Search results for: hydrological modelling
1524 The Relationship between Land Use Factors and Feeling of Happiness at the Neighbourhood Level
Authors: M. Moeinaddini, Z. Asadi-Shekari, Z. Sultan, M. Zaly Shah
Abstract:
Happiness can be related to everything that can provide a feeling of satisfaction or pleasure. This study tries to consider the relationship between land use factors and feeling of happiness at the neighbourhood level. Land use variables (beautiful and attractive neighbourhood design, availability and quality of shopping centres, sufficient recreational spaces and facilities, and sufficient daily service centres) are used as independent variables and the happiness score is used as the dependent variable in this study. In addition to the land use variables, socio-economic factors (gender, race, marital status, employment status, education, and income) are also considered as independent variables. This study uses the Oxford happiness questionnaire to estimate happiness score of more than 300 people living in six neighbourhoods. The neighbourhoods are selected randomly from Skudai neighbourhoods in Johor, Malaysia. The land use data were obtained by adding related questions to the Oxford happiness questionnaire. The strength of the relationship in this study is found using generalised linear modelling (GLM). The findings of this research indicate that increase in happiness feeling is correlated with an increasing income, more beautiful and attractive neighbourhood design, sufficient shopping centres, recreational spaces, and daily service centres. The results show that all land use factors in this study have significant relationship with happiness but only income, among socio-economic factors, can affect happiness significantly. Therefore, land use factors can affect happiness in Skudai more than socio-economic factors.Keywords: neighbourhood land use, neighbourhood design, happiness, socio-economic factors, generalised linear modelling
Procedia PDF Downloads 1491523 Analyzing the Support to Fisheries in the European Union: Modelling Budgetary Transfers in Wild Fisheries
Authors: Laura Angulo, Petra Salamon, Martin Banse, Frederic Storkamp
Abstract:
Fisheries subsidies are focus on reduce management costs or deliver income benefits to fishers. In 2015, total fishery budgetary transfers in 31 OECD countries represented 35% of their total landing value. However, subsidies to fishing have adverse effects on trade and it has been claimed that they may contribute directly to overfishing. Therefore, this paper analyses to what extend fisheries subsidies may 1) influence capture production facing quotas and 2) affect price dynamics. The study uses the fish module in AGMEMOD (Agriculture Member States Modelling, details see Chantreuil et al. (2012)) which covers eight fish categories (cephalopods; crustaceans; demersal marine fish; pelagic marine fish; molluscs excl. cephalopods; other marine finfish species; freshwater and diadromous fish) for EU member states and other selected countries developed under the SUCCESS project. This model incorporates transfer payments directly linked to fisheries operational costs. As aquaculture and wild fishery are not included within the WTO Agreement on Agriculture, data on fisheries subsidies is obtained from the OECD Fisheries Support Estimates (FSE) database, which provides statistics on budgetary transfers to the fisheries sector. Since support has been moving from budgetary transfers to General Service Support Estimate the last years, subsidies in capture production may not present substantial effects. Nevertheless, they would still show the impact across countries and fish categories within the European Union.Keywords: AGMEMOD, budgetary transfers, EU Member States, fish model, fisheries support estimate
Procedia PDF Downloads 2461522 Modelling the Antecedents of Supply Chain Enablers in Online Groceries Using Interpretive Structural Modelling and MICMAC Analysis
Authors: Rose Antony, Vivekanand B. Khanapuri, Karuna Jain
Abstract:
Online groceries have transformed the way the supply chains are managed. These are facing numerous challenges in terms of product wastages, low margins, long breakeven to achieve and low market penetration to mention a few. The e-grocery chains need to overcome these challenges in order to survive the competition. The purpose of this paper is to carry out a structural analysis of the enablers in e-grocery chains by applying Interpretive Structural Modeling (ISM) and MICMAC analysis in the Indian context. The research design is descriptive-explanatory in nature. The enablers have been identified from the literature and through semi-structured interviews conducted among the managers having relevant experience in e-grocery supply chains. The experts have been contacted through professional/social networks by adopting a purposive snowball sampling technique. The interviews have been transcribed, and manual coding is carried using open and axial coding method. The key enablers are categorized into themes, and the contextual relationship between these and the performance measures is sought from the Industry veterans. Using ISM, the hierarchical model of the enablers is developed and MICMAC analysis identifies the driver and dependence powers. Based on the driver-dependence power the enablers are categorized into four clusters namely independent, autonomous, dependent and linkage. The analysis found that information technology (IT) and manpower training acts as key enablers towards reducing the lead time and enhancing the online service quality. Many of the enablers fall under the linkage cluster viz., frequent software updating, branding, the number of delivery boys, order processing, benchmarking, product freshness and customized applications for different stakeholders, depicting these as critical in online food/grocery supply chains. Considering the perishability nature of the product being handled, the impact of the enablers on the product quality is also identified. Hence, study aids as a tool to identify and prioritize the vital enablers in the e-grocery supply chain. The work is perhaps unique, which identifies the complex relationships among the supply chain enablers in fresh food for e-groceries and linking them to the performance measures. It contributes to the knowledge of supply chain management in general and e-retailing in particular. The approach focus on the fresh food supply chains in the Indian context and hence will be applicable in developing economies context, where supply chains are evolving.Keywords: interpretive structural modelling (ISM), India, online grocery, retail operations, supply chain management
Procedia PDF Downloads 2031521 A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings
Authors: Selim M. Khan, Dustin D. Pearson, Tryggve Rönnqvist, Markus E. Nielsen, Joshua M. Taron, Aaron A. Goodarzi
Abstract:
Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada.Keywords: radon health risk, time-series, deep machine learning, lung cancer, Canada, Sweden
Procedia PDF Downloads 851520 The Role of Parents on Fear Acquisition of Children in COVID-19 Pandemic
Authors: Begum Serim-Yildiz
Abstract:
The aim of this study is to examine the role of parents' emotional and behavioral reactions on fears of children in the COVID-19 pandemic considering Rachman’s Three Pathways Theory. For this purpose, a phenomenological qualitative study was conducted. Thirteen participants living with their children were utilized through criterion and snowball sampling. In semi-structured interviews parents were asked about their own and their children’s beahavioral and emotional reactions in the COVID-19 pandemic, and they were expected to give detailed information about fears of their children before and in pandemic. Firstly, parents were asked about their behavioral and emotional reactions in the COVID-19 pandemic. As behavioral reactions, precautions taken by parents to protect the rest of the family from negative physical and emotional impact of the pandemic were mentioned, while emotional reactions were defined as acquisition of negative emotions like fear, anxiety, and worry. Secondly, parents were asked about their children’s behavioral and emotional reactions. Some of the parents talked about positive behavioral changes such as gaining self-control, while some others explained negative behavioral changes like increased time spent with technological tools. In the emotional changes section, all of the parents explained at least one negative emotion. All of the parents stated that their children had COVID-19 related fears. According to parents’ expressions, fears of children in pandemic were examined in two dimensions. Fears directly related to COVID-19 were fear of virus/microbes, illness or death of someone in family and death and fears. Fears indirectly related to COVID-19 were fear of going out, sleep alone at night, separation, touching stuff outside the home, and cold. Considering existing literature and based on the findings of this study, it can be concluded that children’s modelling experiences have impact on acquisition of negative emotions, especially fear, therefore, preventive interventions involving caregivers should be provided by mental health professionals working with children.Keywords: children’s fears, COVID-19 pandemic, modelling experiences, parents’ reactions
Procedia PDF Downloads 1661519 Understanding the Role of Gas Hydrate Morphology on the Producibility of a Hydrate-Bearing Reservoir
Authors: David Lall, Vikram Vishal, P. G. Ranjith
Abstract:
Numerical modeling of gas production from hydrate-bearing reservoirs requires the solution of various thermal, hydrological, chemical, and mechanical phenomena in a coupled manner. Among the various reservoir properties that influence gas production estimates, the distribution of permeability across the domain is one of the most crucial parameters since it determines both heat transfer and mass transfer. The aspect of permeability in hydrate-bearing reservoirs is particularly complex compared to conventional reservoirs since it depends on the saturation of gas hydrates and hence, is dynamic during production. The dependence of permeability on hydrate saturation is mathematically represented using permeability-reduction models, which are specific to the expected morphology of hydrate accumulations (such as grain-coating or pore-filling hydrates). In this study, we demonstrate the impact of various permeability-reduction models, and consequently, different morphologies of hydrate deposits on the estimates of gas production using depressurization at the reservoir scale. We observe significant differences in produced water volumes and cumulative mass of produced gas between the models, thereby highlighting the uncertainty in production behavior arising from the ambiguity in the prevalent gas hydrate morphology.Keywords: gas hydrate morphology, multi-scale modeling, THMC, fluid flow in porous media
Procedia PDF Downloads 2201518 Stochastic Pi Calculus in Financial Markets: An Alternate Approach to High Frequency Trading
Authors: Jerome Joshi
Abstract:
The paper presents the modelling of financial markets using the Stochastic Pi Calculus model. The Stochastic Pi Calculus model is mainly used for biological applications; however, the feature of this model promotes its use in financial markets, more prominently in high frequency trading. The trading system can be broadly classified into exchange, market makers or intermediary traders and fundamental traders. The exchange is where the action of the trade is executed, and the two types of traders act as market participants in the exchange. High frequency trading, with its complex networks and numerous market participants (intermediary and fundamental traders) poses a difficulty while modelling. It involves the participants to seek the advantage of complex trading algorithms and high execution speeds to carry out large volumes of trades. To earn profits from each trade, the trader must be at the top of the order book quite frequently by executing or processing multiple trades simultaneously. This would require highly automated systems as well as the right sentiment to outperform other traders. However, always being at the top of the book is also not best for the trader, since it was the reason for the outbreak of the ‘Hot – Potato Effect,’ which in turn demands for a better and more efficient model. The characteristics of the model should be such that it should be flexible and have diverse applications. Therefore, a model which has its application in a similar field characterized by such difficulty should be chosen. It should also be flexible in its simulation so that it can be further extended and adapted for future research as well as be equipped with certain tools so that it can be perfectly used in the field of finance. In this case, the Stochastic Pi Calculus model seems to be an ideal fit for financial applications, owing to its expertise in the field of biology. It is an extension of the original Pi Calculus model and acts as a solution and an alternative to the previously flawed algorithm, provided the application of this model is further extended. This model would focus on solving the problem which led to the ‘Flash Crash’ which is the ‘Hot –Potato Effect.’ The model consists of small sub-systems, which can be integrated to form a large system. It is designed in way such that the behavior of ‘noise traders’ is considered as a random process or noise in the system. While modelling, to get a better understanding of the problem, a broader picture is taken into consideration with the trader, the system, and the market participants. The paper goes on to explain trading in exchanges, types of traders, high frequency trading, ‘Flash Crash,’ ‘Hot-Potato Effect,’ evaluation of orders and time delay in further detail. For the future, there is a need to focus on the calibration of the module so that they would interact perfectly with other modules. This model, with its application extended, would provide a basis for researchers for further research in the field of finance and computing.Keywords: concurrent computing, high frequency trading, financial markets, stochastic pi calculus
Procedia PDF Downloads 771517 An Investigation on Opportunities and Obstacles on Implementation of Building Information Modelling for Pre-fabrication in Small and Medium Sized Construction Companies in Germany: A Practical Approach
Authors: Nijanthan Mohan, Rolf Gross, Fabian Theis
Abstract:
The conventional method used in the construction industries often resulted in significant rework since most of the decisions were taken onsite under the pressure of project deadlines and also due to the improper information flow, which results in ineffective coordination. However, today’s architecture, engineering, and construction (AEC) stakeholders demand faster and accurate deliverables, efficient buildings, and smart processes, which turns out to be a tall order. Hence, the building information modelling (BIM) concept was developed as a solution to fulfill the above-mentioned necessities. Even though BIM is successfully implemented in most of the world, it is still in the early stages in Germany, since the stakeholders are sceptical of its reliability and efficiency. Due to the huge capital requirement, the small and medium-sized construction companies are still reluctant to implement BIM workflow in their projects. The purpose of this paper is to analyse the opportunities and obstacles to implementing BIM for prefabrication. Among all other advantages of BIM, pre-fabrication is chosen for this paper because it plays a vital role in creating an impact on time as well as cost factors of a construction project. The positive impact of prefabrication can be explicitly observed by the project stakeholders and participants, which enables the breakthrough of the skepticism factor among the small scale construction companies. The analysis consists of the development of a process workflow for implementing prefabrication in building construction, followed by a practical approach, which was executed with two case studies. The first case study represents on-site prefabrication, and the second was done for off-site prefabrication. It was planned in such a way that the first case study gives a first-hand experience for the workers at the site on the BIM model so that they can make much use of the created BIM model, which is a better representation compared to the traditional 2D plan. The main aim of the first case study is to create a belief in the implementation of BIM models, which was succeeded by the execution of offshore prefabrication in the second case study. Based on the case studies, the cost and time analysis was made, and it is inferred that the implementation of BIM for prefabrication can reduce construction time, ensures minimal or no wastes, better accuracy, less problem-solving at the construction site. It is also observed that this process requires more planning time, better communication, and coordination between different disciplines such as mechanical, electrical, plumbing, architecture, etc., which was the major obstacle for successful implementation. This paper was carried out in the perspective of small and medium-sized mechanical contracting companies for the private building sector in Germany.Keywords: building information modelling, construction wastes, pre-fabrication, small and medium sized company
Procedia PDF Downloads 1131516 Review of Hydrologic Applications of Conceptual Models for Precipitation-Runoff Process
Authors: Oluwatosin Olofintoye, Josiah Adeyemo, Gbemileke Shomade
Abstract:
The relationship between rainfall and runoff is an important issue in surface water hydrology therefore the understanding and development of accurate rainfall-runoff models and their applications in water resources planning, management and operation are of paramount importance in hydrological studies. This paper reviews some of the previous works on the rainfall-runoff process modeling. The hydrologic applications of conceptual models and artificial neural networks (ANNs) for the precipitation-runoff process modeling were studied. Gradient training methods such as error back-propagation (BP) and evolutionary algorithms (EAs) are discussed in relation to the training of artificial neural networks and it is shown that application of EAs to artificial neural networks training could be an alternative to other training methods. Therefore, further research interest to exploit the abundant expert knowledge in the area of artificial intelligence for the solution of hydrologic and water resources planning and management problems is needed.Keywords: artificial intelligence, artificial neural networks, evolutionary algorithms, gradient training method, rainfall-runoff model
Procedia PDF Downloads 4541515 Numerical and Experimental Investigation of Fracture Mechanism in Paintings on Wood
Authors: Mohammad Jamalabadi, Noemi Zabari, Lukasz Bratasz
Abstract:
Panel paintings -complex multi-layer structures consisting of wood support and a paint layer composed of a preparatory layer of gesso, paints, and varnishes- are among the category of cultural objects most vulnerable to relative humidity fluctuations and frequently found in museum collections. The current environmental specifications in museums have been derived using the criterion of crack initiation in an undamaged, usually new gesso layer laid on wood. In reality, historical paintings exhibit complex crack patterns called craquelures. The present paper analyses the structural response of a paint layer with a virtual network of rectangular cracks under environmental loadings using a three-dimensional model of a panel painting. Two modes of loading are considered -one induced by one-dimensional moisture response of wood support, termed the tangential loading, and the other isotropic induced by drying shrinkage of the gesso layer. The superposition of the two modes is also analysed. The modelling showed that minimum distances between cracks parallel to the wood grain depended on the gesso stiffness under the tangential loading. In spite of a non-zero Poisson’s ratio, gesso cracks perpendicular to the wood grain could not be generated by the moisture response of wood support. The isotropic drying shrinkage of gesso produced cracks that were almost evenly spaced in both directions. The modelling results were cross-checked with crack patterns obtained on a mock-up of a panel painting exposed to a number of extreme environmental variations in an environmental chamber.Keywords: fracture saturation, surface cracking, paintings on wood, wood panels
Procedia PDF Downloads 2671514 Investigation of Detectability of Orbital Objects/Debris in Geostationary Earth Orbit by Microwave Kinetic Inductance Detectors
Authors: Saeed Vahedikamal, Ian Hepburn
Abstract:
Microwave Kinetic Inductance Detectors (MKIDs) are considered as one of the most promising photon detectors of the future in many Astronomical applications such as exoplanet detections. The MKID advantages stem from their single photon sensitivity (ranging from UV to optical and near infrared), photon energy resolution and high temporal capability (~microseconds). There has been substantial progress in the development of these detectors and MKIDs with Megapixel arrays is now possible. The unique capability of recording an incident photon and its energy (or wavelength) while also registering its time of arrival to within a microsecond enables an array of MKIDs to produce a four-dimensional data block of x, y, z and t comprising x, y spatial, z axis per pixel spectral and t axis per pixel which is temporal. This offers the possibility that the spectrum and brightness variation for any detected piece of space debris as a function of time might offer a unique identifier or fingerprint. Such a fingerprint signal from any object identified in multiple detections by different observers has the potential to determine the orbital features of the object and be used for their tracking. Modelling performed so far shows that with a 20 cm telescope located at an Astronomical observatory (e.g. La Palma, Canary Islands) we could detect sub cm objects at GEO. By considering a Lambertian sphere with a 10 % reflectivity (albedo of the Moon) we anticipate the following for a GEO object: 10 cm object imaged in a 1 second image capture; 1.2 cm object for a 70 second image integration or 0.65 cm object for a 4 minute image integration. We present details of our modelling and the potential instrument for a dedicated GEO surveillance system.Keywords: space debris, orbital debris, detection system, observation, microwave kinetic inductance detectors, MKID
Procedia PDF Downloads 961513 Application of Global Predictive Real Time Control Strategy to Improve Flooding Prevention Performance of Urban Stormwater Basins
Authors: Shadab Shishegar, Sophie Duchesne, Genevieve Pelletier
Abstract:
Sustainability as one of the key elements of Smart cities, can be realized by employing Real Time Control Strategies for city’s infrastructures. Nowadays Stormwater management systems play an important role in mitigating the impacts of urbanization on natural hydrological cycle. These systems can be managed in such a way that they meet the smart cities standards. In fact, there is a huge potential for sustainable management of urban stormwater and also its adaptability to global challenges like climate change. Hence, a dynamically managed system that can adapt itself to instability of the environmental conditions is desirable. A Global Predictive Real Time Control approach is proposed in this paper to optimize the performance of stormwater management basins in terms of flooding prevention. To do so, a mathematical optimization model is developed then solved using Genetic Algorithm (GA). Results show an improved performance at system-level for the stormwater basins in comparison to static strategy.Keywords: environmental sustainability, optimization, real time control, storm water management
Procedia PDF Downloads 1771512 Fast Aerodynamic Evaluation of Transport Aircraft in Early Phases
Authors: Xavier Bertrand, Alexandre Cayrel
Abstract:
The early phase of an aircraft development is instrumental as it really drives the potential of a new concept. Any weakness in the high-level design (wing planform, moveable surfaces layout etc.) will be extremely difficult and expensive to recover later in the aircraft development process. Aerodynamic evaluation in this very early development phase is driven by two main criteria: a short lead-time to allow quick iterations of the geometrical design, and a high quality of the calculations to get an accurate & reliable assessment of the current status. These two criteria are usually quite contradictory. Actually, short lead time of a couple of hours from end-to-end can be obtained with very simple tools (semi-empirical methods for instance) although their accuracy is limited, whereas higher quality calculations require heavier/more complex tools, which obviously need more complex inputs as well, and a significantly longer lead time. At this point, the choice has to be done between accuracy and lead-time. A brand new approach has been developed within Airbus, aiming at obtaining quickly high quality evaluations of the aerodynamic of an aircraft. This methodology is based on a joint use of Surrogate Modelling and a lifting line code. The Surrogate Modelling is used to get the wing sections characteristics (e.g. lift coefficient vs. angle of attack), whatever the airfoil geometry, the status of the moveable surfaces (aileron/spoilers) or the high-lift devices deployment. From these characteristics, the lifting line code is used to get the 3D effects on the wing whatever the flow conditions (low/high Mach numbers etc.). This methodology has been applied successfully to a concept of medium range aircraft.Keywords: aerodynamics, lifting line, surrogate model, CFD
Procedia PDF Downloads 3591511 Assessment of a Coupled Geothermal-Solar Thermal Based Hydrogen Production System
Authors: Maryam Hamlehdar, Guillermo A. Narsilio
Abstract:
To enhance the feasibility of utilising geothermal hot sedimentary aquifers (HSAs) for clean hydrogen production, one approach is the implementation of solar-integrated geothermal energy systems. This detailed modelling study conducts a thermo-economic assessment of an advanced Organic Rankine Cycle (ORC)-based hydrogen production system that uses low-temperature geothermal reservoirs, with a specific focus on hot sedimentary aquifers (HSAs) over a 30-year period. In the proposed hybrid system, solar-thermal energy is used to raise the water temperature extracted from the geothermal production well. This temperature increase leads to a higher steam output, powering the turbine and subsequently enhancing the electricity output for running the electrolyser. Thermodynamic modeling of a parabolic trough solar (PTS) collector is developed and integrated with modeling for a geothermal-based configuration. This configuration includes a closed regenerator cycle (CRC), proton exchange membrane (PEM) electrolyser, and thermoelectric generator (TEG). Following this, the study investigates the impact of solar energy use on the temperature enhancement of the geothermal reservoir. It assesses the resulting consequences on the lifecycle performance of the hydrogen production system in comparison with a standalone geothermal system. The results indicate that, with the appropriate solar collector area, a combined solar-geothermal hydrogen production system outperforms a standalone geothermal system in both cost and rate of production. These findings underscore a solar-assisted geothermal hybrid system holds the potential to generate lower-cost hydrogen with enhanced efficiency, thereby boosting the appeal of numerous low to medium-temperature geothermal sources for hydrogen production.Keywords: clean hydrogen production, integrated solar-geothermal, low-temperature geothermal energy, numerical modelling
Procedia PDF Downloads 681510 Use of Cassava Waste and Its Energy Potential
Authors: I. Inuaeyen, L. Phil, O. Eni
Abstract:
Fossil fuels have been the main source of global energy for many decades, accounting for about 80% of global energy need. This is beginning to change however with increasing concern about greenhouse gas emissions which comes mostly from fossil fuel combustion. Greenhouse gases such as carbon dioxide are responsible for stimulating climate change. As a result, there has been shift towards more clean and renewable energy sources of energy as a strategy for stemming greenhouse gas emission into the atmosphere. The production of bio-products such as bio-fuel, bio-electricity, bio-chemicals, and bio-heat etc. using biomass materials in accordance with the bio-refinery concept holds a great potential for reducing high dependence on fossil fuel and their resources. The bio-refinery concept promotes efficient utilisation of biomass material for the simultaneous production of a variety of products in order to minimize or eliminate waste materials. This will ultimately reduce greenhouse gas emissions into the environment. In Nigeria, cassava solid waste from cassava processing facilities has been identified as a vital feedstock for bio-refinery process. Cassava is generally a staple food in Nigeria and one of the most widely cultivated foodstuff by farmers across Nigeria. As a result, there is an abundant supply of cassava waste in Nigeria. In this study, the aim is to explore opportunities for converting cassava waste to a range of bio-products such as butanol, ethanol, electricity, heat, methanol, furfural etc. using a combination of biochemical, thermochemical and chemical conversion routes. . The best process scenario will be identified through the evaluation of economic analysis, energy efficiency, life cycle analysis and social impact. The study will be carried out by developing a model representing different process options for cassava waste conversion to useful products. The model will be developed using Aspen Plus process simulation software. Process economic analysis will be done using Aspen Icarus software. So far, comprehensive survey of literature has been conducted. This includes studies on conversion of cassava solid waste to a variety of bio-products using different conversion techniques, cassava waste production in Nigeria, modelling and simulation of waste conversion to useful products among others. Also, statistical distribution of cassava solid waste production in Nigeria has been established and key literatures with useful parameters for developing different cassava waste conversion process has been identified. In the future work, detailed modelling of the different process scenarios will be carried out and the models validated using data from literature and demonstration plants. A techno-economic comparison of the various process scenarios will be carried out to identify the best scenario using process economics, life cycle analysis, energy efficiency and social impact as the performance indexes.Keywords: bio-refinery, cassava waste, energy, process modelling
Procedia PDF Downloads 3731509 High Resolution Sandstone Connectivity Modelling: Implications for Outcrop Geological and Its Analog Studies
Authors: Numair Ahmed Siddiqui, Abdul Hadi bin Abd Rahman, Chow Weng Sum, Wan Ismail Wan Yousif, Asif Zameer, Joel Ben-Awal
Abstract:
Advances in data capturing from outcrop studies have made possible the acquisition of high-resolution digital data, offering improved and economical reservoir modelling methods. Terrestrial laser scanning utilizing LiDAR (Light detection and ranging) provides a new method to build outcrop based reservoir models, which provide a crucial piece of information to understand heterogeneities in sandstone facies with high-resolution images and data set. This study presents the detailed application of outcrop based sandstone facies connectivity model by acquiring information gathered from traditional fieldwork and processing detailed digital point-cloud data from LiDAR to develop an intermediate small-scale reservoir sandstone facies model of the Miocene Sandakan Formation, Sabah, East Malaysia. The software RiScan pro (v1.8.0) was used in digital data collection and post-processing with an accuracy of 0.01 m and point acquisition rate of up to 10,000 points per second. We provide an accurate and descriptive workflow to triangulate point-clouds of different sets of sandstone facies with well-marked top and bottom boundaries in conjunction with field sedimentology. This will provide highly accurate qualitative sandstone facies connectivity model which is a challenge to obtain from subsurface datasets (i.e., seismic and well data). Finally, by applying this workflow, we can build an outcrop based static connectivity model, which can be an analogue to subsurface reservoir studies.Keywords: LiDAR, outcrop, high resolution, sandstone faceis, connectivity model
Procedia PDF Downloads 2261508 Decision Support System for the Management of the Shandong Peninsula, China
Authors: Natacha Fery, Guilherme L. Dalledonne, Xiangyang Zheng, Cheng Tang, Roberto Mayerle
Abstract:
A Decision Support System (DSS) for supporting decision makers in the management of the Shandong Peninsula has been developed. Emphasis has been given to coastal protection, coastal cage aquaculture and harbors. The investigations were done in the framework of a joint research project funded by the German Ministry of Education and Research (BMBF) and the Chinese Academy of Sciences (CAS). In this paper, a description of the DSS, the development of its components, and results of its application are presented. The system integrates in-situ measurements, process-based models, and a database management system. Numerical models for the simulation of flow, waves, sediment transport and morphodynamics covering the entire Bohai Sea are set up based on the Delft3D modelling suite (Deltares). Calibration and validation of the models were realized based on the measurements of moored Acoustic Doppler Current Profilers (ADCP) and High Frequency (HF) radars. In order to enable cost-effective and scalable applications, a database management system was developed. It enhances information processing, data evaluation, and supports the generation of data products. Results of the application of the DSS to the management of coastal protection, coastal cage aquaculture and harbors are presented here. Model simulations covering the most severe storms observed during the last decades were carried out leading to an improved understanding of hydrodynamics and morphodynamics. Results helped in the identification of coastal stretches subjected to higher levels of energy and improved support for coastal protection measures.Keywords: coastal protection, decision support system, in-situ measurements, numerical modelling
Procedia PDF Downloads 1951507 Combination of Modelling and Environmental Life Cycle Assessment Approach for Demand Driven Biogas Production
Authors: Juan A. Arzate, Funda C. Ertem, M. Nicolas Cruz-Bournazou, Peter Neubauer, Stefan Junne
Abstract:
— One of the biggest challenges the world faces today is global warming that is caused by greenhouse gases (GHGs) coming from the combustion of fossil fuels for energy generation. In order to mitigate climate change, the European Union has committed to reducing GHG emissions to 80–95% below the level of the 1990s by the year 2050. Renewable technologies are vital to diminish energy-related GHG emissions. Since water and biomass are limited resources, the largest contributions to renewable energy (RE) systems will have to come from wind and solar power. Nevertheless, high proportions of fluctuating RE will present a number of challenges, especially regarding the need to balance the variable energy demand with the weather dependent fluctuation of energy supply. Therefore, biogas plants in this content would play an important role, since they are easily adaptable. Feedstock availability varies locally or seasonally; however there is a lack of knowledge in how biogas plants should be operated in a stable manner by local feedstock. This problem may be prevented through suitable control strategies. Such strategies require the development of convenient mathematical models, which fairly describe the main processes. Modelling allows us to predict the system behavior of biogas plants when different feedstocks are used with different loading rates. Life cycle assessment (LCA) is a technique for analyzing several sides from evolution of a product till its disposal in an environmental point of view. It is highly recommend to use as a decision making tool. In order to achieve suitable strategies, the combination of a flexible energy generation provided by biogas plants, a secure production process and the maximization of the environmental benefits can be obtained by the combination of process modelling and LCA approaches. For this reason, this study focuses on the biogas plant which flexibly generates required energy from the co-digestion of maize, grass and cattle manure, while emitting the lowest amount of GHG´s. To achieve this goal AMOCO model was combined with LCA. The program was structured in Matlab to simulate any biogas process based on the AMOCO model and combined with the equations necessary to obtain climate change, acidification and eutrophication potentials of the whole production system based on ReCiPe midpoint v.1.06 methodology. Developed simulation was optimized based on real data from operating biogas plants and existing literature research. The results prove that AMOCO model can successfully imitate the system behavior of biogas plants and the necessary time required for the process to adapt in order to generate demanded energy from available feedstock. Combination with LCA approach provided opportunity to keep the resulting emissions from operation at the lowest possible level. This would allow for a prediction of the process, when the feedstock utilization supports the establishment of closed material circles within a smart bio-production grid – under the constraint of minimal drawbacks for the environment and maximal sustainability.Keywords: AMOCO model, GHG emissions, life cycle assessment, modelling
Procedia PDF Downloads 1881506 Influence of Reinforcement Stiffness on the Performance of Back-to-Back Reinforced Earth Wall upon Rainwater Infiltration
Authors: Gopika Rajagopal, Sudheesh Thiyyakkandi
Abstract:
Back-to-back reinforced earth (RE) walls are extensively used in these days as bridge abutments and highway ramps, owing to their cost efficiency and ease of construction. High quality select fill is the most suitable backfill material due to its excellent engineering properties and constructability. However, industries are compelled to use low quality, locally available soil because of its ample availability on site. However, several failure cases of such walls are reported, especially subsequent to rainfall events. The stiffness of reinforcement is one of the major factors affecting the performance of RE walls. The present study focused on analyzing the effect of reinforcement stiffness on the performance of complete select fill, complete marginal fill, and hybrid-fill (i.e., combination of select and marginal fills) back-to-back RE walls, immediately after construction and upon rainwater infiltration through finite element modelling. A constant width to height (W/H) ratio of 3 and height (H) of 6 m was considered for the numerical analysis and the stiffness of reinforcement layers was varied from 500 kN/m to 10000 kN/m. Results showed that reinforcement stiffness had a noticeable influence on the response of RE wall, subsequent to construction as well as rainwater infiltration. Facing displacement was found to decrease and maximum reinforcement tension and factor of safety were observed to increase with increasing the stiffness of reinforcement. However, beyond a stiffness of 5000 kN/m, no significant reduction in facing displacement was observed. The behavior of fully marginal fill wall considered in this study was found to be reasonable even after rainwater infiltration when the high stiffness reinforcement layers are used.Keywords: back-to-back reinforced earth wall, finite element modelling, rainwater infiltration, reinforcement stiffness
Procedia PDF Downloads 1551505 A Comprehensive Study and Evaluation on Image Fashion Features Extraction
Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen
Abstract:
Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.Keywords: convolutional neural network, feature representation, image processing, machine modelling
Procedia PDF Downloads 1391504 A Review on the Development and Challenges of Green Roof Systems in Malaysia
Authors: M. F. Chow, M. F. Abu Bakar
Abstract:
Green roof system is considered a relatively new concept in Malaysia even though it has been implemented widely in the developed countries. Generally, green roofs provide many benefits such as enhancing aesthetical quality of the built environment, reduce urban heat island effect, reduce energy consumption, improve stormwater attenuation, and reduce noise pollution. A better understanding on the implementation of green roof system in Malaysia is crucial, as Malaysia’s climate is different if compared with the climate in temperate countries where most of the green roof studies have been conducted. This study has concentrated on the technical aspect of green roof system which focuses on i) types of plants and method of planting; ii) engineering design for green roof system; iii) its hydrological performance on reducing stormwater runoff; and iv) benefits of green roofs with respect to energy. Literature review has been conducted to identify the development and obstacles associated with green roofs systems in Malaysia. The study had identified the challenges and potentials of green roofs development in Malaysia. This study also provided the recommendations on standard design and strategies on the implementation of green roofs in Malaysia in the near future.Keywords: engineering design, green roof, sustainable development, tropical countries
Procedia PDF Downloads 4321503 The Potential in the Use of Building Information Modelling and Life-Cycle Assessment for Retrofitting Buildings: A Study Based on Interviews with Experts in Both Fields
Authors: Alex Gonzalez Caceres, Jan Karlshøj, Tor Arvid Vik
Abstract:
Life cycle of residential buildings are expected to be several decades, 40% of European residential buildings have inefficient energy conservation measure. The existing building represents 20-40% of the energy use and the CO₂ emission. Since net zero energy buildings are a short-term goal, (should be achieved by EU countries after 2020), is necessary to plan the next logical step, which is to prepare the existing outdated stack of building to retrofit them into an energy efficiency buildings. In order to accomplish this, two specialize and widespread tool can be used Building Information Modelling (BIM) and life-cycle assessment (LCA). BIM and LCA are tools used by a variety of disciplines; both are able to represent and analyze the constructions in different stages. The combination of these technologies could improve greatly the retrofitting techniques. The incorporation of the carbon footprint, introducing a single database source for different material analysis. To this is added the possibility of considering different analysis approaches such as costs and energy saving. Is expected with these measures, enrich the decision-making. The methodology is based on two main activities; the first task involved the collection of data this is accomplished by literature review and interview with experts in the retrofitting field and BIM technologies. The results of this task are presented as an evaluation checklist of BIM ability to manage data and improve decision-making in retrofitting projects. The last activity involves an evaluation using the results of the previous tasks, to check how far the IFC format can support the requirements by each specialist, and its uses by third party software. The result indicates that BIM/LCA have a great potential to improve the retrofitting process in existing buildings, but some modification must be done in order to meet the requirements of the specialists for both, retrofitting and LCA evaluators.Keywords: retrofitting, BIM, LCA, energy efficiency
Procedia PDF Downloads 2191502 Examining Motivational Dynamics and L2 Learning Transitions of Air Cadets Between Year One and Year Two: A Retrodictive Qualitative Modelling Approach
Authors: Kanyaporn Sommeechai
Abstract:
Air cadets who aspire to become military pilots upon graduation undergo rigorous training at military academies. As first-year cadets are akin to civilian freshmen, they encounter numerous challenges within the seniority-based military academy system. Imposed routines, such as mandatory morning runs and restrictions on mobile phone usage for two semesters, have the potential to impact their learning process and motivation to study, including second language (L2) acquisition. This study aims to investigate the motivational dynamics and L2 learning transitions experienced by air cadets. To achieve this, a Retrodictive Qualitative Modelling approach will be employed, coupled with the adaptation of the three-barrier structure encompassing institutional factors, situational factors, and dispositional factors. Semi-structured interviews will be conducted to gather rich qualitative data. By analyzing and interpreting the collected data, this research seeks to shed light on the motivational factors that influence air cadets' L2 learning journey. The three-barrier structure will provide a comprehensive framework to identify and understand the institutional, situational, and dispositional factors that may impede or facilitate their motivation and language learning progress. Moreover, the study will explore how these factors interact and shape cadets' motivation and learning experiences. The outcomes of this research will yield fundamental data that can inform strategies and interventions to enhance the motivation and language learning outcomes of air cadets. By better understanding their motivational dynamics and transitions, educators and institutions can create targeted initiatives, tailored pedagogical approaches, and supportive environments that effectively inspire and engage air cadets as L2 learners.Keywords: second language, education, motivational dynamics, learning transitions
Procedia PDF Downloads 691501 The Comparison between Modelled and Measured Nitrogen Dioxide Concentrations in Cold and Warm Seasons in Kaunas
Authors: A. Miškinytė, A. Dėdelė
Abstract:
Road traffic is one of the main sources of air pollution in urban areas associated with adverse effects on human health and environment. Nitrogen dioxide (NO2) is considered as traffic-related air pollutant, which concentrations tend to be higher near highways, along busy roads and in city centres and exceedances are mainly observed in air quality monitoring stations located close to traffic. Atmospheric dispersion models can be used to examine emissions from many various sources and to predict the concentration of pollutants emitted from these sources into the atmosphere. The study aim was to compare modelled concentrations of nitrogen dioxide using ADMS-Urban dispersion model with air quality monitoring network in cold and warm seasons in Kaunas city. Modelled average seasonal concentrations of nitrogen dioxide for 2011 year have been verified with automatic air quality monitoring data from two stations in the city. Traffic station is located near high traffic street in industrial district and background station far away from the main sources of nitrogen dioxide pollution. The modelling results showed that the highest nitrogen dioxide concentration was modelled and measured in station located near intensive traffic street, both in cold and warm seasons. Modelled and measured nitrogen dioxide concentration was respectively 25.7 and 25.2 µg/m3 in cold season and 15.5 and 17.7 µg/m3 in warm season. While the lowest modelled and measured NO2 concentration was determined in background monitoring station, respectively 12.2 and 13.3 µg/m3 in cold season and 6.1 and 7.6 µg/m3 in warm season. The difference between monitoring station located near high traffic street and background monitoring station showed that better agreement between modelled and measured NO2 concentration was observed at traffic monitoring station.Keywords: air pollution, nitrogen dioxide, modelling, ADMS-Urban model
Procedia PDF Downloads 4081500 Stochastic Richelieu River Flood Modeling and Comparison of Flood Propagation Models: WMS (1D) and SRH (2D)
Authors: Maryam Safrai, Tewfik Mahdi
Abstract:
This article presents the stochastic modeling of the Richelieu River flood in Quebec, Canada, occurred in the spring of 2011. With the aid of the one-dimensional Watershed Modeling System (WMS (v.10.1) and HEC-RAS (v.4.1) as a flood simulator, the delineation of the probabilistic flooded areas was considered. Based on the Monte Carlo method, WMS (v.10.1) delineated the probabilistic flooded areas with corresponding occurrence percentages. Furthermore, results of this one-dimensional model were compared with the results of two-dimensional model (SRH-2D) for the evaluation of efficiency and precision of each applied model. Based on this comparison, computational process in two-dimensional model is longer and more complicated versus brief one-dimensional one. Although, two-dimensional models are more accurate than one-dimensional method, but according to existing modellers, delineation of probabilistic flooded areas based on Monte Carlo method is achievable via one-dimensional modeler. The applied software in this case study greatly responded to verify the research objectives. As a result, flood risk maps of the Richelieu River with the two applied models (1d, 2d) could elucidate the flood risk factors in hydrological, hydraulic, and managerial terms.Keywords: flood modeling, HEC-RAS, model comparison, Monte Carlo simulation, probabilistic flooded area, SRH-2D, WMS
Procedia PDF Downloads 1401499 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level
Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar
Abstract:
Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.Keywords: machine learning, hydro-gravimetry, ground water level, predictive model
Procedia PDF Downloads 1271498 Multi-Particle Finite Element Modelling Simulation Based on Cohesive Zone Method of Cold Compaction Behavior of Laminar Al and NaCl Composite Powders
Authors: Yanbing Feng, Deqing Mei, Yancheng Wang, Zichen Chen
Abstract:
With the advantage of low volume density, high specific surface area, light weight and good permeability, porous aluminum material has the potential to be used in automotive, railway, chemistry and construction industries, etc. A layered powder sintering and dissolution method were developed to fabricate the porous surface Al structure with high efficiency. However, the densification mechanism during the cold compaction of laminar composite powders is still unclear. In this study, multi particle finite element modelling (MPFEM) based on the cohesive zone method (CZM) is used to simulate the cold compaction behavior of laminar Al and NaCl composite powders. To obtain its densification mechanism, the macro and micro properties of final compacts are characterized and analyzed. The robustness and accuracy of the numerical model is firstly verified by experimental results and data fitting. The results indicate that the CZM-based multi particle FEM is an effective way to simulate the compaction of the laminar powders and the fracture process of the NaCl powders. In the compaction of the laminar powders, the void is mainly filled by the particle rearrangement, plastic deformation of Al powders and brittle fracture of NaCl powders. Large stress is mainly concentrated within the NaCl powers and the contact force network is formed. The Al powder near the NaCl powder or the mold has larger stress distribution on its contact surface. Therefore, the densification process of cold compaction of laminar Al and NaCl composite powders is successfully analyzed by the CZM-based multi particle FEM.Keywords: cold compaction, cohesive zone, multi-particle FEM, numerical modeling, powder forming
Procedia PDF Downloads 1511497 Experimental Study on Modified Double Slope Solar Still and Modified Basin Type Double Slope Multiwick Solar Still
Authors: Piyush Pal, Rahul Dev
Abstract:
Water is essential for life and fresh water is a finite resource that is becoming scarce day by day even though it is recycled by hydrological cycle. The fresh water reserves are being polluted due to expanding irrigation, industries, urban population and its development. Contaminated water leads to several health problems. With the increasing demand of fresh water, solar distillation is an alternate solution which uses solar energy to evaporate water and then to condense it, thereby collecting distilled water within or outside the same system to use it as potable water. The structure that houses the process is known as a 'solar still'. In this paper, ‘Modified double slope solar still (MDSSS)’ & 'Modified double slope basin type multiwick solar still (MDSBMSS)' have been designed to convert saline, brackish water into drinking water. In this work two different modified solar stills are fabricated to study the performance of these solar stills. For modification of solar stills, Fibre Reinforced Plastic (FRP) and Acrylic sheets are used. The experiments in MDSBMSS and MDSSS was carried on 10 September 2015 & 5 November 2015 respectively. Performances of the stills were investigated. The amount of distillate has been found 3624 Ml/day in MDSBMSS on 10 September 2015 and 2400 Ml/day in MDSSS on 5 November 2015.Keywords: contaminated water, conventional solar still, modified solar still, wick
Procedia PDF Downloads 4321496 Service Interactions Coordination Using a Declarative Approach: Focuses on Deontic Rule from Semantics of Business Vocabulary and Rules Models
Authors: Nurulhuda A. Manaf, Nor Najihah Zainal Abidin, Nur Amalina Jamaludin
Abstract:
Coordinating service interactions are a vital part of developing distributed applications that are built up as networks of autonomous participants, e.g., software components, web services, online resources, involve a collaboration between a diverse number of participant services on different providers. The complexity in coordinating service interactions reflects how important the techniques and approaches require for designing and coordinating the interaction between participant services to ensure the overall goal of a collaboration between participant services is achieved. The objective of this research is to develop capability of steering a complex service interaction towards a desired outcome. Therefore, an efficient technique for modelling, generating, and verifying the coordination of service interactions is developed. The developed model describes service interactions using service choreographies approach and focusing on a declarative approach, advocating an Object Management Group (OMG) standard, Semantics of Business Vocabulary and Rules (SBVR). This model, namely, SBVR model for service choreographies focuses on a declarative deontic rule expressing both obligation and prohibition, which can be more useful in working with coordinating service interactions. The generated SBVR model is then be formulated and be transformed into Alloy model using Alloy Analyzer for verifying the generated SBVR model. The transformation of SBVR into Alloy allows to automatically generate the corresponding coordination of service interactions (service choreography), hence producing an immediate instance of execution that satisfies the constraints of the specification and verifies whether a specific request can be realised in the given choreography in the generated choreography.Keywords: service choreography, service coordination, behavioural modelling, complex interactions, declarative specification, verification, model transformation, semantics of business vocabulary and rules, SBVR
Procedia PDF Downloads 1541495 Modelling the Dynamics and Optimal Control Strategies of Terrorism within the Southern Borno State Nigeria
Authors: Lubem Matthew Kwaghkor
Abstract:
Terrorism, which remains one of the largest threats faced by various nations and communities around the world, including Nigeria, is the calculated use of violence to create a general climate of fear in a population to attain particular goals that might be political, religious, or economical. Several terrorist groups are currently active in Nigeria, leading to attacks on both civil and military targets. Among these groups, Boko Haram is the deadliest terrorist group operating majorly in Borno State. The southern part of Borno State in North-Eastern Nigeria has been plagued by terrorism, insurgency, and conflict for several years. Understanding the dynamics of terrorism is crucial for developing effective strategies to mitigate its impact on communities and to facilitate peace-building efforts. This research aims to develop a mathematical model that captures the dynamics of terrorism within the southern part of Borno State, Nigeria, capturing both government and local community intervention strategies as control measures in combating terrorism. A compartmental model of five nonlinear differential equations is formulated. The model analyses show that a feasible solution set of the model exists and is bounded. Stability analyses show that both the terrorism free equilibrium and the terrorism endermic equilibrium are asymptotically stable, making the model to have biological meaning. Optimal control theory will be employed to identify the most effective strategy to prevent or minimize acts of terrorism. The research outcomes are expected to contribute towards enhancing security and stability in Southern Borno State while providing valuable insights for policymakers, security agencies, and researchers. This is an ongoing research.Keywords: modelling, terrorism, optimal control, susceptible, non-susceptible, community intervention
Procedia PDF Downloads 22