Search results for: recognition methods
16117 Decoding the Construction of Identity and Struggle for Self-Assertion in Toni Morrison and Selected Indian Authors
Authors: Madhuri Goswami
Abstract:
The matrix of power establishes the hegemonic dominance and supremacy of one group through exercising repression and relegation upon the other. However, the injustice done to any race, ethnicity, or caste has instigated the protest and resistance through various modes -social campaigns, political movements, literary expression and so on. Consequently, the search for identity, the means of claiming it and strive for recognition have evolved as the persistent phenomena all through the world. In the discourse of protest and minority literature, these two discourses -African American and Indian Dalit- surprisingly, share wrath and anger, hope and aspiration, and quest for identity and struggle for self-assertion. African American and Indian Dalit are two geographically and culturally apart communities that stand together on a single platform. This paper has sought to comprehend the form and investigate the formation of identity in general and in the literary work of Toni Morrison and Indian Dalit writing, particular, i.e., Black identity and Dalit identity. The study has speculated two types of identity, namely, individual or self and social or collective identity in the literary province of these marginalized literature. Morrison’s work outsources that self-identity is not merely a reflection of an inner essence; it is constructed through social circumstances and relations. Likewise, Dalit writings too have a fair record of discovery of self-hood and formation of identity, which connects to the realization of self-assertion and worthiness of their culture among Dalit writers. Bama, Pawar, Limbale, Pawde, and Kamble investigate their true self concealed amid societal alienation. The study has found that the struggle for recognition is, in fact, the striving to become the definer, instead of just being defined; and, this striving eventually, leads to the introspection among them. To conclude, Morrison as well as Indian marginalized authors, despite being set quite distant, communicate the relation between individual and community in the context of self-consciousness, self-identification and (self) introspection. This research opens a scope for further research to find out similar phenomena and trace an analogy in other world literatures.Keywords: identity, introspection, self-access, struggle for recognition
Procedia PDF Downloads 15416116 Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning
Authors: Muhammad Maisam Abbas, Salman Tariq, Usama Riaz, Muhammad Tanveer, Humaira Abdul Ghafoor
Abstract:
Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system.Keywords: autism spectrum disorder, ASD, EigenFace, facial expression recognition, FisherFace, local binary pattern histogram, LBPH
Procedia PDF Downloads 17416115 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems
Authors: Hala Zaghloul, Taymoor Nazmy
Abstract:
One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.Keywords: cognitive system, image processing, segmentation, PCNN kernels
Procedia PDF Downloads 28016114 Comparison of Visio-spatial Intelligence Between Amateur Rugby and Netball Players Using a Hand-Eye Coordination Specific Visual Test Battery
Authors: Lourens Millard, Gerrit Jan Breukelman, Nonkululeko Mathe
Abstract:
Aim: The research aims to investigate the differences in visio-spatial skills (VSS) between athletes and non-athletes, as well as variations across sports, presenting conflicting findings. Therefore, the objective of this study was to determine if there exist significant differences in visio-spatial intelligence skills between rugby players and netball players, and whether such disparities are present when comparing both groups to non-athletes. Methods: Participants underwent an optometric assessment, followed by an evaluation of VSS using six established tests: the Hart Near Far Rock, saccadic eye movement, evasion, accumulator, flash memory, and ball wall toss tests. Results: The results revealed that rugby players significantly outperformed netball players in speed of recognition, peripheral awareness, and hand-eye coordination (p=.000). Moreover, both rugby players and netball players performed significantly better than non-athletes in five of the six tests (p=.000), with the exception being the visual memory test (p=.809). Conclusion: This discrepancy in performance suggests that certain VSS are superior in athletes compared to non-athletes, highlighting potential implications for theories of vision, test selection, and the development of sport-specific VSS testing batteries. Furthermore, the use of a hand-eye coordination-specific VSS test battery effectively differentiated between different sports. However, this pattern was not consistent across all VSS tests, indicating that further research should explore the training methods employed by both sports, as these factors may contribute to the observed differences.Keywords: visio-spatial intelligence (VSI), rugby vision, netball vision, visual skills, sport vision.
Procedia PDF Downloads 5116113 Developing Reading Methods of Industrial Education Students at King Mongkut’s Institute of Technology Ladkrabang
Authors: Rattana Sangchan, Pattaraporn Thampradit
Abstract:
Teaching students to use a variety of reading methods in developing reading is essential for Thai university students. However, there haven’t been a lot of studies concerned about developing reading methods that are used by Thai students in the industrial education field. Therefore, this study was carried out not only to investigate the developing reading methods of Industrial Education students at King Mongkut’s Institute of Technology Ladkrabang, but also to determine if the developing reading strategies differ among the students’ reading abilities and differ gender: male and female. The research instrument used in collecting the data consisted of fourteen statements which include either metacognitive strategies, cognitive strategies or social / affective strategies. Results of this study revealed that students could develop their reading methods in moderate level (mean=3.13). Furthermore, high reading ability students had different levels of using reading methods to develop their reading from those of mid reading ability students. In addition, high reading ability students could use either metacognitive reading methods or cognitive reading methods to develop their reading much better than mid reading ability students. Interestingly, male students could develop their reading methods in great levels while female students could develop their reading methods only in moderate level. Last but not least, male students could use either metacognitive reading methods or cognitive reading methods to develop their reading much better than female students. Thus, the results of this study could indicate that most students need to apply much more reading strategies to develop their reading. At the same time, suggestions on how to motivate and train their students to apply much more appropriate effective reading strategies to better comprehend their reading were also provided.Keywords: developing reading methods, industrial education, reading abilities, reading method classification
Procedia PDF Downloads 28516112 A New Family of Globally Convergent Conjugate Gradient Methods
Authors: B. Sellami, Y. Laskri, M. Belloufi
Abstract:
Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, a new family of conjugate gradient method is proposed for unconstrained optimization. This method includes the already existing two practical nonlinear conjugate gradient methods, which produces a descent search direction at every iteration and converges globally provided that the line search satisfies the Wolfe conditions. The numerical experiments are done to test the efficiency of the new method, which implies the new method is promising. In addition the methods related to this family are uniformly discussed.Keywords: conjugate gradient method, global convergence, line search, unconstrained optimization
Procedia PDF Downloads 41016111 Robustness of the Deep Chroma Extractor and Locally-Normalized Quarter Tone Filters in Automatic Chord Estimation under Reverberant Conditions
Authors: Luis Alvarado, Victor Poblete, Isaac Gonzalez, Yetzabeth Gonzalez
Abstract:
In MIREX 2016 (http://www.music-ir.org/mirex), the deep neural network (DNN)-Deep Chroma Extractor, proposed by Korzeniowski and Wiedmer, reached the highest score in an audio chord recognition task. In the present paper, this tool is assessed under acoustic reverberant environments and distinct source-microphone distances. The evaluation dataset comprises The Beatles and Queen datasets. These datasets are sequentially re-recorded with a single microphone in a real reverberant chamber at four reverberation times (0 -anechoic-, 1, 2, and 3 s, approximately), as well as four source-microphone distances (32, 64, 128, and 256 cm). It is expected that the performance of the trained DNN will dramatically decrease under these acoustic conditions with signals degraded by room reverberation and distance to the source. Recently, the effect of the bio-inspired Locally-Normalized Cepstral Coefficients (LNCC), has been assessed in a text independent speaker verification task using speech signals degraded by additive noise at different signal-to-noise ratios with variations of recording distance, and it has also been assessed under reverberant conditions with variations of recording distance. LNCC showed a performance so high as the state-of-the-art Mel Frequency Cepstral Coefficient filters. Based on these results, this paper proposes a variation of locally-normalized triangular filters called Locally-Normalized Quarter Tone (LNQT) filters. By using the LNQT spectrogram, robustness improvements of the trained Deep Chroma Extractor are expected, compared with classical triangular filters, and thus compensating the music signal degradation improving the accuracy of the chord recognition system.Keywords: chord recognition, deep neural networks, feature extraction, music information retrieval
Procedia PDF Downloads 23216110 Women’s History: Perspectives and Challenges
Authors: Bennabhaktula Lavanya
Abstract:
The study of women, their societal roles, and their importance has been a subject of intense discussion and scholarly inquiry. Researchers have diligently endeavoured to understand the influence of women in the domains of society, economy, culture, and politics, as well as the broader ramifications for society. Women's history aims to improve existing historical accounts by analyzing political institutions, economic events, social frameworks, cultural trends, and primary sources that have historically underprivileged women. The extensive research undertaken has resulted in the formation and recognition of women's history as a valid and unique subject of study within history. The Present paper analyses the academic discipline of Women's History and investigates its changing patterns. Tries to address the challenge of transforming the prevailing historical tradition by using innovative methods and frameworks and analyses the interests, experiences, and achievements of women in order to recreate their perceptions and priorities. The paper also examines the principles of Women's History, Gender Studies, and Feminist History and varying perspectives on women.Keywords: history, perspectives, research, women
Procedia PDF Downloads 4616109 Identifying the Structural Components of Old Buildings from Floor Plans
Authors: Shi-Yu Xu
Abstract:
The top three risk factors that have contributed to building collapses during past earthquake events in Taiwan are: "irregular floor plans or elevations," "insufficient columns in single-bay buildings," and the "weak-story problem." Fortunately, these unsound structural characteristics can be directly identified from the floor plans. However, due to the vast number of old buildings, conducting manual inspections to identify these compromised structural features in all existing structures would be time-consuming and prone to human errors. This study aims to develop an algorithm that utilizes artificial intelligence techniques to automatically pinpoint the structural components within a building's floor plans. The obtained spatial information will be utilized to construct a digital structural model of the building. This information, particularly regarding the distribution of columns in the floor plan, can then be used to conduct preliminary seismic assessments of the building. The study employs various image processing and pattern recognition techniques to enhance detection efficiency and accuracy. The study enables a large-scale evaluation of structural vulnerability for numerous old buildings, providing ample time to arrange for structural retrofitting in those buildings that are at risk of significant damage or collapse during earthquakes.Keywords: structural vulnerability detection, object recognition, seismic capacity assessment, old buildings, artificial intelligence
Procedia PDF Downloads 8916108 Co-Design of Accessible Speech Recognition for Users with Dysarthric Speech
Authors: Elizabeth Howarth, Dawn Green, Sean Connolly, Geena Vabulas, Sara Smolley
Abstract:
Through the EU Horizon 2020 Nuvoic Project, the project team recruited 70 individuals in the UK and Ireland to test the Voiceitt speech recognition app and provide user feedback to developers. The app is designed for people with dysarthric speech, to support communication with unfamiliar people and access to speech-driven technologies such as smart home equipment and smart assistants. Participants with atypical speech, due to a range of conditions such as cerebral palsy, acquired brain injury, Down syndrome, stroke and hearing impairment, were recruited, primarily through organisations supporting disabled people. Most had physical or learning disabilities in addition to dysarthric speech. The project team worked with individuals, their families and local support teams, to provide access to the app, including through additional assistive technologies where needed. Testing was user-led, with participants asked to identify and test use cases most relevant to their daily lives over a period of three months or more. Ongoing technical support and training were provided remotely and in-person throughout the testing period. Structured interviews were used to collect feedback on users' experiences, with delivery adapted to individuals' needs and preferences. Informal feedback was collected through ongoing contact between participants, their families and support teams and the project team. Focus groups were held to collect feedback on specific design proposals. User feedback shared with developers has led to improvements to the user interface and functionality, including faster voice training, simplified navigation, the introduction of gamification elements and of switch access as an alternative to touchscreen access, with other feature requests from users still in development. This work offers a case-study in successful and inclusive co-design with the disabled community.Keywords: co-design, assistive technology, dysarthria, inclusive speech recognition
Procedia PDF Downloads 11016107 On a Generalization of the Spectral Dichotomy Method of a Matrix With Respect to Parabolas
Authors: Mouhamadou Dosso
Abstract:
This paper presents methods of spectral dichotomy of a matrix which compute spectral projectors on the subspace associated with the eigenvalues external to the parabolas described by a general equation. These methods are modifications of the one proposed in [A. N. Malyshev and M. Sadkane, SIAM J. MATRIX ANAL. APPL. 18 (2), 265-278, 1997] which uses the spectral dichotomy method of a matrix with respect to the imaginary axis. Theoretical and algorithmic aspects of the methods are developed. Numerical results obtained by applying methods presented on matrices are reported.Keywords: spectral dichotomy method, spectral projector, eigensubspaces, eigenvalue
Procedia PDF Downloads 9416106 The Recognition of Exclusive Choice of Court Agreements: United Arab Emirates Perspective and the 2005 Hague Convention on Choice of Court Agreements
Authors: Hasan Alrashid
Abstract:
The 2005 Hague Convention seeks to ensure legal certainty and predictability between parties in international business transactions. It harmonies exclusive choice of court agreements at the international level between parties to commercial transactions and to govern the recognition and enforcement of judgments resulting from proceedings based on such agreements to promote international trade and investment. Although the choice of court agreements is significant in international business transactions, the United Arab Emirates refuse to recognise it by Article 24 of the Federal Law No. 11 of 1992 of the Civil Procedure Code. A review of judicial judgments in United Arab Emirates up to the present day has revealed that several cases appeared before the Court in different states of United Arab Emirates regarding the recognition of exclusive choice of court agreements. In all the cases, the courts regarded the exclusive choice of court agreements as a direct assault on state authority and sovereignty and refused categorically to recognize choice of court agreements by refusing to stay proceedings in favor of the foreign chosen court. This has created uncertainty and unpredictability in international business transaction in the United Arab Emirates. In June 2011, the first Gulf Judicial Seminar on Cross-Frontier Legal Cooperation in Civil and Commercial Matters was held in Doha, Qatar. The Permanent Bureau of the Hague Conference attended the conference and invited the states of the Gulf Cooperation Council (GCC) namely, The United Arab Emirates, Bahrain, Saudi Arabia, Oman, Qatar and Kuwait to adopt some of the Hague Conventions, one of which was the Hague Convention on Choice of Court Agreements. One of the recommendations of the conference was that the GCC states should research ‘the benefits of predictability and legal certainty provided by the 2005 Convention on Choice of Court Agreements and its resulting advantages for cross-border trade and investment’ for possible adoption of the Hague Convention. Up to today, no further step has been taken by the any of the GCC states to adapt the Hague Convention nor did they conduct research on the benefits of predictability and legal certainty in international business transactions. This paper will argue that the approach regarding the recognition of choice of court agreements in United Arab Emirates states can be improved in order to help the parties in international business transactions avoid parallel litigation and ensure legal certainty and predictability. The focus will be the uncertainty and gaps regarding the choice of court agreements in the United Arab Emirates states. The Hague Convention on choice of court agreements and the importance of harmonisation of the rules of choice of court agreements at international level will also be discussed. Finally, The feasibility and desirability of recognizing choice of court agreements in United Arab Emirates legal system by becoming a party to the Hague Convention will be evaluated.Keywords: choice of court agreements, party autonomy, public authority, sovereignty
Procedia PDF Downloads 24616105 Challenges and Recommendations for Medical Device Tracking and Traceability in Singapore: A Focus on Nursing Practices
Authors: Zhuang Yiwen
Abstract:
The paper examines the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. One of the major challenges identified is the lack of a standard coding system for medical devices, which makes it difficult to track them effectively. The paper suggests the use of the Unique Device Identifier (UDI) as a single standard for medical devices to improve tracking and reduce errors. The paper also explores the use of barcoding and image recognition to identify and document medical devices in nursing practices. In nursing practices, the use of barcodes for identifying medical devices is common. However, the information contained in these barcodes is often inconsistent, making it challenging to identify which segment contains the model identifier. Moreover, the use of barcodes may be improved with the use of UDI, but many subsidized accessories may still lack barcodes. The paper suggests that the readiness for UDI and barcode standardization requires standardized information, fields, and logic in electronic medical record (EMR), operating theatre (OT), and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. Nursing workflow and data flow also need to be taken into account. The paper also explores the use of image recognition, specifically the Tesseract OCR engine, to identify and document implants in public hospitals due to limitations in barcode scanning. The study found that the solution requires an implant information database and checking output against the database. The solution also requires customization of the algorithm, cropping out objects affecting text recognition, and applying adjustments. The solution requires additional resources and costs for a mobile/hardware device, which may pose space constraints and require maintenance of sterile criteria. The integration with EMR is also necessary, and the solution require changes in the user's workflow. The paper suggests that the long-term use of Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) as a supporting terminology to improve clinical documentation and data exchange in healthcare. SNOMED CT provides a standardized way of documenting and sharing clinical information with respect to procedure, patient and device documentation, which can facilitate interoperability and data exchange. In conclusion, the paper highlights the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. The paper suggests the use of UDI and barcode standardization to improve tracking and reduce errors. It also explores the use of image recognition to identify and document medical devices in nursing practices. The paper emphasizes the importance of standardized information, fields, and logic in EMR, OT, and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. These recommendations could help the Singapore healthcare system to improve tracking and traceability of medical devices and ultimately enhance patient safety.Keywords: medical device tracking, unique device identifier, barcoding and image recognition, systematized nomenclature of medicine clinical terms
Procedia PDF Downloads 7716104 Assessing the Influence of Using Traditional Methods of Construction on Cost and Quality of Building Construction
Authors: Musoke Ivan, Birungi Racheal
Abstract:
The construction trend is characterized by increased use of modern methods yet traditional methods are cheaper in terms of costs, in addition to the benefits it offers to the construction sector, like providing more jobs that could have been worked with the intensive machines. The purpose of this research was to assess the influence of using Traditional methods of construction (TMC) on the costs and quality of building structures and determine the different ways. Traditional methods of construction (TMC) can be applicable and integrated into the construction trend, and propose ways how this can be a success. The study adopted a quantitative method approach targeting various construction professionals like Architects, Quantity surveyors, Engineers, and Construction Managers. Questionnaires and analyses of literature were used to obtain research data and findings. Simple random sampling was used to select 40 construction professionals to which questionnaires were administered. The data was then analyzed using Microsoft Excel. The findings of the research indicate that Traditional methods of construction (TMCs) in Uganda are cheaper in terms of costs, but the quality is still low. This is attributed to a lack of skilled labour and efficient supervision while undertaking tasks leading to low quality. The study identifies strategies that would improve Traditional methods of construction (TMC), which include the employment of skilled manpower and effective supervision. It also identifies the need by stakeholders like the government, clients, and professionals to appreciate Traditional methods of construction (TMCs) and allow for a levelled ground for Traditional Methods of Construction and Modern methods of construction (MMCs).Keywords: traditional methods of construction, integration, cost, quality
Procedia PDF Downloads 6016103 Pattern Recognition Approach Based on Metabolite Profiling Using In vitro Cancer Cell Line
Authors: Amanina Iymia Jeffree, Reena Thriumani, Mohammad Iqbal Omar, Ammar Zakaria, Yumi Zuhanis Has-Yun Hashim, Ali Yeon Md Shakaff
Abstract:
Metabolite profiling is a strategy to be approached in the pattern recognition method focused on three types of cancer cell line that driving the most to death specifically lung, breast, and colon cancer. The purpose of this study was to discriminate the VOCs pattern among cancerous and control group based on metabolite profiling. The sampling was executed utilizing the cell culture technique. All culture flasks were incubated till 72 hours and data collection started after 24 hours. Every running sample took 24 minutes to be completed accordingly. The comparative metabolite patterns were identified by the implementation of headspace-solid phase micro-extraction (HS-SPME) sampling coupled with gas chromatography-mass spectrometry (GCMS). The optimizations of the main experimental variables such as oven temperature and time were evaluated by response surface methodology (RSM) to get the optimal condition. Volatiles were acknowledged through the National Institute of Standards and Technology (NIST) mass spectral database and retention time libraries. To improve the reliability of significance, it is of crucial importance to eliminate background noise which data from 3rd minutes to 17th minutes were selected for statistical analysis. Targeted metabolites, of which were annotated as known compounds with the peak area greater than 0.5 percent were highlighted and subsequently treated statistically. Volatiles produced contain hundreds to thousands of compounds; therefore, it will be optimized by chemometric analysis, such as principal component analysis (PCA) as a preliminary analysis before subjected to a pattern classifier for identification of VOC samples. The volatile organic compound profiling has shown to be significantly distinguished among cancerous and control group based on metabolite profiling.Keywords: in vitro cancer cell line, metabolite profiling, pattern recognition, volatile organic compounds
Procedia PDF Downloads 36716102 Adversarial Attacks and Defenses on Deep Neural Networks
Authors: Jonathan Sohn
Abstract:
Deep neural networks (DNNs) have shown state-of-the-art performance for many applications, including computer vision, natural language processing, and speech recognition. Recently, adversarial attacks have been studied in the context of deep neural networks, which aim to alter the results of deep neural networks by modifying the inputs slightly. For example, an adversarial attack on a DNN used for object detection can cause the DNN to miss certain objects. As a result, the reliability of DNNs is undermined by their lack of robustness against adversarial attacks, raising concerns about their use in safety-critical applications such as autonomous driving. In this paper, we focus on studying the adversarial attacks and defenses on DNNs for image classification. There are two types of adversarial attacks studied which are fast gradient sign method (FGSM) attack and projected gradient descent (PGD) attack. A DNN forms decision boundaries that separate the input images into different categories. The adversarial attack slightly alters the image to move over the decision boundary, causing the DNN to misclassify the image. FGSM attack obtains the gradient with respect to the image and updates the image once based on the gradients to cross the decision boundary. PGD attack, instead of taking one big step, repeatedly modifies the input image with multiple small steps. There is also another type of attack called the target attack. This adversarial attack is designed to make the machine classify an image to a class chosen by the attacker. We can defend against adversarial attacks by incorporating adversarial examples in training. Specifically, instead of training the neural network with clean examples, we can explicitly let the neural network learn from the adversarial examples. In our experiments, the digit recognition accuracy on the MNIST dataset drops from 97.81% to 39.50% and 34.01% when the DNN is attacked by FGSM and PGD attacks, respectively. If we utilize FGSM training as a defense method, the classification accuracy greatly improves from 39.50% to 92.31% for FGSM attacks and from 34.01% to 75.63% for PGD attacks. To further improve the classification accuracy under adversarial attacks, we can also use a stronger PGD training method. PGD training improves the accuracy by 2.7% under FGSM attacks and 18.4% under PGD attacks over FGSM training. It is worth mentioning that both FGSM and PGD training do not affect the accuracy of clean images. In summary, we find that PGD attacks can greatly degrade the performance of DNNs, and PGD training is a very effective way to defend against such attacks. PGD attacks and defence are overall significantly more effective than FGSM methods.Keywords: deep neural network, adversarial attack, adversarial defense, adversarial machine learning
Procedia PDF Downloads 19516101 European Prosecutor's Office: Chances and Threats; Brief to Polish Perspective
Authors: Katarzyna Stoklosa
Abstract:
Introduction: European Public Prosecutor’s Office (EPPO) is an independent office in European Union which was established under the article 86 of the Treaty on the Functioning of the European Union by the Treaty of Lisbon following the method of enhanced cooperation. EPPO is aimed at combating crimes against the EU’s financial interest et fraud against the EU budgets on the one hand, EPPO will give a chance to effective fight with organized criminality, on the other it seems to be a threat for member-states which bound with justice the problem of sovereignty. It is a new institution that will become effective from 2020, which is why it requires prior analysis. Methodology: The author uses statistical and comparative methods by collecting and analyzing the work of current institutions such as Europol, Eurojust, as well as the future impact of EPPO on detection and prosecution of crimes. The author will also conduct questionnaire among students and academic staff involved in the perception of EU institutions and the need to create new entities dealing with inter-agency cooperation in criminal matters. Thanks to these research the author will draw up present ways of cooperation between member-states and changes in fighting with financial crimes which will grow up under new regulation. Major Finding of the Study: Analysis and research show that EPPO is an institution based on the principle of mutual recognition, which often does not work in cooperation between Member States. Distrust and problems with the recognition of judgments of other EU Member States may significantly affect the functioning of EPPO. Poland is not part of the EPPO, because arguments have been raised that the European Public Prosecutor's Office interferes too much with the Member States’ pro-active sovereignty and duplicates competences. The research and analyzes carried out by the author show that EPPO has completely new competences, for example, it may file indictments against perpetrators of financial crimes. However, according to the research carried out by the author, such competences may undermine the sovereignty and the principle of protecting the public order of the EU. Conclusion: After the analysis, it will be possible to set following thesis: EPPO is only possible way to effective fight with organized financial criminality. However in conclusion Polish doubts should not be criticized at all. Institutions as EPPO must properly respect sovereignty of member-states. Even instruments like that cannot provoke political contraventions, because there are no other ways to effective resolving of international criminality problem.Keywords: criminal trial, economic crimes, European Public Prosecutor's Office, European Union
Procedia PDF Downloads 16416100 Impact of Environmental Rule of Law towards Positive Environmental Outcomes in Nigeria
Authors: Kate N. Okeke
Abstract:
The ever-growing needs of man requiring satisfaction have pushed him strongly towards industrialization which has and is still leaving environmental degradation and its attendant negative impacts in its wake. It is, therefore, not surprising that the enjoyment of fundamental rights like food supply, security of lives and property, freedom of worship, health and education have been drastically affected by such degradation. In recognition of the imperative need to protect the environment and human rights, many global instruments and constitutions have recognized the right to a healthy and sustainable environment. Some environmental advocates and quite a number of literatures on the subject matter call for the recognition of environmental rights via rule of law as a vital means of achieving positive outcomes on the subject matter. However, although there are numerous countries with constitutional environmental provisions, most of them such as Nigeria, have shown poor environmental performance. A notable problem is the fact that the constitution which recognizes environmental rights appears in its other provisions to contradict its provisions by making enforceability of the environmental rights unattainable. While adopting a descriptive, analytical, comparative and explanatory study design in reviewing a successful positive environmental outcome via the rule of law, this article argues that rule of law on a balance of scale, weighs more than just environmental rights recognition and therefore should receive more attention by environmental lawyers and advocates. This is because with rule of law, members of a society are sure of getting the most out of the environmental rights existing in their legal system. Members of Niger-Delta communities of Nigeria will benefit from the environmental rights existing in Nigeria. They are exposed to environmental degradation and pollution with effects such as acidic rainfall, pollution of farmlands and clean water sources. These and many more are consequences of oil and gas exploration. It will also pave way for solving the violence between cattle herdsmen and farmers in the Middle Belt and other regions of Nigeria. Their clashes are over natural resource control. Having seen that environmental rule of law is vital to sustainable development, this paper aims to contribute to discussions on how best the vehicle of rule law can be driven towards achieving positive environmental outcomes. This will be in reliance on other enforceable provisions in the Nigerian Constitution. Other domesticated international instruments will also be considered to attain sustainable environment and development.Keywords: environment, rule of law, constitution, sustainability
Procedia PDF Downloads 15616099 Solving Mean Field Problems: A Survey of Numerical Methods and Applications
Authors: Amal Machtalay
Abstract:
In this survey, we aim to review the rapidly growing literature on numerical methods to solve different forms of mean field problems, namely mean field games (MFG), mean field controls (MFC), potential MFGs, and master equations, as well as their corresponding recent applications. Here, we distinguish two families of numerical methods: iterative methods based on mesh generation and those called mesh-free, normally related to neural networking and learning frameworks.Keywords: mean-field games, numerical schemes, partial differential equations, complex systems, machine learning
Procedia PDF Downloads 11316098 Dynamical Models for Enviromental Effect Depuration for Structural Health Monitoring of Bridges
Authors: Francesco Morgan Bono, Simone Cinquemani
Abstract:
This research aims to enhance bridge monitoring by employing innovative techniques that incorporate exogenous factors into the modeling of sensor signals, thereby improving long-term predictability beyond traditional static methods. Using real datasets from two different bridges equipped with Linear Variable Displacement Transducer (LVDT) sensors, the study investigates the fundamental principles governing sensor behavior for more precise long-term forecasts. Additionally, the research evaluates performance on noisy and synthetically damaged data, proposing a residual-based alarm system to detect anomalies in the bridge. In summary, this novel approach combines advanced modeling, exogenous factors, and anomaly detection to extend prediction horizons and improve preemptive damage recognition, significantly advancing structural health monitoring practices.Keywords: structural health monitoring, dynamic models, sindy, railway bridges
Procedia PDF Downloads 3816097 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.Keywords: computer vision, human motion analysis, random forest, machine learning
Procedia PDF Downloads 3716096 A Review of Fractal Dimension Computing Methods Applied to Wear Particles
Authors: Manish Kumar Thakur, Subrata Kumar Ghosh
Abstract:
Various types of particles found in lubricant may be characterized by their fractal dimension. Some of the available methods are: yard-stick method or structured walk method, box-counting method. This paper presents a review of the developments and progress in fractal dimension computing methods as applied to characteristics the surface of wear particles. An overview of these methods, their implementation, their advantages and their limits is also present here. It has been accepted that wear particles contain major information about wear and friction of materials. Morphological analysis of wear particles from a lubricant is a very effective way for machine condition monitoring. Fractal dimension methods are used to characterize the morphology of the found particles. It is very useful in the analysis of complexity of irregular substance. The aim of this review is to bring together the fractal methods applicable for wear particles.Keywords: fractal dimension, morphological analysis, wear, wear particles
Procedia PDF Downloads 49016095 A Relative Entropy Regularization Approach for Fuzzy C-Means Clustering Problem
Authors: Ouafa Amira, Jiangshe Zhang
Abstract:
Clustering is an unsupervised machine learning technique; its aim is to extract the data structures, in which similar data objects are grouped in the same cluster, whereas dissimilar objects are grouped in different clusters. Clustering methods are widely utilized in different fields, such as: image processing, computer vision , and pattern recognition, etc. Fuzzy c-means clustering (fcm) is one of the most well known fuzzy clustering methods. It is based on solving an optimization problem, in which a minimization of a given cost function has been studied. This minimization aims to decrease the dissimilarity inside clusters, where the dissimilarity here is measured by the distances between data objects and cluster centers. The degree of belonging of a data point in a cluster is measured by a membership function which is included in the interval [0, 1]. In fcm clustering, the membership degree is constrained with the condition that the sum of a data object’s memberships in all clusters must be equal to one. This constraint can cause several problems, specially when our data objects are included in a noisy space. Regularization approach took a part in fuzzy c-means clustering technique. This process introduces an additional information in order to solve an ill-posed optimization problem. In this study, we focus on regularization by relative entropy approach, where in our optimization problem we aim to minimize the dissimilarity inside clusters. Finding an appropriate membership degree to each data object is our objective, because an appropriate membership degree leads to an accurate clustering result. Our clustering results in synthetic data sets, gaussian based data sets, and real world data sets show that our proposed model achieves a good accuracy.Keywords: clustering, fuzzy c-means, regularization, relative entropy
Procedia PDF Downloads 25916094 Influence of Procurement Methods on Cost Performance of Building Projects in Gombe State, Nigeria
Authors: S. U. Kunya, S. Abdulkadir, M. A. Anas, L. Z. Adam
Abstract:
Procurement methods is described as systems of contractual arrangements used by the contractor in order to secure the design and construction services based on the stipulated cost and within the required time and quality. Despite that, major projects in the Nigerian construction industry failed because of wrong procurement methods with major consequences leads to cost overrun which needs to find lasting solution. The aim of the study is to evaluate the influence of procurement methods on cost performance of building projects in Gombe State, Nigeria. Study adopts descriptive and explorative design approach. Data were collected through administering of one hundred questionnaire using convenient sampling techniques. Data analyses using percentages, mean value and Anova analysis. Major finding show that more than fifty percent (50%) of procurement methods available are mainly utilized in the study area and the top procurement methods that have high impacts on cost performance as compare with the other methods is project management and direct labour procurement methods. The results of hypothesis’ tests with pvalue 0.12 and 0.07 validated that there was no significant variation in the perception of stakeholders’ on the impacts of procurements methods on cost performance. Therefore, the study concluded that projects management and direct labour are the most appropriate procurement methods that will ensure successful completion of project at stipulated cost in building projects.Keywords: cost, effects, performance, procurement, projects
Procedia PDF Downloads 22416093 A Neural Network Classifier for Identifying Duplicate Image Entries in Real-Estate Databases
Authors: Sergey Ermolin, Olga Ermolin
Abstract:
A Deep Convolution Neural Network with Triplet Loss is used to identify duplicate images in real-estate advertisements in the presence of image artifacts such as watermarking, cropping, hue/brightness adjustment, and others. The effects of batch normalization, spatial dropout, and various convergence methodologies on the resulting detection accuracy are discussed. For comparative Return-on-Investment study (per industry request), end-2-end performance is benchmarked on both Nvidia Titan GPUs and Intel’s Xeon CPUs. A new real-estate dataset from San Francisco Bay Area is used for this work. Sufficient duplicate detection accuracy is achieved to supplement other database-grounded methods of duplicate removal. The implemented method is used in a Proof-of-Concept project in the real-estate industry.Keywords: visual recognition, convolutional neural networks, triplet loss, spatial batch normalization with dropout, duplicate removal, advertisement technologies, performance benchmarking
Procedia PDF Downloads 33816092 Symo-syl: A Meta-Phonological Intervention to Support Italian Pre-Schoolers’ Emergent Literacy Skills
Authors: Tamara Bastianello, Rachele Ferrari, Marinella Majorano
Abstract:
The adoption of the syllabic approach in preschool programmes could support and reinforce meta-phonological awareness and literacy skills in children. The introduction of a meta-phonological intervention in preschool could facilitate the transition to primary school, especially for children with learning fragilities. In the present contribution, we want to investigate the efficacy of "Simo-syl" intervention in enhancing emergent literacy skills in children (especially for reading). Simo-syl is a 12 weeks multimedia programme developed for children to improve their language and communication skills and later literacy development in preschool. During the intervention, Simo-syl, an invented character, leads children in a series of meta-phonological games. Forty-six Italian preschool children (i.e., the Simo-syl group) participated in the programme; seventeen preschool children (i.e., the control group) did not participate in the intervention. Children in the two groups were between 4;10 and 5;9 years. They were assessed on their vocabulary, morpho-syntactical, meta-phonological, phonological, and phono-articulatory skills twice: 1) at the beginning of the last year of the preschool through standardised paper-based assessment tools and 2) one week after the intervention. All children in the Simo-syl group took part in the meta-phonological programme based on the syllabic approach. The intervention lasted 12 weeks (three activities per week; week 1: activities focused on syllable blending and spelling and a first approach to the written code; weeks 2-11: activities focused on syllables recognition; week 12: activities focused on vowels recognition). Very few children (Simo-syl group = 21, control group = 9) were tested again (post-test) one week after the intervention. Before starting the intervention programme, the Simo-syl and the control groups had similar meta-phonological, phonological, lexical skills (all ps > .05). One week after the intervention, a significant difference emerged between the two groups in their meta-phonological skills (syllable blending, p = .029; syllable spelling, p = .032), in their vowel recognition ability (p = .032) and their word reading skills (p = .05). An ANOVA confirmed the effect of the group membership on the developmental growth for the word reading task (F (1,28) = 6.83, p = .014, ηp2 = .196). Taking part in the Simo-syl intervention has a positive effect on the ability to read in preschool children.Keywords: intervention programme, literacy skills, meta-phonological skills, syllabic approach
Procedia PDF Downloads 16216091 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study
Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman
Abstract:
Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.Keywords: artificial neural network, data mining, classification, students’ evaluation
Procedia PDF Downloads 61316090 Localized Meshfree Methods for Solving 3D-Helmholtz Equation
Authors: Reza Mollapourasl, Majid Haghi
Abstract:
In this study, we develop local meshfree methods known as radial basis function-generated finite difference (RBF-FD) method and Hermite finite difference (RBF-HFD) method to design stencil weights and spatial discretization for Helmholtz equation. The convergence and stability of schemes are investigated numerically in three dimensions with irregular shaped domain. These localized meshless methods incorporate the advantages of the RBF method, finite difference and Hermite finite difference methods to handle the ill-conditioning issue that often destroys the convergence rate of global RBF methods. Moreover, numerical illustrations show that the proposed localized RBF type methods are efficient and applicable for problems with complex geometries. The convergence and accuracy of both schemes are compared by solving a test problem.Keywords: radial basis functions, Hermite finite difference, Helmholtz equation, stability
Procedia PDF Downloads 9916089 Age Estimation Using Destructive and Non-Destructive Dental Methods on an Archeological Human Sample from the Poor Claire Nunnery in Brussels, Belgium
Authors: Pilar Cornejo Ulloa, Guy Willems, Steffen Fieuws, Kim Quintelier, Wim Van Neer, Patrick Thevissen
Abstract:
Dental age estimation can be performed both in living and deceased individuals. In anthropology, few studies have tested the reliability of dental age estimation methods complementary to the usually applied osteological methods. Objectives: In this study, destructive and non-destructive dental age estimation methods were applied on an archeological sample in order to compare them with the previously obtained anthropological age estimates. Materials and Methods: One hundred and thirty-four teeth from 24 individuals were analyzed using Kvaal, Kvaal and Solheim, Bang and Ramm, Lamendin, Gustafson, Maples, Dalitz and Johanson’s methods. Results: A high variability and wider age ranges than the ones previously obtained by the anthropologist could be observed. Destructive methods had a slightly higher agreement than the non-destructive. Discussion: Due to the heterogeneity of the sample and the lack of the real age at death, the obtained results were not representative, and it was not possible to suggest one dental age estimation method over another.Keywords: archeology, dental age estimation, forensic anthropology, forensic dentistry
Procedia PDF Downloads 36016088 The Location Problem of Electric Vehicle Charging Stations: A Case Study of Istanbul
Authors: Müjde Erol Genevois, Hatice Kocaman
Abstract:
Growing concerns about the increasing consumption of fossil energy and the improved recognition of environmental protection require sustainable road transportation technology. Electric vehicles (EVs) can contribute to improve environmental sustainability and to solve the energy problem with the right infrastructure. The problem of where to locate electric vehicle charging station can be grouped as decision-making problems because of including many criteria and alternatives that have to be considered simultaneously. The purpose of this paper is to present an integrated AHP and TOPSIS model to rank the optimal sites of EVs charging station in Istanbul, Turkey. Ten different candidate points and three decision criteria are identified. The performances of each candidate points with respect to criteria are obtained according to AHP calculations. These performances are used as an input for TOPSIS method to rank the candidate points. It is obtained accurate and robust results by integrating AHP and TOPSIS methods.Keywords: electric vehicle charging station (EVCS), AHP, TOPSIS, location selection
Procedia PDF Downloads 324