Search results for: automated theorem proving
652 Clouds Influence on Atmospheric Ozone from GOME-2 Satellite Measurements
Authors: S. M. Samkeyat Shohan
Abstract:
This study is mainly focused on the determination and analysis of the photolysis rate of atmospheric, specifically tropospheric, ozone as function of cloud properties through-out the year 2007. The observational basis for ozone concentrations and cloud properties are the measurement data set of the Global Ozone Monitoring Experiment-2 (GOME-2) sensor on board the polar orbiting Metop-A satellite. Two different spectral ranges are used; ozone total column are calculated from the wavelength window 325 – 335 nm, while cloud properties, such as cloud top height (CTH) and cloud optical thick-ness (COT) are derived from the absorption band of molecular oxygen centered at 761 nm. Cloud fraction (CF) is derived from measurements in the ultraviolet, visible and near-infrared range of GOME-2. First, ozone concentrations above clouds are derived from ozone total columns, subtracting the contribution of stratospheric ozone and filtering those satellite measurements which have thin and low clouds. Then, the values of ozone photolysis derived from observations are compared with theoretical modeled results, in the latitudinal belt 5˚N-5˚S and 20˚N - 20˚S, as function of CF and COT. In general, good agreement is found between the data and the model, proving both the quality of the space-borne ozone and cloud properties as well as the modeling theory of ozone photolysis rate. The found discrepancies can, however, amount to approximately 15%. Latitudinal seasonal changes of photolysis rate of ozone are found to be negatively correlated to changes in upper-tropospheric ozone concentrations only in the autumn and summer months within the northern and southern tropical belts, respectively. This fact points to the entangled roles of temperature and nitrogen oxides in the ozone production, which are superimposed on its sole photolysis induced by thick and high clouds in the tropics.Keywords: cloud properties, photolysis rate, stratospheric ozone, tropospheric ozone
Procedia PDF Downloads 211651 An Automated R-Peak Detection Method Using Common Vector Approach
Authors: Ali Kirkbas
Abstract:
R peaks in an electrocardiogram (ECG) are signs of cardiac activity in individuals that reveal valuable information about cardiac abnormalities, which can lead to mortalities in some cases. This paper examines the problem of detecting R-peaks in ECG signals, which is a two-class pattern classification problem in fact. To handle this problem with a reliable high accuracy, we propose to use the common vector approach which is a successful machine learning algorithm. The dataset used in the proposed method is obtained from MIT-BIH, which is publicly available. The results are compared with the other popular methods under the performance metrics. The obtained results show that the proposed method shows good performance than that of the other. methods compared in the meaning of diagnosis accuracy and simplicity which can be operated on wearable devices.Keywords: ECG, R-peak classification, common vector approach, machine learning
Procedia PDF Downloads 64650 Seamless MATLAB® to Register-Transfer Level Design Methodology Using High-Level Synthesis
Authors: Petri Solanti, Russell Klein
Abstract:
Many designers are asking for an automated path from an abstract mathematical MATLAB model to a high-quality Register-Transfer Level (RTL) hardware description. Manual transformations of MATLAB or intermediate code are needed, when the design abstraction is changed. Design conversion is problematic as it is multidimensional and it requires many different design steps to translate the mathematical representation of the desired functionality to an efficient hardware description with the same behavior and configurability. Yet, a manual model conversion is not an insurmountable task. Using currently available design tools and an appropriate design methodology, converting a MATLAB model to efficient hardware is a reasonable effort. This paper describes a simple and flexible design methodology that was developed together with several design teams.Keywords: design methodology, high-level synthesis, MATLAB, verification
Procedia PDF Downloads 139649 Analysis on Cyber Threat Actors Targeting Automated Border Security Systems
Authors: Mirko Sailio
Abstract:
Border crossing automatization reduces required human resources in handling people crossing borders. As technology replaces and augments the work done by border officers, new cyber threats arise to threaten border security. This research analyses the current cyber threat actors and their capabilities. The analysis is conducted by gathering the threat actor data from a wide range of public sources. A model for a general border automatization system is presented, and its most significant cyber-security attributes are then compared to threat actor activity and capabilities in order to predict priorities in securing such systems. Organized crime and nation-state actors present the clearest threat to border cyber-security, and additional focus is given to their motivations and activities.Keywords: border automation, cyber-security, threat actors, border cyber-security
Procedia PDF Downloads 203648 Theoretical Study of Structural, Magnetic, and Magneto-Optical Properties of Ultrathin Films of Fe/Cu (001)
Authors: Mebarek Boukelkoul, Abdelhalim Haroun
Abstract:
By means of the first principle calculation, we have investigated the structural, magnetic and magneto-optical properties of the ultra-thin films of Fen/Cu(001) with (n=1, 2, 3). We adopted a relativistic approach using DFT theorem with local spin density approximation (LSDA). The electronic structure is performed within the framework of the Spin-Polarized Relativistic (SPR) Linear Muffin-Tin Orbitals (LMTO) with the Atomic Sphere Approximation (ASA) method. During the variational principle, the crystal wave function is expressed as a linear combination of the Bloch sums of the so-called relativistic muffin-tin orbitals centered on the atomic sites. The crystalline structure is calculated after an atomic relaxation process using the optimization of the total energy with respect to the atomic interplane distance. A body-centered tetragonal (BCT) pseudomorphic crystalline structure with a tetragonality ratio c/a larger than unity is found. The magnetic behaviour is characterized by an enhanced magnetic moment and a ferromagnetic interplane coupling. The polar magneto-optical Kerr effect spectra are given over a photon energy range extended to 15eV and the microscopic origin of the most interesting features are interpreted by interband transitions. Unlike thin layers, the anisotropy in the ultra-thin films is characterized by a perpendicular magnetization which is perpendicular to the film plane.Keywords: ultrathin films, magnetism, magneto-optics, pseudomorphic structure
Procedia PDF Downloads 335647 Intrusion Detection in Cloud Computing Using Machine Learning
Authors: Faiza Babur Khan, Sohail Asghar
Abstract:
With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.Keywords: cloud security, threats, machine learning, random forest, classification
Procedia PDF Downloads 320646 Net-Trainer-ST: A Swiss Army Knife for Pentesting, Based on Single Board Computer, for Cybersecurity Professionals and Hobbyists
Authors: K. Hołda, D. Śliwa, K. Daniec, A. Nawrat
Abstract:
This article was created as part of the developed master's thesis. It attempts to present a newly developed device, which will support the work of specialists dealing with broadly understood cybersecurity terms. The device is contrived to automate security tests. In addition, it simulates potential cyberattacks in the most realistic way possible, without causing permanent damage to the network, in order to maximize the quality of the subsequent corrections to the tested network systems. The proposed solution is a fully operational prototype created from commonly available electronic components and a single board computer. The focus of the following article is not only put on the hardware part of the device but also on the theoretical and applicatory way in which implemented cybersecurity tests operate and examples of their results.Keywords: Raspberry Pi, ethernet, automated cybersecurity tests, ARP, DNS, backdoor, TCP, password sniffing
Procedia PDF Downloads 125645 Deep Convolutional Neural Network for Detection of Microaneurysms in Retinal Fundus Images at Early Stage
Authors: Goutam Kumar Ghorai, Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, G. Sarkar, Ashis K. Dhara
Abstract:
Diabetes mellitus is one of the most common chronic diseases in all countries and continues to increase in numbers significantly. Diabetic retinopathy (DR) is damage to the retina that occurs with long-term diabetes. DR is a major cause of blindness in the Indian population. Therefore, its early diagnosis is of utmost importance towards preventing progression towards imminent irreversible loss of vision, particularly in the huge population across rural India. The barriers to eye examination of all diabetic patients are socioeconomic factors, lack of referrals, poor access to the healthcare system, lack of knowledge, insufficient number of ophthalmologists, and lack of networking between physicians, diabetologists and ophthalmologists. A few diabetic patients often visit a healthcare facility for their general checkup, but their eye condition remains largely undetected until the patient is symptomatic. This work aims to focus on the design and development of a fully automated intelligent decision system for screening retinal fundus images towards detection of the pathophysiology caused by microaneurysm in the early stage of the diseases. Automated detection of microaneurysm is a challenging problem due to the variation in color and the variation introduced by the field of view, inhomogeneous illumination, and pathological abnormalities. We have developed aconvolutional neural network for efficient detection of microaneurysm. A loss function is also developed to handle severe class imbalance due to very small size of microaneurysms compared to background. The network is able to locate the salient region containing microaneurysms in case of noisy images captured by non-mydriatic cameras. The ground truth of microaneurysms is created by expert ophthalmologists for MESSIDOR database as well as private database, collected from Indian patients. The network is trained from scratch using the fundus images of MESSIDOR database. The proposed method is evaluated on DIARETDB1 and the private database. The method is successful in detection of microaneurysms for dilated and non-dilated types of fundus images acquired from different medical centres. The proposed algorithm could be used for development of AI based affordable and accessible system, to provide service at grass root-level primary healthcare units spread across the country to cater to the need of the rural people unaware of the severe impact of DR.Keywords: retinal fundus image, deep convolutional neural network, early detection of microaneurysms, screening of diabetic retinopathy
Procedia PDF Downloads 141644 Solution to Increase the Produced Power in Micro-Hydro Power Plant
Authors: Radu Pop, Adrian Bot, Vasile Rednic, Emil Bruj, Oana Raita, Liviu Vaida
Abstract:
Our research presents a study concerning optimization of water flow capture for micro-hydro power plants in order to increase the energy production. It is known that the fish ladder whole, were the water is capture is fix, and the water flow may vary with the river flow, this means that on the fish ladder we will have different servitude flows, sometimes more than needed. We propose to demonstrate that the ‘winter intake’ from micro-hydro power plant, could be automated with an intelligent system which is capable to read some imposed data and adjust the flow in to the needed value. With this automation concept, we demonstrate that the performance of the micro-hydro power plant could increase, in some flow operating regimes, with approx. 10%.Keywords: energy, micro-hydro, water intake, fish ladder
Procedia PDF Downloads 234643 Anthropomorphism in the Primate Mind-Reading Debate: A Critique of Sober's Justification Argument
Authors: Boyun Lee
Abstract:
This study aims to discuss whether anthropomorphism some scientists tend to use in cross-species comparison can be justified epistemologically, especially in the primate mind-reading debate. Concretely, this study critically analyzes Elliott Sober’s argument about mind-reading hypothesis (MRH), an anthropomorphic hypothesis which states that nonhuman primates (e.g., chimpanzee) are mind-readers like humans. Although many scientists consider anthropomorphism as an error and choosing anthropomorphic hypothesis like MRH without any definite evidence invalid, Sober advocates that anthropomorphism is supported by cladistic parsimony that suggests choosing the simplest hypothesis postulating the minimum number of evolutionary changes, which can be justified epistemologically in the mind-reading debate. However, his argument has several problems. First, Reichenbach’s theorem which Sober uses in process of showing that MRH has the higher likelihood than its competing hypothesis, behavior-reading hypothesis (BRH), does not fit in the context of inferring the evolutionary relationship. Second, the phylogenetic tree Sober supports is one of the possible scenarios of MRH, and even without this problem, it is difficult to prove that the possibility nonhuman primate species and human share mind-reading ability is higher than the possibility of the other case, considering how evolution occurs. Consequently, it seems hard to justify anthropomorphism of MRH under Sober’s argument. Some scientists and philosophers say that anthropomorphism sometimes helps observe interesting phenomena or make hypotheses in comparative biology. Nonetheless, we cannot determine that it provides answers about why and how the interesting phenomena appear or which of the hypotheses is better, at least the mind-reading debate, under the current state.Keywords: anthropomorphism, cladistic parsimony, comparative biology, mind-reading debate
Procedia PDF Downloads 172642 Future Sustainable Mobility for Colorado
Authors: Paolo Grazioli
Abstract:
In this paper, we present the main results achieved during an eight-week international design project on Colorado Future Sustainable Mobilitycarried out at Metropolitan State University of Denver. The project was born with the intention to seize the opportunity created by the Colorado government’s plan to promote e-bikes mobility by creating a large network of dedicated tracks. The project was supported by local entrepreneurs who offered financial and professional support. The main goal of the project was to engage design students with the skills to design a user-centered, original vehicle that would satisfy the unarticulated practical and emotional needs of “Gen Z” users by creating a fun, useful, and reliablelife companion that would helps users carry out their everyday tasks in a practical and enjoyable way. The project was carried out with the intention of proving the importance of the combination of creative methods with practical design methodologies towards the creation of an innovative yet immediately manufacturable product for a more sustainable future. The final results demonstrate the students' capability to create innovative and yet manufacturable products and, especially, their ability to create a new design paradigm for future sustainable mobility products. The design solutions explored n the project include collaborative learning and human-interaction design for future mobility. The findings of the research led students to the fabrication of two working prototypes that will be tested in Colorado and developed for manufacturing in the year 2024. The project showed that collaborative design and project-based teaching improve the quality of the outcome and can lead to the creation of real life, innovative products directly from the classroom to the market.Keywords: sustainable transportation design, interface design, collaborative design, user -centered design research, design prototyping
Procedia PDF Downloads 96641 A Multifactorial Algorithm to Automate Screening of Drug-Induced Liver Injury Cases in Clinical and Post-Marketing Settings
Authors: Osman Turkoglu, Alvin Estilo, Ritu Gupta, Liliam Pineda-Salgado, Rajesh Pandey
Abstract:
Background: Hepatotoxicity can be linked to a variety of clinical symptoms and histopathological signs, posing a great challenge in the surveillance of suspected drug-induced liver injury (DILI) cases in the safety database. Additionally, the majority of such cases are rare, idiosyncratic, highly unpredictable, and tend to demonstrate unique individual susceptibility; these qualities, in turn, lend to a pharmacovigilance monitoring process that is often tedious and time-consuming. Objective: Develop a multifactorial algorithm to assist pharmacovigilance physicians in identifying high-risk hepatotoxicity cases associated with DILI from the sponsor’s safety database (Argus). Methods: Multifactorial selection criteria were established using Structured Query Language (SQL) and the TIBCO Spotfire® visualization tool, via a combination of word fragments, wildcard strings, and mathematical constructs, based on Hy’s law criteria and pattern of injury (R-value). These criteria excluded non-eligible cases from monthly line listings mined from the Argus safety database. The capabilities and limitations of these criteria were verified by comparing a manual review of all monthly cases with system-generated monthly listings over six months. Results: On an average, over a period of six months, the algorithm accurately identified 92% of DILI cases meeting established criteria. The automated process easily compared liver enzyme elevations with baseline values, reducing the screening time to under 15 minutes as opposed to multiple hours exhausted using a cognitively laborious, manual process. Limitations of the algorithm include its inability to identify cases associated with non-standard laboratory tests, naming conventions, and/or incomplete/incorrectly entered laboratory values. Conclusions: The newly developed multifactorial algorithm proved to be extremely useful in detecting potential DILI cases, while heightening the vigilance of the drug safety department. Additionally, the application of this algorithm may be useful in identifying a potential signal for DILI in drugs not yet known to cause liver injury (e.g., drugs in the initial phases of development). This algorithm also carries the potential for universal application, due to its product-agnostic data and keyword mining features. Plans for the tool include improving it into a fully automated application, thereby completely eliminating a manual screening process.Keywords: automation, drug-induced liver injury, pharmacovigilance, post-marketing
Procedia PDF Downloads 152640 Quantification and Identification of the Main Components of the Biomass of the Microalgae Scenedesmus SP. – Prospection of Molecules of Commercial Interest
Authors: Carolina V. Viegas, Monique Gonçalves, Gisel Chenard Diaz, Yordanka Reyes Cruz, Donato Alexandre Gomes Aranda
Abstract:
To develop the massive cultivation of microalgae, it is necessary to isolate and characterize the species, improving genetic tools in search of specific characteristics. Therefore, the detection, identification and quantification of the compounds that compose the Scenedesmus sp. were prerequisites to verify the potential of these microalgae. The main objective of this work was to carry out the characterization of Scenedesmus sp. as to the content of ash, carbohydrates, proteins and lipids as well as the determination of the composition of their lipid classes and main fatty acids. The biomass of Scenedesmus sp, showed 15,29 ± 0,23 % of ash and CaO (36,17 %) was the main component of this fraction, The total protein and carbohydrate content of the biomass was 40,74 ± 1,01 % and 23,37 ± 0,95 %, respectively, proving to be a potential source of proteins as well as carbohydrates for the production of ethanol via fermentation, The lipid contents extracted via Bligh & Dyer and in situ saponification were 8,18 ± 0,13 % and 4,11 ± 0,11 %, respectively. In the lipid extracts obtained via Bligh & Dyer, approximately 50 % of the composition of this fraction consists of fatty compounds, while the other half is composed of an unsaponifiable fraction composed mainly of chlorophylls, phytosterols and carotenes. From the lowest yield, it was possible to obtain a selectivity of 92,14 % for fatty components (fatty acids and fatty esters) confirmed through the infrared spectroscopy technique. The presence of polyunsaturated acids (~45 %) in the lipid extracts indicated the potential of this fraction as a source of nutraceuticals. The results indicate that the biomass of Scenedesmus sp, can become a promising potential source for obtaining polyunsaturated fatty acids, carotenoids and proteins as well as the simultaneous obtainment of different compounds of high commercial value.Keywords: microalgae, Desmodesmus, lipid classes, fatty acid profile, proteins, carbohydrates
Procedia PDF Downloads 97639 A Corporate Social Responsibility Project to Improve the Democratization of Scientific Education in Brazil
Authors: Denise Levy
Abstract:
Nuclear technology is part of our everyday life and its beneficial applications help to improve the quality of our lives. Nevertheless, in Brazil, most often the media and social networks tend to associate radiation to nuclear weapons and major accidents, and there is still great misunderstanding about the peaceful applications of nuclear science. The Educational Portal Radioatividades (Radioactivities) is a corporate social responsibility initiative that takes advantage of the growing impact of Internet to offer high quality scientific information for teachers and students throughout Brazil. This web-based initiative focusses on the positive applications of nuclear technology, presenting the several contributions of ionizing radiation in different contexts, such as nuclear medicine, agriculture techniques, food safety and electric power generation, proving nuclear technology as part of modern life and a must to improve the quality of our lifestyle. This educational project aims to contribute for democratization of scientific education and social inclusion, approaching society to scientific knowledge, promoting critical thinking and inspiring further reflections. The website offers a wide variety of ludic activities such as curiosities, interactive exercises and short courses. Moreover, teachers are offered free web-based material with full instructions to be developed in class. Since year 2013, the project has been developed and improved according to a comprehensive study about the realistic scenario of ICTs infrastructure in Brazilian schools and in full compliance with the best e-learning national and international recommendations.Keywords: information and communication technologies, nuclear technology, science communication, society and education
Procedia PDF Downloads 326638 A Survey on Ambient Intelligence in Agricultural Technology
Abstract:
Despite the advances made in various new technologies, application of these technologies for agriculture still remains a formidable task, as it involves integration of diverse domains for monitoring the different process involved in agricultural management. Advances in ambient intelligence technology represents one of the most powerful technology for increasing the yield of agricultural crops and to mitigate the impact of water scarcity, climatic change and methods for managing pests, weeds, and diseases. This paper proposes a GPS-assisted, machine to machine solutions that combine information collected by multiple sensors for the automated management of paddy crops. To maintain the economic viability of paddy cultivation, the various techniques used in agriculture are discussed and a novel system which uses ambient intelligence technique is proposed in this paper. The ambient intelligence based agricultural system gives a great scope.Keywords: ambient intelligence, agricultural technology, smart agriculture, precise farming
Procedia PDF Downloads 606637 Model Based Optimization of Workplace Ergonomics by Workpiece and Resource Positioning
Authors: Edward Hage, Pieter Lietaert, Gabriel Abedrabbo
Abstract:
Musculoskeletal disorders are an important category of work-related diseases. They are often caused by working in non-ergonomic postures and are preventable with proper workplace design, possibly including human-machine collaboration. This paper presents a methodology and a supporting software prototype to design a simple assembly cell with minimal ergonomic risk. The methodology helps to determine the optimal position and orientation of workpieces and workplace resources for specific operator assembly actions. The methodology is tested on an industrial use case: a collaborative robot (cobot) assisted assembly of a clamping device. It is shown that the automated methodology results in a workplace design with significantly reduced ergonomic risk to the operator compared to a manual design of the cell.Keywords: ergonomics optimization, design for ergonomics, workplace design, pose generation
Procedia PDF Downloads 124636 Performance Analysis of Artificial Neural Network Based Land Cover Classification
Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul
Abstract:
Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.Keywords: landcover classification, artificial neural network, remote sensing, SPOT 5
Procedia PDF Downloads 546635 Using AI for Analysing Political Leaders
Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu
Abstract:
This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence
Procedia PDF Downloads 86634 Retraction Free Motion Approach and Its Application in Automated Robotic Edge Finishing and Inspection Processes
Authors: M. Nemer, E. I. Konukseven
Abstract:
In this paper, a motion generation algorithm for a six Degrees of Freedom (DoF) robotic hand in a static environment is presented. The purpose of developing this method is to be used in the path generation of the end-effector for edge finishing and inspection processes by utilizing the CAD model of the considered workpiece. Nonetheless, the proposed algorithm may be extended to be applicable for other similar manufacturing processes. A software package programmed in the application programming interface (API) of SolidWorks generates tool path data for the robot. The proposed method significantly simplifies the given problem, resulting in a reduction in the CPU time needed to generate the path, and offers an efficient overall solution. The ABB IRB2000 robot is chosen for executing the generated tool path.Keywords: CAD-based tools, edge deburring, edge scanning, offline programming, path generation
Procedia PDF Downloads 284633 High School Transgender Students in Brazil: The Difficulties of Staying in School and the Psychological Implications in a Hostile School Environment
Authors: Aline Giardin, Maria Rosa Chitolina
Abstract:
Our research conducted in 8 different schools in the city of Rio Grande do Sul, Brazil, we can clearly see that, even in modern times, where the search for equality between men and women is already over 60 years of struggle in this world where you show Much more than two genres and in this world that is proving that sex is not just biological, are confronted with sexist and phallocentric situations in our Schools, and among our students. The sample consisted of 503 students with a mean age between 13 and 21 years. 107 students identified themselves as gay, lesbian, bisexual or transgender. The remainder was identified as heterosexual or none at all. Compared to LGBT students, transgender students faced the school's more hostile climates, while non-transgender female students were less likely to experience anti-LGBT victimization. In addition, transgender students experienced more negative experiences at school compared to students whose gender expression adhered to traditional gender norms. Transgender students were more likely to feel insecure at school, with 80.0% of transgender students reporting that they felt insecure at school because of their gender identity. Female students in our research reported lower frequencies of victimization based on sexual orientation and gender identity and were less likely to feel insecure at school. In all indicators of discrimination in school, high school students have outperformed elementary school students and have had fewer resources and supports related to LGBT. High school students reported higher rates of victimization on sexual orientation and gender expression than elementary school students. For example, about one-third (35.5%) of high school students suffered regular physical Very often) based on their sexual orientation, compared to less than a quarter (21.4%) of primary school students. The whole premise here is to perceive the phallocentrism and sexism hidden in our schools. Opposition between the sexes is not reflexive or articulates a biological fact, but a social construction.Keywords: transgender students, school, psychological implications, discrimination
Procedia PDF Downloads 458632 Development on the Modeling Driven Architecture
Authors: Sahar Shahsavaripour Ghazanfarpour
Abstract:
As our daily life depends on quality of built services by systems and using devices in our environment; so education and model of software′s quality will be so important. By daily growth in software′s systems and using them so much, progressing process and requirements′ evaluation in primary level of progress especially architecture level in software get more important. Modern driver architecture changes an in dependent model of a level into some specific models that their purpose is reducing number of software changes into an executive model. Process of designing software engineering is mid-automated. The needed quality attribute in designing architecture and quality attribute in representation are in architecture models. The main problem is the relationship between needs, and elements in some aspect with implicit models and input sources in process. It’s because there is no detection ability. The MART profile is use to describe real-time properties and perform plat form modeling.Keywords: MDA, DW, OMG, UML, AKB, software architecture, ontology, evaluation
Procedia PDF Downloads 495631 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species
Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie
Abstract:
Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. That is why the need for automation of this task is urgent. A lot of studies have investigated the subject using different standard image processing descriptors and sometimes hand-crafted ones.In this work, we make a comparative study between classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN, Autoencoders, Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approachesKeywords: pollens identification, features extraction, pollens classification, automated palynology
Procedia PDF Downloads 136630 Authentic Connection between the Deity and the Individual Human Being Is Vital for Psychological, Biological, and Social Health
Authors: Sukran Karatas
Abstract:
Authentic energy network interrelations between the Creator and the creations as well as from creations to creations are the most important points for the worlds of physics and metaphysic to unite together and work in harmony, both within human beings, on the other hand, have the ability to choose their own life style voluntarily. However, it includes the automated involuntary spirit, soul and body working systems together with the voluntary actions, which involve personal, cultural and universal, rational or irrational variable values. Therefore, it is necessary for human beings to know the methods of existing authentic energy network connections to be able to communicate correlate and accommodate the physical and metaphysical entities as a proper functioning unity; this is essential for complete human psychological, biological and social well-being. Authentic knowledge is necessary for human beings to verify the position of self within self and with others to regulate conscious and voluntary actions accordingly in order to prevent oppressions and frictions within self and between self and others. Unfortunately, the absence of genuine individual and universal basic knowledge about how to establish an authentic energy network connection within self, with the deity and the environment is the most problematic issue even in the twenty-first century. The second most problematic issue is how to maintain freedom, equality and justice among human beings during these strictly interwoven network connections, which naturally involve physical, metaphysical and behavioral actions of the self and the others. The third and probably the most complicated problem is the scientific identification and the authentication of the deity. This not only provides the whole power and control over the choosers to set their life orders but also to establish perfect physical and metaphysical links as fully coordinated functional energy network. This thus indicates that choosing an authentic deity is the key-point that influences automated, emotional, and behavioral actions altogether, which shapes human perception, personal actions, and life orders. Therefore, we will be considering the existing ‘four types of energy wave end boundary behaviors’, comprising, free end, fixed end boundary behaviors, as well as boundary behaviors from denser medium to less dense medium and from less dense medium to denser medium. Consequently, this article aims to demonstrate that the authentication and the choice of deity has an important effect on individual psychological, biological and social health. It is hoped that it will encourage new researches in the field of authentic energy network connections to establish the best position and the most correct interrelation connections with self and others without violating the authorized orders and the borders of one another to live happier and healthier lives together. In addition, the book ‘Deity and Freedom, Equality, Justice in History, Philosophy, Science’ has more detailed information for those interested in this subject.Keywords: deity, energy network, power, freedom, equality, justice, happiness, sadness, hope, fear, psychology, biology, sociology
Procedia PDF Downloads 346629 Microalgae Technology for Nutraceuticals
Authors: Weixing Tan
Abstract:
Production of nutraceuticals from microalgae—a virtually untapped natural phyto-based source of which there are 200,000 to 1,000,000 species—offers a sustainable and healthy alternative to conventionally sourced nutraceuticals for the market. Microalgae can be grown organically using only natural sunlight, water and nutrients at an extremely fast rate, e.g. 10-100 times more efficiently than crops or trees. However, the commercial success of microalgae products at scale remains limited largely due to the lack of economically viable technologies. There are two major microalgae production systems or technologies currently available: 1) the open system as represented by open pond technology and 2) the closed system such as photobioreactors (PBR). Each carries its own unique features and challenges. Although an open system requires a lower initial capital investment relative to a PBR, it conveys many unavoidable drawbacks; for example, much lower productivity, difficulty in contamination control/cleaning, inconsistent product quality, inconvenience in automation, restriction in location selection, and unsuitability for cold areas – all directly linked to the system openness and flat underground design. On the other hand, a PBR system has characteristics almost entirely opposite to the open system, such as higher initial capital investment, better productivity, better contamination and environmental control, wider suitability in different climates, ease in automation, higher and consistent product quality, higher energy demand (particularly if using artificial lights), and variable operational expenses if not automated. Although closed systems like PBRs are not highly competitive yet in current nutraceutical supply market, technological advances can be made, in particular for the PBR technology, to narrow the gap significantly. One example is a readily scalable P2P Microalgae PBR Technology at Grande Prairie Regional College, Canada, developed over 11 years considering return on investment (ROI) for key production processes. The P2P PBR system is approaching economic viability at a pre-commercial stage due to five ROI-integrated major components. They include: (1) optimum use of free sunlight through attenuation (patented); (2) simple, economical, and chemical-free harvesting (patent ready to file); (3) optimum pH- and nutrient-balanced culture medium (published), (4) reliable water and nutrient recycling system (trade secret); and (5) low-cost automated system design (trade secret). These innovations have allowed P2P Microalgae Technology to increase daily yield to 106 g/m2/day of Chlorella vulgaris, which contains 50% proteins and 2-3% omega-3. Based on the current market prices and scale-up factors, this P2P PBR system presents as a promising microalgae technology for market competitive nutraceutical supply.Keywords: microalgae technology, nutraceuticals, open pond, photobioreactor PBR, return on investment ROI, technological advances
Procedia PDF Downloads 157628 Voice Liveness Detection Using Kolmogorov Arnold Networks
Authors: Arth J. Shah, Madhu R. Kamble
Abstract:
Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection
Procedia PDF Downloads 39627 Automated 3D Segmentation System for Detecting Tumor and Its Heterogeneity in Patients with High Grade Ovarian Epithelial Cancer
Authors: Dimitrios Binas, Marianna Konidari, Charis Bourgioti, Lia Angela Moulopoulou, Theodore Economopoulos, George Matsopoulos
Abstract:
High grade ovarian epithelial cancer (OEC) is fatal gynecological cancer and the poor prognosis of this entity is closely related to considerable intratumoral genetic heterogeneity. By examining imaging data, it is possible to assess the heterogeneity of tumorous tissue. This study proposes a methodology for aligning, segmenting and finally visualizing information from various magnetic resonance imaging series in order to construct 3D models of heterogeneity maps from the same tumor in OEC patients. The proposed system may be used as an adjunct digital tool by health professionals for personalized medicine, as it allows for an easy visual assessment of the heterogeneity of the examined tumor.Keywords: image segmentation, ovarian epithelial cancer, quantitative characteristics, image registration, tumor visualization
Procedia PDF Downloads 211626 A Review of In-Vehicle Network for Cloud Connected Vehicle
Authors: Hanbhin Ryu, Ilkwon Yun
Abstract:
Automotive industry targets to provide an improvement in safety and convenience through realizing fully autonomous vehicle. For partially realizing fully automated driving, Current vehicles already feature varieties of advanced driver assistance system (ADAS) for safety and infotainment systems for the driver’s convenience. This paper presents Cloud Connected Vehicle (CCV) which connected vehicles with cloud data center via the access network to control the vehicle for achieving next autonomous driving form and describes its features. This paper also describes the shortcoming of the existing In-Vehicle Network (IVN) to be a next generation IVN of CCV and organize the 802.3 Ethernet, the next generation of IVN, related research issue to verify the feasibility of using Ethernet. At last, this paper refers to additional considerations to adopting Ethernet-based IVN for CCV.Keywords: autonomous vehicle, cloud connected vehicle, ethernet, in-vehicle network
Procedia PDF Downloads 479625 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data
Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder
Abstract:
Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods
Procedia PDF Downloads 253624 Multi-Label Approach to Facilitate Test Automation Based on Historical Data
Authors: Warda Khan, Remo Lachmann, Adarsh S. Garakahally
Abstract:
The increasing complexity of software and its applicability in a wide range of industries, e.g., automotive, call for enhanced quality assurance techniques. Test automation is one option to tackle the prevailing challenges by supporting test engineers with fast, parallel, and repetitive test executions. A high degree of test automation allows for a shift from mundane (manual) testing tasks to a more analytical assessment of the software under test. However, a high initial investment of test resources is required to establish test automation, which is, in most cases, a limitation to the time constraints provided for quality assurance of complex software systems. Hence, a computer-aided creation of automated test cases is crucial to increase the benefit of test automation. This paper proposes the application of machine learning for the generation of automated test cases. It is based on supervised learning to analyze test specifications and existing test implementations. The analysis facilitates the identification of patterns between test steps and their implementation with test automation components. For the test case generation, this approach exploits historical data of test automation projects. The identified patterns are the foundation to predict the implementation of unknown test case specifications. Based on this support, a test engineer solely has to review and parameterize the test automation components instead of writing them manually, resulting in a significant time reduction for establishing test automation. Compared to other generation approaches, this ML-based solution can handle different writing styles, authors, application domains, and even languages. Furthermore, test automation tools require expert knowledge by means of programming skills, whereas this approach only requires historical data to generate test cases. The proposed solution is evaluated using various multi-label evaluation criteria (EC) and two small-sized real-world systems. The most prominent EC is ‘Subset Accuracy’. The promising results show an accuracy of at least 86% for test cases, where a 1:1 relationship (Multi-Class) between test step specification and test automation component exists. For complex multi-label problems, i.e., one test step can be implemented by several components, the prediction accuracy is still at 60%. It is better than the current state-of-the-art results. It is expected the prediction quality to increase for larger systems with respective historical data. Consequently, this technique facilitates the time reduction for establishing test automation and is thereby independent of the application domain and project. As a work in progress, the next steps are to investigate incremental and active learning as additions to increase the usability of this approach, e.g., in case labelled historical data is scarce.Keywords: machine learning, multi-class, multi-label, supervised learning, test automation
Procedia PDF Downloads 132623 Operator Efficiency Study for Assembly Line Optimization at Semiconductor Assembly and Test
Authors: Rohana Abdullah, Md Nizam Abd Rahman, Seri Rahayu Kamat
Abstract:
Operator efficiency aspect is gaining importance in ensuring optimized usage of resources especially in the semi-automated manufacturing environment. This paper addresses a case study done to solve operator efficiency and line balancing issue at a semiconductor assembly and test manufacturing. A Man-to-Machine (M2M) work study technique is used to study operator current utilization and determine the optimum allocation of the operators to the machines. Critical factors such as operator activity, activity frequency and operator competency level are considered to gain insight on the parameters that affects the operator utilization. Equipment standard time and overall equipment efficiency (OEE) information are also gathered and analyzed to achieve a balanced and optimized production.Keywords: operator efficiency, optimized production, line balancing, industrial and manufacturing engineering
Procedia PDF Downloads 729