Search results for: fruit fly optimization algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6516

Search results for: fruit fly optimization algorithm

6006 Efficacy of Gamma Radiation on the Productivity of Bactrocera oleae Gmelin (Diptera: Tephritidae)

Authors: Mehrdad Ahmadi, Mohamad Babaie, Shiva Osouli, Bahareh Salehi, Nadia Kalantaraian

Abstract:

The olive fruit fly, Bactrocera oleae Gmelin (Diptera: Tephritidae), is one of the most serious pests in olive orchards in growing province in Iran. The female lay eggs in green olive fruit and larvae hatch inside the fruit, where they feed upon the fruit matters. One of the main ecologically friendly and species-specific systems of pest control is the sterile insect technique (SIT) which is based on the release of large numbers of sterilized insects. The objective of our work was to develop a SIT against B. oleae by using of gamma radiation for the laboratory and field trial in Iran. Oviposition of female mated by irradiated males is one of the main parameters to determine achievement of SIT. To conclude the sterile dose, pupae were placed under 0 to 160 Gy of gamma radiation. The main factor in SIT is the productivity of females which are mated by irradiated males. The emerged adults from irradiated pupae were mated with untreated adults of the same age by confining them inside the transparent cages. The fecundity of the irradiated males mated with non-irradiated females was decreased with the increasing radiation dose level. It was observed that the number of eggs and also the percentage of the egg hatching was significantly (P < 0.05) affected in either IM x NF crosses compared with NM x NF crosses in F1 generation at all doses. Also, the statistical analysis showed a significant difference (P < 0.05) in the mean number of eggs laid between irradiated and non-irradiated females crossed with irradiated males, which suggests that the males were susceptible to gamma radiation. The egg hatching percentage declined markedly with the increase of the radiation dose of the treated males in mating trials which demonstrated that egg hatch rate was dose dependent. Our results specified that gamma radiation affects the longevity of irradiated B. oleae larvae (established from irradiated pupae) and significantly increased their larval duration. Results show the gamma radiation, and SIT can be used successfully against olive fruit flies.

Keywords: fertility, olive fruit fly, radiation, sterile insect technique

Procedia PDF Downloads 175
6005 Application the Queuing Theory in the Warehouse Optimization

Authors: Jaroslav Masek, Juraj Camaj, Eva Nedeliakova

Abstract:

The aim of optimization of store management is not only designing the situation of store management itself including its equipment, technology and operation. In optimization of store management we need to consider also synchronizing of technological, transport, store and service operations throughout the whole process of logistic chain in such a way that a natural flow of material from provider to consumer will be achieved the shortest possible way, in the shortest possible time in requested quality and quantity and with minimum costs. The paper deals with the application of the queuing theory for optimization of warehouse processes. The first part refers to common information about the problematic of warehousing and using mathematical methods for logistics chains optimization. The second part refers to preparing a model of a warehouse within queuing theory. The conclusion of the paper includes two examples of using queuing theory in praxis.

Keywords: queuing theory, logistics system, mathematical methods, warehouse optimization

Procedia PDF Downloads 566
6004 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm

Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho

Abstract:

Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.

Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.

Procedia PDF Downloads 229
6003 A Parallel Algorithm for Solving the PFSP on the Grid

Authors: Samia Kouki

Abstract:

Solving NP-hard combinatorial optimization problems by exact search methods, such as Branch-and-Bound, may degenerate to complete enumeration. For that reason, exact approaches limit us to solve only small or moderate size problem instances, due to the exponential increase in CPU time when problem size increases. One of the most promising ways to reduce significantly the computational burden of sequential versions of Branch-and-Bound is to design parallel versions of these algorithms which employ several processors. This paper describes a parallel Branch-and-Bound algorithm called GALB for solving the classical permutation flowshop scheduling problem as well as its implementation on a Grid computing infrastructure. The experimental study of our distributed parallel algorithm gives promising results and shows clearly the benefit of the parallel paradigm to solve large-scale instances in moderate CPU time.

Keywords: grid computing, permutation flow shop problem, branch and bound, load balancing

Procedia PDF Downloads 255
6002 Locomotion Effects of Redundant Degrees of Freedom in Multi-Legged Quadruped Robots

Authors: Hossein Keshavarz, Alejandro Ramirez-Serrano

Abstract:

Energy efficiency and locomotion speed are two key parameters for legged robots; thus, finding ways to improve them are important. This paper proposes a locomotion framework to analyze the energy usage and speed of quadruped robots via a Genetic Algorithm (GA) optimization process. For this, a quadruped robot platform with joint redundancy in its hind legs that we believe will help multi-legged robots improve their speed and energy consumption is used. ContinuO, the quadruped robot of interest, has 14 active degrees of freedom (DoFs), including three DoFs for each front leg, and unlike previously developed quadruped robots, four DoFs for each hind leg. ContinuO aims to realize a cost-effective quadruped robot for real-world scenarios with high speeds and the ability to overcome large obstructions. The proposed framework is used to locomote the robot and analyze its energy consumed at diverse stride lengths and locomotion speeds. The analysis is performed by comparing the obtained results in two modes, with and without the joint redundancy on the robot’s hind legs.

Keywords: genetic algorithm optimization, locomotion path planning, quadruped robots, redundant legs

Procedia PDF Downloads 61
6001 Effect of Different Spacings on Growth Yield and Fruit Quality of Peach in the Sub-Tropics of India

Authors: Harminder Singh, Rupinder Kaur

Abstract:

Peach is primarily a temperate fruit, but its low chilling cultivars are grown quite successfully in the sub-tropical climate as well. The area under peach cultivation is picking up rapidly in the sub tropics of northern India due to higher return on a unit area basis, availability of suitable peach cultivar and their production technology. Information on the use of different training systems on peach in the sub tropics is inadequate. In this investigation, conducted at Punjab Agricultural University, Ludhiana (Punjab), India, the trees of the Shan-i-Punjab peach were planted at four different spacings i.e. 6.0x3.0m, 6.0x2.5m, 4.5x3.0m and 4.5x2.5m and were trained to central leader system. The total radiation interception and penetration in the upper and lower canopy parts were higher in 6x3.0m and 6x2.5m planted trees as compared to other spacings. Average radiation interception was maximum in the upper part of the tree canopy, and it decreased significantly with the depth of the canopy in all the spacings. Tree planted at wider spacings produced more vegetative (tree height, tree girth, tree spread and canopy volume) and reproductive growth (flower bud density, number of fruits and fruit yield) per tree but productivity was maximum in the closely planted trees. Fruits harvested from the wider spaced trees were superior in fruit quality (size, weight, colour, TSS and acidity) and matured earlier than those harvested from closed spaced trees.

Keywords: quality, radiation, spacings, yield

Procedia PDF Downloads 160
6000 Metareasoning Image Optimization Q-Learning

Authors: Mahasa Zahirnia

Abstract:

The purpose of this paper is to explore new and effective ways of optimizing satellite images using artificial intelligence, and the process of implementing reinforcement learning to enhance the quality of data captured within the image. In our implementation of Bellman's Reinforcement Learning equations, associated state diagrams, and multi-stage image processing, we were able to enhance image quality, detect and define objects. Reinforcement learning is the differentiator in the area of artificial intelligence, and Q-Learning relies on trial and error to achieve its goals. The reward system that is embedded in Q-Learning allows the agent to self-evaluate its performance and decide on the best possible course of action based on the current and future environment. Results show that within a simulated environment, built on the images that are commercially available, the rate of detection was 40-90%. Reinforcement learning through Q-Learning algorithm is not just desired but required design criteria for image optimization and enhancements. The proposed methods presented are a cost effective method of resolving uncertainty of the data because reinforcement learning finds ideal policies to manage the process using a smaller sample of images.

Keywords: Q-learning, image optimization, reinforcement learning, Markov decision process

Procedia PDF Downloads 190
5999 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation

Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo

Abstract:

The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.

Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation

Procedia PDF Downloads 160
5998 Elongation Factor 1 Alpha Molecular Phylogenetic Analysis for Anastrepha fraterculus Complex

Authors: Pratibha Srivastava, Ayyamperumal Jeyaprakash, Gary Steck

Abstract:

Exotic, invasive tephritid fruit flies (Diptera: Tephritidae) are a major concern to fruit and vegetable production in the USA. Timely detection and identification of these agricultural pests facilitate the possibility of eradication from newly invaded areas. They spread primarily as larvae in infested fruits carried in commerce or personal baggage. Identification of larval stages to species level is difficult but necessary to determine pest loads and their pathways into the USA. The main focus of this study is the New World genus, Anastrepha. Many of its constituent taxa are pests of major economic importance. This study is significant for national quarantine use, as morphological diagnostics to separate larvae of the various members remain poorly developed. Elongation factor 1 alpha sequences were amplified from Anastrepha fraterculus specimens collected from South America (Ecuador and Peru). Phylogenetic analysis was performed to characterize the Anastrepha fraterculus complex at a molecular level.

Keywords: anastrepha, diptera, elongation factor, fruit fly

Procedia PDF Downloads 186
5997 Particle Swarm Optimization and Quantum Particle Swarm Optimization to Multidimensional Function Approximation

Authors: Diogo Silva, Fadul Rodor, Carlos Moraes

Abstract:

This work compares the results of multidimensional function approximation using two algorithms: the classical Particle Swarm Optimization (PSO) and the Quantum Particle Swarm Optimization (QPSO). These algorithms were both tested on three functions - The Rosenbrock, the Rastrigin, and the sphere functions - with different characteristics by increasing their number of dimensions. As a result, this study shows that the higher the function space, i.e. the larger the function dimension, the more evident the advantages of using the QPSO method compared to the PSO method in terms of performance and number of necessary iterations to reach the stop criterion.

Keywords: PSO, QPSO, function approximation, AI, optimization, multidimensional functions

Procedia PDF Downloads 555
5996 Studies on Irrigation and Nutrient Interactions in Sweet Orange (Citrus sinensis Osbeck)

Authors: S. M. Jogdand, D. D. Jagtap, N. R. Dalal

Abstract:

Sweet orange (Citrus sinensis Osbeck) is one of the most important commercially cultivated fruit crop in India. It stands on second position amongst citrus group after mandarin. Irrigation and fertigation are vital importance of sweet orange orchard and considered to be the most critical cultural operations. The soil acts as the reservoir of water and applied nutrients, the interaction between irrigation and fertigation leads to the ultimate quality and production of fruits. The increasing cost of fertilizers and scarcity of irrigation water forced the farmers for optimum use of irrigation and nutrients. The experiment was conducted with object to find out irrigation and nutrient interaction in sweet orange to optimize the use of both the factors. The experiment was conducted in medium to deep soil. The irrigation level I3,drip irrigation at 90% ER (effective rainfall) and fertigation level F3 80% RDF (recommended dose of fertilizer) recorded significantly maximum plant height, plant spread, canopy volume, number of fruits, weight of fruit, fruit yield kg/plant and t/ha followed by F2 , fertigation with 70% RDF. The interaction effect of irrigation and fertigation on growth was also significant and the maximum plant height, E-W spread, N-S spread, canopy volume, highest number of fruits, weight of fruit and yield kg/plant and t/ha was recorded in T9 i.e. I3F3 drip irrigation at 90% ER and fertigation with 80% of RDF followed by I3F2 drip irrigation at 90% ER and fertigation with 70% of RDF.

Keywords: sweet orange, fertigation, irrigation, interactions

Procedia PDF Downloads 149
5995 Non-Dominated Sorting Genetic Algorithm (NSGA-II) for the Redistricting Problem in Mexico

Authors: Antonin Ponsich, Eric Alfredo Rincon Garcia, Roman Anselmo Mora Gutierrez, Miguel Angel Gutierrez Andrade, Sergio Gerardo De Los Cobos Silva, Pedro Lara Velzquez

Abstract:

The electoral zone design problem consists in redrawing the boundaries of legislative districts for electoral purposes in such a way that federal or state requirements are fulfilled. In Mexico, this process has been historically carried out by the National Electoral Institute (INE), by optimizing an integer nonlinear programming model, in which population equality and compactness of the designed districts are considered as two conflicting objective functions, while contiguity is included as a hard constraint. The solution technique used by the INE is a Simulated Annealing (SA) based algorithm, which handles the multi-objective nature of the problem through an aggregation function. The present work represents the first intent to apply a classical Multi-Objective Evolutionary Algorithm (MOEA), the second version of the Non-dominated Sorting Genetic Algorithm (NSGA-II), to this hard combinatorial problem. First results show that, when compared with the SA algorithm, the NSGA-II obtains promising results. The MOEA manages to produce well-distributed solutions over a wide-spread front, even though some convergence troubles for some instances constitute an issue, which should be corrected in future adaptations of MOEAs to the redistricting problem.

Keywords: multi-objective optimization, NSGA-II, redistricting, zone design problem

Procedia PDF Downloads 348
5994 The Possibility of Solving a 3x3 Rubik’s Cube under 3 Seconds

Authors: Chung To Kong, Siu Ming Yiu

Abstract:

Rubik's cube was invented in 1974. Since then, speedcubers all over the world try their best to break the world record again and again. The newest record is 3.47 seconds. There are many factors that affect the timing, including turns per second (tps), algorithm, finger trick, hardware of the cube. In this paper, the lower bound of the cube solving time will be discussed using convex optimization. Extended analysis of the world records will be used to understand how to improve the timing. With the understanding of each part of the solving step, the paper suggests a list of speed improvement techniques. Based on the analysis of the world record, there is a high possibility that the 3 seconds mark will be broken soon.

Keywords: Rubik's Cube, speed, finger trick, optimization

Procedia PDF Downloads 178
5993 Optimal Tuning of RST Controller Using PSO Optimization for Synchronous Generator Based Wind Turbine under Three-Phase Voltage Dips

Authors: K. Tahir, C. Belfedal, T. Allaoui, C. Gerard, M. Doumi

Abstract:

In this paper, we presented an optimized RST controller using Particle Swarm Optimization (PSO) meta-heuristic technique of the active and reactive power regulation of a grid connected wind turbine based on a wound field synchronous generator. This regulation is achieved below the synchronous speed, by means of a maximum power point tracking algorithm. The control of our system is tested under typical wind variations and parameters variation, fault grid condition by simulation. Some results are presented and discussed to prove simplicity and efficiency of the WRSG control for WECS. On the other hand, according to simulation results, variable speed driven WRSG is not significantly impacted in fault conditions.

Keywords: wind energy, particle swarm optimization, wound rotor synchronous generator, power control, RST controller, maximum power point tracking

Procedia PDF Downloads 428
5992 A Robust Optimization Model for the Single-Depot Capacitated Location-Routing Problem

Authors: Abdolsalam Ghaderi

Abstract:

In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve the customers when the parameters may change under different circumstances. This problem has many applications, especially in the area of supply chain management and distribution systems. To get closer to real-world situations, travel time of vehicles, the fixed cost of vehicles usage and customers’ demand are considered as a source of uncertainty. A combined approach including robust optimization and stochastic programming was presented to deal with the uncertainty in the problem at hand. For this purpose, a mixed integer programming model is developed and a heuristic algorithm based on Variable Neighborhood Search(VNS) is presented to solve the model. Finally, the computational results are presented and future research directions are discussed.

Keywords: location-routing problem, robust optimization, stochastic programming, variable neighborhood search

Procedia PDF Downloads 249
5991 Intelligent Control of Doubly Fed Induction Generator Wind Turbine for Smart Grid

Authors: Amal A. Hassan, Faten H. Fahmy, Abd El-Shafy A. Nafeh, Hosam K. M. Youssef

Abstract:

Due to the growing penetration of wind energy into the power grid, it is very important to study its interactions with the power system and to provide good control technique in order to deliver high quality power. In this paper, an intelligent control methodology is proposed for optimizing the controllers’ parameters of doubly fed induction generator (DFIG) based wind turbine generation system (WTGS). The genetic algorithm (GA) and particle swarm optimization (PSO) are employed and compared for the parameters adaptive tuning of the proposed proportional integral (PI) multiple controllers of the back to back converters of the DFIG based WTGS. For this purpose, the dynamic model of WTGS with DFIG and its associated controllers is presented. Furthermore, the simulation of the system is performed using MATLAB/SIMULINK and SIMPOWERSYSTEM toolbox to illustrate the performance of the optimized controllers. Finally, this work is validated to 33-bus test radial system to show the interaction between wind distributed generation (DG) systems and the distribution network.

Keywords: DFIG wind turine, intelligent control, distributed generation, particle swarm optimization, genetic algorithm

Procedia PDF Downloads 246
5990 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction

Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh

Abstract:

Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.

Keywords: feature selection, neural network, particle swarm optimization, software fault prediction

Procedia PDF Downloads 64
5989 A Learning-Based EM Mixture Regression Algorithm

Authors: Yi-Cheng Tian, Miin-Shen Yang

Abstract:

The mixture likelihood approach to clustering is a popular clustering method where the expectation and maximization (EM) algorithm is the most used mixture likelihood method. In the literature, the EM algorithm had been used for mixture regression models. However, these EM mixture regression algorithms are sensitive to initial values with a priori number of clusters. In this paper, to resolve these drawbacks, we construct a learning-based schema for the EM mixture regression algorithm such that it is free of initializations and can automatically obtain an approximately optimal number of clusters. Some numerical examples and comparisons demonstrate the superiority and usefulness of the proposed learning-based EM mixture regression algorithm.

Keywords: clustering, EM algorithm, Gaussian mixture model, mixture regression model

Procedia PDF Downloads 485
5988 Quick Sequential Search Algorithm Used to Decode High-Frequency Matrices

Authors: Mohammed M. Siddeq, Mohammed H. Rasheed, Omar M. Salih, Marcos A. Rodrigues

Abstract:

This research proposes a data encoding and decoding method based on the Matrix Minimization algorithm. This algorithm is applied to high-frequency coefficients for compression/encoding. The algorithm starts by converting every three coefficients to a single value; this is accomplished based on three different keys. The decoding/decompression uses a search method called QSS (Quick Sequential Search) Decoding Algorithm presented in this research based on the sequential search to recover the exact coefficients. In the next step, the decoded data are saved in an auxiliary array. The basic idea behind the auxiliary array is to save all possible decoded coefficients; this is because another algorithm, such as conventional sequential search, could retrieve encoded/compressed data independently from the proposed algorithm. The experimental results showed that our proposed decoding algorithm retrieves original data faster than conventional sequential search algorithms.

Keywords: matrix minimization algorithm, decoding sequential search algorithm, image compression, DCT, DWT

Procedia PDF Downloads 121
5987 Thinned Elliptical Cylindrical Antenna Array Synthesis Using Particle Swarm Optimization

Authors: Rajesh Bera, Durbadal Mandal, Rajib Kar, Sakti P. Ghoshal

Abstract:

This paper describes optimal thinning of an Elliptical Cylindrical Array (ECA) of uniformly excited isotropic antennas which can generate directive beam with minimum relative Side Lobe Level (SLL). The Particle Swarm Optimization (PSO) method, which represents a new approach for optimization problems in electromagnetic, is used in the optimization process. The PSO is used to determine the optimal set of ‘ON-OFF’ elements that provides a radiation pattern with maximum SLL reduction. Optimization is done without prefixing the value of First Null Beam Width (FNBW). The variation of SLL with element spacing of thinned array is also reported. Simulation results show that the number of array elements can be reduced by more than 50% of the total number of elements in the array with a simultaneous reduction in SLL to less than -27dB.

Keywords: thinned array, Particle Swarm Optimization, Elliptical Cylindrical Array, Side Lobe Label.

Procedia PDF Downloads 420
5986 Optimal Placement of the Unified Power Controller to Improve the Power System Restoration

Authors: Mohammad Reza Esmaili

Abstract:

One of the most important parts of the restoration process of a power network is the synchronizing of its subsystems. In this situation, the biggest concern of the system operators will be the reduction of the standing phase angle (SPA) between the endpoints of the two islands. In this regard, the system operators perform various actions and maneuvers so that the synchronization operation of the subsystems is successfully carried out and the system finally reaches acceptable stability. The most common of these actions include load control, generation control and, in some cases, changing the network topology. Although these maneuvers are simple and common, due to the weak network and extreme load changes, the restoration will be associated with low speed. One of the best ways to control the SPA is to use FACTS devices. By applying a soft control signal, these tools can reduce the SPA between two subsystems with more speed and accuracy, and the synchronization process can be done in less time. Meanwhile, the unified power controller (UPFC), a series-parallel compensator device with the change of transmission line power and proper adjustment of the phase angle, will be the proposed option in order to realize the subject of this research. Therefore, with the optimal placement of UPFC in a power system, in addition to improving the normal conditions of the system, it is expected to be effective in reducing the SPA during power system restoration. Therefore, the presented paper provides an optimal structure to coordinate the three problems of improving the division of subsystems, reducing the SPA and optimal power flow with the aim of determining the optimal location of UPFC and optimal subsystems. The proposed objective functions in this paper include maximizing the quality of the subsystems, reducing the SPA at the endpoints of the subsystems, and reducing the losses of the power system. Since there will be a possibility of creating contradictions in the simultaneous optimization of the proposed objective functions, the structure of the proposed optimization problem is introduced as a non-linear multi-objective problem, and the Pareto optimization method is used to solve it. The innovative technique proposed to implement the optimization process of the mentioned problem is an optimization algorithm called the water cycle (WCA). To evaluate the proposed method, the IEEE 39 bus power system will be used.

Keywords: UPFC, SPA, water cycle algorithm, multi-objective problem, pareto

Procedia PDF Downloads 39
5985 A Study on the Assessment of Prosthetic Infection after Total Knee Replacement Surgery

Authors: Chun-Lang Chang, Chun-Kai Liu

Abstract:

In this study, the patients that have undergone total knee replacement surgery from the 2010 National Health Insurance database were adopted as the study participants. The important factors were screened and selected through literature collection and interviews with physicians. Through the Cross Entropy Method (CE), Genetic Algorithm Logistic Regression (GALR), and Particle Swarm Optimization (PSO), the weights of the factors were obtained. In addition, the weights of the respective algorithms, coupled with the Excel VBA were adopted to construct the Case Based Reasoning (CBR) system. The results through statistical tests show that the GALR and PSO produced no significant differences, and the accuracy of both models were above 97%. Moreover, the area under the curve of ROC for these two models also exceeded 0.87. This study shall serve as a reference for medical staff as an assistance for clinical assessment of infections in order to effectively enhance medical service quality and efficiency, avoid unnecessary medical waste, and substantially contribute to resource allocations in medical institutions.

Keywords: Case Based Reasoning, Cross Entropy Method, Genetic Algorithm Logistic Regression, Particle Swarm Optimization, Total Knee Replacement Surgery

Procedia PDF Downloads 299
5984 An Improved Parallel Algorithm of Decision Tree

Authors: Jiameng Wang, Yunfei Yin, Xiyu Deng

Abstract:

Parallel optimization is one of the important research topics of data mining at this stage. Taking Classification and Regression Tree (CART) parallelization as an example, this paper proposes a parallel data mining algorithm based on SSP-OGini-PCCP. Aiming at the problem of choosing the best CART segmentation point, this paper designs an S-SP model without data association; and in order to calculate the Gini index efficiently, a parallel OGini calculation method is designed. In addition, in order to improve the efficiency of the pruning algorithm, a synchronous PCCP pruning strategy is proposed in this paper. In this paper, the optimal segmentation calculation, Gini index calculation, and pruning algorithm are studied in depth. These are important components of parallel data mining. By constructing a distributed cluster simulation system based on SPARK, data mining methods based on SSP-OGini-PCCP are tested. Experimental results show that this method can increase the search efficiency of the best segmentation point by an average of 89%, increase the search efficiency of the Gini segmentation index by 3853%, and increase the pruning efficiency by 146% on average; and as the size of the data set increases, the performance of the algorithm remains stable, which meets the requirements of contemporary massive data processing.

Keywords: classification, Gini index, parallel data mining, pruning ahead

Procedia PDF Downloads 103
5983 Parametric Optimization of Electric Discharge Machining Process Using Taguchi's Method and Grey Relation Analysis

Authors: Pushpendra S. Bharti

Abstract:

Process yield of electric discharge machining (EDM) is directly related to optimal combination(s) of process parameters. Optimization of process parameters of EDM is a multi-objective optimization problem owing to the contradictory behavior of performance measures. This paper employs Grey Relation Analysis (GRA) method as a multi-objective optimization technique for the optimal selection of process parameters combination. In GRA, multi-response optimization is converted into optimization of a single response grey relation grade which ultimately gives the optimal combination of process parameters. Experiments were carried out on die-sinking EDM by taking D2 steel as work piece and copper as electrode material. Taguchi's orthogonal array L36 was used for the design of experiments. On the experimental values, GRA was employed for the parametric optimization. A significant improvement has been observed and reported in the process yield by taking the parametric combination(s) obtained through GRA.

Keywords: electric discharge machining, grey relation analysis, material removal rate, optimization

Procedia PDF Downloads 386
5982 Distribution System Planning with Distributed Generation and Capacitor Placements

Authors: Nattachote Rugthaicharoencheep

Abstract:

This paper presents a feeder reconfiguration problem in distribution systems. The objective is to minimize the system power loss and to improve bus voltage profile. The optimization problem is subjected to system constraints consisting of load-point voltage limits, radial configuration format, no load-point interruption, and feeder capability limits. A method based on genetic algorithm, a search algorithm based on the mechanics of natural selection and natural genetics, is proposed to determine the optimal pattern of configuration. The developed methodology is demonstrated by a 33-bus radial distribution system with distributed generations and feeder capacitors. The study results show that the optimal on/off patterns of the switches can be identified to give the minimum power loss while respecting all the constraints.

Keywords: network reconfiguration, distributed generation capacitor placement, loss reduction, genetic algorithm

Procedia PDF Downloads 151
5981 An Improved K-Means Algorithm for Gene Expression Data Clustering

Authors: Billel Kenidra, Mohamed Benmohammed

Abstract:

Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.

Keywords: microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization

Procedia PDF Downloads 165
5980 Design and Implementation of an Image Based System to Enhance the Security of ATM

Authors: Seyed Nima Tayarani Bathaie

Abstract:

In this paper, an image-receiving system was designed and implemented through optimization of object detection algorithms using Haar features. This optimized algorithm served as face and eye detection separately. Then, cascading them led to a clear image of the user. Utilization of this feature brought about higher security by preventing fraud. This attribute results from the fact that services will be given to the user on condition that a clear image of his face has already been captured which would exclude the inappropriate person. In order to expedite processing and eliminating unnecessary ones, the input image was compressed, a motion detection function was included in the program, and detection window size was confined.

Keywords: face detection algorithm, Haar features, security of ATM

Procedia PDF Downloads 391
5979 Prediction of Physical Properties and Sound Absorption Performance of Automotive Interior Materials

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Seong-Jin Cho, Tae-Hyeon Oh, Dae-Kyu Park

Abstract:

Sound absorption coefficient is considered important when designing because noise affects emotion quality of car. It is designed with lots of experiment tunings in the field because it is unreliable to predict it for multi-layer material. In this paper, we present the design of sound absorption for automotive interior material with multiple layers using estimation software of sound absorption coefficient for reverberation chamber. Additionally, we introduce the method for estimation of physical properties required to predict sound absorption coefficient of car interior materials with multiple layers too. It is calculated by inverse algorithm. It is very economical to get information about physical properties without expensive equipment. Correlation test is carried out to ensure reliability for accuracy. The data to be used for the correlation is sound absorption coefficient measured in the reverberation chamber. In this way, it is considered economical and efficient to design automotive interior materials. And design optimization for sound absorption coefficient is also easy to implement when it is designed.

Keywords: sound absorption coefficient, optimization design, inverse algorithm, automotive interior material, multiple layers nonwoven, scaled reverberation chamber, sound impedance tubes

Procedia PDF Downloads 282
5978 Physicochemical Properties of Rambutan Seed Oil (RSO)

Authors: Nadya Hajar, Naemaa Mohamad, Nurul Azlin Tokiman, Nursabrina Munawar, Noor Hasvenda Abd Rahim

Abstract:

Rambutan (Nephelium lappaceum L.) fruit is abundantly present in Malaysia during their season of the year. Its short shelf life at ambient temperature has contributed to fruit wastage. Thus, the initiative of producing canned Rambutan is an innovation that makes Rambutan fruit available throughout the year. The canned Rambutan industry leaves large amount of Rambutan seed. This study focused on utilization of Rambutan seed as a valuable product which is Rambutan Seed Oil (RSO). The RSO was extracted using Soxhlet Extraction Method for 8 hours. The objective of this study was to determine the physicochemical properties of RSO: melting point (°C), Refractive Index (RI), Total Carotene Content (TCC), water activity (Aw), acid value, peroxide value and saponification value. The results showed: 38.00±1.00 – 48.83±1.61°C melting point, 1.46±0.00 RI, 1.18±0.06mg/kg TCC, 0.4721±0.0176 Aw, 1.2162±0.1520mg KOH/g acid value, 9.6000±0.4000g/g peroxide value and 146.8040±18.0182mg KOH/g saponification value, respectively. According to the results, RSO showed high industrial potential as cocoa butter replacement in chocolates and cosmetics production.

Keywords: Cocoa butter replacer, Rambutan, Rambutan seed, Rambutan seed oil (RSO)

Procedia PDF Downloads 410
5977 Text Based Shuffling Algorithm on Graphics Processing Unit for Digital Watermarking

Authors: Zayar Phyo, Ei Chaw Htoon

Abstract:

In a New-LSB based Steganography method, the Fisher-Yates algorithm is used to permute an existing array randomly. However, that algorithm performance became slower and occurred memory overflow problem while processing the large dimension of images. Therefore, the Text-Based Shuffling algorithm aimed to select only necessary pixels as hiding characters at the specific position of an image according to the length of the input text. In this paper, the enhanced text-based shuffling algorithm is presented with the powered of GPU to improve more excellent performance. The proposed algorithm employs the OpenCL Aparapi framework, along with XORShift Kernel including the Pseudo-Random Number Generator (PRNG) Kernel. PRNG is applied to produce random numbers inside the kernel of OpenCL. The experiment of the proposed algorithm is carried out by practicing GPU that it can perform faster-processing speed and better efficiency without getting the disruption of unnecessary operating system tasks.

Keywords: LSB based steganography, Fisher-Yates algorithm, text-based shuffling algorithm, OpenCL, XORShiftKernel

Procedia PDF Downloads 125