioscorea alata), and cassava (Manihot esculenta) samples were dried until they reached a consistent weight. They were pulverized, homogenized, and 250 g packed in a 1-liter Marinelli beaker and kept for 28 days to achieve secular equilibrium. The activity concentrations of Radium-226 (Ra-226), Thorium-232 (Th-232), and Potassium-40 (K-40) were determined in the food samples using Gamma-ray spectrometry. Firstly, the Hyper Pure Germanium detector was calibrated using standard radioactive sources. The gamma counting, which lasted for 36000s for each sample, was carried out in the Centre for Energy Research and Development, Obafemi Awolowo University, Ile-Ife, Nigeria. The mean activity concentration of Ra-226, Th-232 and K-40 for yam were 1.91 ± 0.10 Bq/kg, 2.34 ± 0.21 Bq/kg and 48.84 ± 3.14 Bq/kg, respectively. The content of the radionuclides in maize gave a mean value of 2.83 ± 0.21 Bq/kg for Ra-226, 2.19 ± 0.07 Bq/kg for Th-232 and 41.11 ± 2.16 Bq/kg for K-40. The mean activity concentrations in cassava were 2.52 ± 0.31 Bq/kg for Ra-226, 1.94 ± 0.21 Bq/kg for Th-232 and 45.12 ± 3.31 Bq/kg for K-40. The average committed effective doses in zones 6-8 were 0.55 µSv/y for the consumption of yam, 0.39 µSv/y for maize, and 0.49 µSv/y for cassava. These values are higher than the annual dose guideline of 0.35 µSv/y for the general public. Therefore, the values obtained in this work show that there is radiological contamination of some foodstuffs consumed in some parts of Ondo State. However, we recommend that systematic and appropriate methods also need to be established for the measurement of gamma-emitting radionuclides since these constitute important contributors to the internal exposure of man through ingestion, inhalation, or wound on the body.

Keywords: contamination, environment, radioactivity, radionuclides

Procedia PDF Downloads 104