Search results for: artificial recharge site
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4580

Search results for: artificial recharge site

4070 The Role of Artificial Intelligence on Interior Space in College of Architecture and Design

Authors: Saif M. M. Obeidat

Abstract:

This research investigates the impact of artificial intelligence (AI) on interior spaces within a college of Architecture and Design. Employing a qualitative approach, the study conducts in-depth interviews and reviews AI-integrated design projects within the academic setting. The key objectives include assessing AI integration in design processes, examining the influence of AI on user experience, exploring its role in architectural innovation, identifying challenges, and assessing educational implications. The study aims to provide a comprehensive understanding of AI's role in shaping interior spaces within academia. It anticipates improved efficiency in design processes, positive user feedback on functionality and experiences, the emergence of innovative design solutions, and the identification of challenges like ethical considerations and technical limitations. Additionally, the research expects insights into how educational programs may need to adapt to incorporate AI knowledge and skills, ensuring students are well-prepared for the evolving landscape of architecture and design practice. By addressing these objectives, the research contributes valuable insights into the evolving relationship between technology and the field of architecture, particularly within educational contexts.

Keywords: interior design, artificial intelligence, academic settings, technology, education

Procedia PDF Downloads 94
4069 Multi-Temporal Analysis of Vegetation Change within High Contaminated Watersheds by Superfund Sites in Wisconsin

Authors: Punwath Prum

Abstract:

Superfund site is recognized publicly to be a severe environmental problem to surrounding communities and biodiversity due to its hazardous chemical waste from industrial activities. It contaminates the soil and water but also is a leading potential point-source pollution affecting ecosystem in watershed areas from chemical substances. The risks of Superfund site on watershed can be effectively measured by utilizing publicly available data and geospatial analysis by free and open source application. This study analyzed the vegetation change within high risked contaminated watersheds in Wisconsin. The high risk watersheds were measured by which watershed contained high number Superfund sites. The study identified two potential risk watersheds in Lafayette and analyzed the temporal changes of vegetation within the areas based on Normalized difference vegetation index (NDVI) analysis. The raster statistic was used to compare the change of NDVI value over the period. The analysis results showed that the NDVI value within the Superfund sites’ boundary has a significant lower value than nearby surrounding and provides an analogy for environmental hazard affect by the chemical contamination in Superfund site.

Keywords: soil contamination, spatial analysis, watershed

Procedia PDF Downloads 140
4068 Conceptualising an Open Living Museum beyond Musealization in the Context of a Historic City: Study of Bhaktapur World Heritage Site, Nepal

Authors: Shyam Sunder Kawan

Abstract:

Museums are enclosed buildings encompassing and displaying creative artworks, artefacts, and discoveries for people’s knowledge and observation. In the context of Nepal, museums and exhibition areas are either adaptive to small gallery spaces in residences or ‘neo-classical palatial complexes’ that evolved during the 19th century. This study accepts the sparse occurrence of a diverse range of artworks and expressions in the country's complex cultural manifestations within vivid ethnic groups. This study explores the immense potential of one such prevalence beyond the delimitation of physical boundaries. Taking Bhaktapur World Heritage Site as a case, the study perpetuates its investigation into real-time life activities that this city and its cultural landscapes ensemble. Seeking the ‘musealization’ as an urban process to induce museums into the city precinct, this study anticipates art space into urban spaces to offer a limitless experience for this contemporary world. Unveiling art as an experiential component, this study aims to conceptualize a living heritage as an infinite resource for museum interpretation beyond just educational institute purposes.

Keywords: living museum, site museum, museulization, contemporary arts, cultural heritage, historic cities

Procedia PDF Downloads 103
4067 Cosmic Muon Tomography at the Wylfa Reactor Site Using an Anti-Neutrino Detector

Authors: Ronald Collins, Jonathon Coleman, Joel Dasari, George Holt, Carl Metelko, Matthew Murdoch, Alexander Morgan, Yan-Jie Schnellbach, Robert Mills, Gareth Edwards, Alexander Roberts

Abstract:

At the Wylfa Magnox Power Plant between 2014–2016, the VIDARR prototype anti-neutrino detector was deployed. It is comprised of extruded plastic scintillating bars measuring 4 cm × 1 cm × 152 cm and utilised wavelength shifting fibres (WLS) and multi-pixel photon counters (MPPCs) to detect and quantify radiation. During deployment, it took cosmic muon data in accidental coincidence with the anti-neutrino measurements with the power plant site buildings obscuring the muon sky. Cosmic muons have a significantly higher probability of being attenuated and/or absorbed by denser objects, and so one-sided cosmic muon tomography was utilised to image the reactor site buildings. In order to achieve clear building outlines, a control data set was taken at the University of Liverpool from 2016 – 2018, which had minimal occlusion of the cosmic muon flux by dense objects. By taking the ratio of these two data sets and using GEANT4 simulations, it is possible to perform a one-sided cosmic muon tomography analysis. This analysis can be used to discern specific buildings, building heights, and features at the Wylfa reactor site, including the reactor core/reactor core shielding using ∼ 3 hours worth of cosmic-ray detector live time. This result demonstrates the feasibility of using cosmic muon analysis to determine a segmented detector’s location with respect to surrounding buildings, assisted by aerial photography or satellite imagery.

Keywords: anti-neutrino, GEANT4, muon, tomography, occlusion

Procedia PDF Downloads 186
4066 Accumulation of Trace Metals in Leaf Vegetables Cultivated in High Traffic Areas in Ghent, Belgium

Authors: Veronique Troch, Wouter Van der Borght, Véronique De Bleeker, Bram Marynissen, Nathan Van der Eecken, Gijs Du Laing

Abstract:

Among the challenges associated with increased urban food production are health risks from food contamination, due to the higher pollution loads in urban areas, compared to rural sites. Therefore, the risks posed by industrial or traffic pollution of locally grown food, was defined as one of five high-priority issues of urban agriculture requiring further investigation. The impact of air pollution on urban horticulture is the subject of this study. More particular, this study focuses on the atmospheric deposition of trace metals on leaf vegetables cultivated in the city of Ghent, Belgium. Ghent is a particularly interesting study site as it actively promotes urban agriculture. Plants accumulate heavy metals by absorption from contaminated soils and through deposition on parts exposed to polluted air. Accumulation of trace metals in vegetation grown near roads has been shown to be significantly higher than those grown in rural areas due to traffic-related contaminants in the air. Studies of vegetables demonstrated, that the uptake and accumulation of trace metals differed among crop type, species, and among plant parts. Studies on vegetables and fruit trees in Berlin, Germany, revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and parameters related to barriers between sampling site and neighboring roads. This study aims to supplement this scarce research on heavy metal accumulation in urban horticulture. Samples from leaf vegetables were collected from different sites, including allotment gardens, in Ghent. Trace metal contents on these leaf vegetables were analyzed by ICP-MS (inductively coupled plasma mass spectrometry). In addition, precipitation on each sampling site was collected by NILU-type bulk collectors and similarly analyzed for trace metals. On one sampling site, different parameters which might influence trace metal content in leaf vegetables were analyzed in detail. These parameters are distance of planting site to the nearest road, barriers between planting site and nearest road, and type of leaf vegetable. For comparison, a rural site, located farther from city traffic and industrial pollution, was included in this study. Preliminary results show that there is a high correlation between trace metal content in the atmospheric deposition and trace metal content in leaf vegetables. Moreover, a significant higher Pb, Cu and Fe concentration was found on spinach collected from Ghent, compared to spinach collected from a rural site. The distance of planting site to the nearest road significantly affected the accumulation of Pb, Cu, Mo and Fe on spinach. Concentrations of those elements on spinach increased with decreasing distance between planting site and the nearest road. Preliminary results did not show a significant effect of barriers between planting site and the nearest road on accumulation of trace metals on leaf vegetables. The overall goal of this study is to complete and refine existing guidelines for urban gardening to exclude potential health risks from food contamination. Accordingly, this information can help city governments and civil society in the professionalization and sustainable development of urban agriculture.

Keywords: atmospheric deposition, leaf vegetables, trace metals, traffic pollution, urban agriculture

Procedia PDF Downloads 240
4065 Site-based Internship Experiences: From Research to Implementation and Community Collaboration

Authors: Jamie Sundvall, Lisa Jennings

Abstract:

Site based field internship learning (SBL) is an educational approach within a Master’s of Social Work (MSW) university field placement department that promotes a more streamlined approach to the integration of theory and evidence based practices for social work students. The SBL model is founded on research in the field, consideration of current work force needs, United States national trends of MSW graduate skill and knowledge deficits, educational trends in students pursing a master’s degree in social work, and current social problems that require unique problem solving skills. This study explores the use of site-based learning in a hybrid social work program. In this setting, site based learning pairs online education courses and social work field education to create training opportunities for social work students within their own community and cultural context. Students engage in coursework in an online setting with both synchronous and asynchronous features that facilitate development of core competencies for MSW students. Through the SBL model, students are then partnered with faculty in a virtual course room and a university vetted site within their community. The study explores how this model of learning creates community partnerships, through which students engage in a learning loop to develop social work skills, while preparing students to address current community, social, and global issues with the engagement of technology. The goal of SBL is to more effectively equip social work students for practice according to current workforce demands, provide access to education and care to populations who have limited access, and create self-sustainable partnerships. Further, the model helps students learn integration of evidence based practices and helps instructors more effectively teach integration of ethics into practice. The study found that the SBL model increases the influence and professional relevance of the social work profession, and ultimately facilitates stronger approaches to integrating theory into practice. Current implementation of the practice in the United States will be presented in the study. dditionally, future research conceptualization of SBL models will be presented, in order to collaborate on advancing best approaches of translating theory into practice, according to the current needs of the profession and needs of social work students.

Keywords: collaboration, fieldwork, research, site-based learning, technology

Procedia PDF Downloads 125
4064 Assessment of Water Quality of Euphrates River at Babylon Governorate, for Drinking, Irrigation and general, Using Water Quality Index (Canadian Version) (CCMEWQI)

Authors: Amer Obaid Saud

Abstract:

Water quality index (WQI) is considered as an effective tool in categorization of water resources for its quality and suitability for different uses. The Canadian version of water quality index (CCME WQI) which based on the comparison of the water quality parameters to regulatory standards and give a single value to the water quality of a source was applied in this study to assess the water quality of Euphrates river in Iraq at Babylon Governorate north of Baghdad and determine its suitability for aquatic environment (GWQI), drinking water (PWSI) and irrigation(IWQI). Five stations were selected on the river in Babylon (Euphrates River/AL-Musiab, Hindia barrage, two stations at Hilla city and the fifth station at Al-Hshmeya north of Hilla. Fifteen water samples were collected every month during August 2013 to July 2014 at the study sites and analyzed for the physico-chemical parameters like (Temperature, pH, Electrical Conductivity, Total Dissolved Solids(TDS), Total Suspended Solids(TSS), Total Alkalinity, Total Hardness, Calcium and Magnesium Concentration, some of nutrient like Nitrite, Nitrate, Phosphate also the study of concentration of some heavy metals (Fe, Pb, Zn, Cu, Mn, and Cd) in water and comparison of measures to benchmarks such as guidelines and objectives to assess change in water quality. The result of Canadian version of(CCME .WQI) to assess the irrigation water quality (IWQI) of Euphrates river was (83-good) at site one during second seasonal period while the lowest was (66-Fair) in the second station during the fourth seasonal period, the values of potable water supply index (PWSI)that the highest value was (68-Fair) in the fifth site during the second period while the lowest value (42 -Poor) in the second site during the first seasonal period,the highest value for general water quality (GWQI) was (74-Fair) in site five during the second seasonal period, the lowest value (48-Marginal) in the second site during the first seasonal period. It was observed that the main cause of deterioration in water quality was due to the lack of, unprotected river sites ,high anthropogenic activities and direct discharge of industrial effluent.

Keywords: Babylon governorate, Canadian version, water quality, Euphrates river

Procedia PDF Downloads 398
4063 An Artificial Intelligence Supported QUAL2K Model for the Simulation of Various Physiochemical Parameters of Water

Authors: Mehvish Bilal, Navneet Singh, Jasir Mushtaq

Abstract:

Water pollution puts people's health at risk, and it can also impact the ecology. For practitioners of integrated water resources management (IWRM), water quality modelling may be useful for informing decisions about pollution control (such as discharge permitting) or demand management (such as abstraction permitting). To comprehend the current pollutant load, movement of effective load movement of contaminants generates effective relation between pollutants, mathematical simulation, source, and water quality is regarded as one of the best estimating tools. The current study involves the Qual2k model, which includes manual simulation of the various physiochemical characteristics of water. To this end, various sensors could be installed for the automatic simulation of various physiochemical characteristics of water. An artificial intelligence model has been proposed for the automatic simulation of water quality parameters. Models of water quality have become an effective tool for identifying worldwide water contamination, as well as the ultimate fate and behavior of contaminants in the water environment. Water quality model research is primarily conducted in Europe and other industrialized countries in the first world, where theoretical underpinnings and practical research are prioritized.

Keywords: artificial intelligence, QUAL2K, simulation, physiochemical parameters

Procedia PDF Downloads 105
4062 Calibration Methods of Direct and Indirect Reading Pressure Sensor and Uncertainty Determination

Authors: Sinem O. Aktan, Musa Y. Akkurt

Abstract:

Experimental pressure calibration methods can be classified into three areas: (1) measurements in liquid or gas systems, (2) measurements in static-solid media systems, and (3) measurements in dynamic shock systems. Fluid (liquid and gas) systems high accuracies can be obtainable and commonly used for the calibration method of a pressure sensor. Pressure calibrations can be performed for metrological traceability in two ways, which are on-site (field) and in the laboratory. Laboratory and on-site calibration procedures and the requirements of the DKD-R-6-1 and Euramet cg-17 guidelines will also be addressed. In this study, calibration methods of direct and indirect reading pressure sensor and measurement uncertainty contributions will be explained.

Keywords: pressure metrology, pressure calibration, dead-weight tester, pressure uncertainty

Procedia PDF Downloads 150
4061 An Alternative Semi-Defined Larval Diet for Rearing of Sand Fly Species Phlebotomus argentipes in Laboratory

Authors: Faizan Hassan, Seema Kumari, V. P. Singh, Pradeep Das, Diwakar Singh Dinesh

Abstract:

Phlebotomus argentipes is an established vector for Visceral Leishmaniasis in Indian subcontinent. Laboratory colonization of Sand flies is imperative in research on vectors, which requires a proper diet for their larvae and adult growth that ultimately affects their survival and fecundity. In most of the laboratories, adult Sand flies are reared on rabbit blood feeding/artificial blood feeding and their larvae on fine grinded rabbit faeces as a sole source of food. Rabbit faeces are unhygienic, difficult to handle, high mites infestation as well as owing to bad odour which creates menacing to human users ranging from respiratory problems to eye infection and most importantly it does not full fill all the nutrients required for proper growth and development. It is generally observed that the adult emergence is very low in comparison to egg hatched, which may be due to insufficient food nutrients provided to growing larvae. To check the role of food nutrients on larvae survival and adult emergence, a high protein rich artificial diet for sand fly larvae were used in this study. The composition of artificial diet to be tested includes fine grinded (9 gm each) Rice, Pea nuts & Soyabean balls. These three food ingredients are rich source of all essential amino acids along with carbohydrate and minerals which is essential for proper metabolism and growth. In this study artificial food was found significantly more effective for larval development and adult emergence than rabbit faeces alone (P value >0.05). The weight of individual larvae was also found higher in test pots than the control. This study suggest that protein plays an important role in insect larvae development and adding carbohydrate will also enhances the fecundity of insects larvae.

Keywords: artificial food, nutrients, Phlebotomus argentipes, sand fly

Procedia PDF Downloads 305
4060 Rising of Single and Double Bubbles during Boiling and Effect of Electric Field in This Process

Authors: Masoud Gholam Ale Mohammad, Mojtaba Hafezi Birgani

Abstract:

An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes in the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity.

Keywords: single and double bubbles, electric field, boiling, rising

Procedia PDF Downloads 226
4059 An Analytical Formulation of Pure Shear Boundary Condition for Assessing the Response of Some Typical Sites in Mumbai

Authors: Raj Banerjee, Aniruddha Sengupta

Abstract:

An earthquake event, associated with a typical fault rupture, initiates at the source, propagates through a rock or soil medium and finally daylights at a surface which might be a populous city. The detrimental effects of an earthquake are often quantified in terms of the responses of superstructures resting on the soil. Hence, there is a need for the estimation of amplification of the bedrock motions due to the influence of local site conditions. In the present study, field borehole log data of Mangalwadi and Walkeswar sites in Mumbai city are considered. The data consists of variation of SPT N-value with the depth of soil. A correlation between shear wave velocity (Vₛ) and SPT N value for various soil profiles of Mumbai city has been developed using various existing correlations which is used further for site response analysis. MATLAB program is developed for studying the ground response analysis by performing two dimensional linear and equivalent linear analysis for some of the typical Mumbai soil sites using pure shear (Multi Point Constraint) boundary condition. The model is validated in linear elastic and equivalent linear domain using the popular commercial program, DEEPSOIL. Three actual earthquake motions are selected based on their frequency contents and durations and scaled to a PGA of 0.16g for the present ground response analyses. The results are presented in terms of peak acceleration time history with depth, peak shear strain time history with depth, Fourier amplitude versus frequency, response spectrum at the surface etc. The peak ground acceleration amplification factors are found to be about 2.374, 3.239 and 2.4245 for Mangalwadi site and 3.42, 3.39, 3.83 for Walkeswar site using 1979 Imperial Valley Earthquake, 1989 Loma Gilroy Earthquake and 1987 Whitter Narrows Earthquake, respectively. In the absence of any site-specific response spectrum for the chosen sites in Mumbai, the generated spectrum at the surface may be utilized for the design of any superstructure at these locations.

Keywords: deepsoil, ground response analysis, multi point constraint, response spectrum

Procedia PDF Downloads 180
4058 Subsurface Water in Mars' Shallow Diluvium Deposits: Evidence from Tianwen-1 Radar Observations

Authors: Changzhi Jiang, Chunyu Ding, Yan Su, Jiawei Li, Ravi Sharma, Yuanzhou Liu, Jiangwan Xu

Abstract:

Early Mars is believed to have had extensive liquid water activity, which has now predominantly transitioned to a frozen state, with the majority of water stored in polar ice caps. It has long been deemed that the shallow subsurface of Mars' mid-to-low latitudes is devoid of liquid water. However, geological features observed at the Tianwen-1 landing site hint potential subsurface water. Our research indicates that the shallow subsurface at the Tianwen-1 landing site consists primarily of diluvium deposits containing liquid brine and brine ice, which exhibits diurnal thermal convection processes. Here we report the relationship between the loss tangent and temperature of materials within 5 meters depth of the subsurface at the Tianwen-1 landing site, as in-situ detected by high-frequency radar and climate station onboard the Zhurong rover. When the strata temperature exceeds ~ 240 K, the mixed brine ice transitions to liquid brine, significantly increasing the loss tangent from an average of ~ 0.0167 to a maximum of ~ 0.0448. This finding indicates the presence of substantial subsurface water in Mars' mid-to-low latitudes, influencing the shallow subsurface heat distribution and contributing to the current Martian hydrological cycle.

Keywords: water on mars, mars exploration, in-situ radar detection, tianwen-1 mission

Procedia PDF Downloads 37
4057 Rational Design of Potent Compounds for Inhibiting Ca2+ -Dependent Calmodulin Kinase IIa, a Target of Alzheimer’s Disease

Authors: Son Nguyen, Thanh Van, Ly Le

Abstract:

Ca2+ - dependent calmodulin kinase IIa (CaMKIIa) has recently been found to associate with protein tau missorting and polymerization in Alzheimer’s Disease (AD). However, there has yet inhibitors targeting CaMKIIa to investigate the correlation between CaMKIIa activity and protein tau polymer formation. Combining virtual screening and our statistics in binding contribution scoring function (BCSF), we rationally identified potential compounds that bind to specific CaMKIIa active site and specificity-affinity distribution of the ligand within the active site. Using molecular dynamics simulation, we identified structural stability of CaMKIIa and potent inhibitors, and site-directed bonding, separating non-specific and specific molecular interaction features. Despite of variation in confirmation of simulation time, interactions of the potent inhibitors were found to be strongly associated with the unique chemical features extracted from molecular binding poses. In addition, competitive inhibitors within CaMKIIa showed an important molecular recognition pattern toward specific ligand features. Our approach combining virtual screening with BCSF may provide an universally applicable method for precise identification in the discovery of compounds.

Keywords: Alzheimer’s disease, Ca 2+ -dependent calmodulin kinase IIa, protein tau, molecular docking

Procedia PDF Downloads 274
4056 Application of GPR for Prospection in Two Archaeological Sites at Aswan Area, Egypt

Authors: Abbas Mohamed Abbas, Raafat El-Shafie Fat-Helbary, Karrar Omar El Fergawy, Ahmed Hamed Sayed

Abstract:

The exploration in archaeological area requires non-invasive methods, and hence the Ground Penetrating Radar (GPR) technique is a proper candidate for this task. GPR investigation is widely applied for searching for hidden ancient targets. So, in this paper GPR technique has been used in archaeological investigation. The aim of this study was to obtain information about the subsurface and associated structures beneath two selected sites at the western bank of the River Nile at Aswan city. These sites have archaeological structures of different ages starting from 6thand 12th Dynasties to the Greco-Roman period. The first site is called Nag’ El Gulab, the study area was 30 x 16 m with separating distance 2m between each profile, while the second site is Nag’ El Qoba, the survey method was not in grid but in lines pattern with different lengths. All of these sites were surveyed by GPR model SIR-3000 with antenna 200 MHz. Beside the processing of each profile individually, the time-slice maps have been conducted Nag’ El Gulab site, to view the amplitude changes in a series of horizontal time slices within the ground. The obtained results show anomalies may interpret as presence of associated tombs structures. The probable tombs structures similar in their depth level to the opened tombs in the studied areas.

Keywords: ground penetrating radar, archeology, Nag’ El Gulab, Nag’ El Qoba

Procedia PDF Downloads 394
4055 Hydrological Challenges and Solutions in the Nashik Region: A Multi Tracer and Geochemistry Approach to Groundwater Management

Authors: Gokul Prasad, Pennan Chinnasamy

Abstract:

The degradation of groundwater resources, attributed to factors such as excessive abstraction and contamination, has emerged as a global concern. This study delves into the stable isotopes of water) in a hard-rock aquifer situated in the Upper Godavari watershed, an agriculturally rich region in India underlain by Basalt. The higher groundwater draft (> 90%) poses significant risks; comprehending groundwater sources, flow patterns, and their environmental impacts is pivotal for researchers and water managers. The region has faced five droughts in the past 20 years; four are categorized as medium. The recharge rates are variable and show a very minimum contribution to groundwater. The rainfall pattern shows vast variability, with the region receiving seasonal monsoon rainfall for just four months and the rest of the year experiencing minimal rainfall. This research closely monitored monsoon precipitation inputs and examined spatial and temporal fluctuations in δ18O and δ2H in both groundwater and precipitation. By discerning individual recharge events during monsoons, it became possible to identify periods when evaporation led to groundwater quality deterioration, characterized by elevated salinity and stable isotope values in the return flow. The locally derived meteoric water line (LMWL) (δ2H = 6.72 * δ18O + 1.53, r² = 0.6) provided valuable insights into the groundwater system. The leftward shift of the Nashik LMWL in relation to the GMWL and LMWL indicated groundwater evaporation (-33 ‰), supported by spatial variations in electrical conductivity (EC) data. Groundwater in the eastern and northern watershed areas exhibited higher salinity > 3000uS/cm, expanding > 40% of the area compared to the western and southern regions due to geological disparities (alluvium vs basalt). The findings emphasize meteoric precipitation as the primary groundwater source in the watershed. However, spatial variations in isotope values and chemical constituents indicate other contributing factors, including evaporation, groundwater source type, and natural or anthropogenic (specifically agricultural and industrial) contaminants. Therefore, the study recommends focused hydro geochemistry and isotope analysis in areas with strong agricultural and industrial influence for the development of holistic groundwater management plans for protecting the groundwater aquifers' quantity and quality.

Keywords: groundwater quality, stable isotopes, salinity, groundwater management, hard-rock aquifer

Procedia PDF Downloads 47
4054 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network

Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You

Abstract:

With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.

Keywords: artificial neural network (ANN), chromatic dispersion (CD), delay-tap sampling (DTS), optical signal-to-noise ratio (OSNR)

Procedia PDF Downloads 112
4053 Mixing Time: Influence on the Compressive Strength

Authors: J. Alvarez Muñoz, Dominguez Lepe J. A.

Abstract:

A suitable mixing time of the concrete, allows form a homogeneous mass, quality that leads to greater compressive strength and durability. Although there are recommendations as ASTM C94 standard these mention the time and the number of minimum and maximum speed for a ready-mix concrete of good quality, the specific behavior that would have a concrete mixed on site to variability of the mixing time is unknown. In this study was evaluated the behavior a design of mixture structural of f´c=250 kg/cm2, elaborate on site with limestone aggregate in warm sub-humid climate, subjected to different mixing times. Based on the recommendation for ready-mixed concrete ASTM C94, different times were set at 70, 90, 100, 110, 120, 140 total revolutions. A field study in which 14 works were observed where structural concrete made on site was used, allowed to set at 24 the number of revolutions to the reference mixture. For the production of concrete was used a hand feed concrete mixer with drum speed 28 RPM, the ratio w/c was 0.36 corrected, with a slump of 5-6 cm, for all mixtures. The compressive strength tests were performed at 3, 7, 14, and 28 days. The most outstanding results show increases in resistance in the mixtures of 24 to 70 revolutions between 8 and 17 percent and 70 to 90 revolutions of 3 to 8 percent. Increasing the number of revolutions at 110, 120 and 140, there was a reduction of the compressive strength of 0.5 to 8 percent. Regarding mixtures consistencies, they had a slump of 5 cm to 24, 70 and 90 rpm and less than 5 cm from 100 revolutions. Clearly, those made with more than 100 revolutions mixtures not only decrease the compressive strength but also the workability.

Keywords: compressive strength, concrete, mixing time, workability

Procedia PDF Downloads 400
4052 Optimization of Electric Vehicle (EV) Charging Station Allocation Based on Multiple Data - Taking Nanjing (China) as an Example

Authors: Yue Huang, Yiheng Feng

Abstract:

Due to the global pressure on climate and energy, many countries are vigorously promoting electric vehicles and building charging (public) charging facilities. Faced with the supply-demand gap of existing electric vehicle charging stations and unreasonable space usage in China, this paper takes the central city of Nanjing as an example, establishes a site selection model through multivariate data integration, conducts multiple linear regression SPSS analysis, gives quantitative site selection results, and provides optimization models and suggestions for charging station layout planning.

Keywords: electric vehicle, charging station, allocation optimization, urban mobility, urban infrastructure, nanjing

Procedia PDF Downloads 92
4051 Artificial Intelligence as a Policy Response to Teaching and Learning Issues in Education in Ghana

Authors: Joshua Osondu

Abstract:

This research explores how Artificial Intelligence (AI) can be utilized as a policy response to address teaching and learning (TL) issues in education in Ghana. The dual (AI and human) instructor model is used as a theoretical framework to examine how AI can be employed to improve teaching and learning processes and to equip learners with the necessary skills in the emerging AI society. A qualitative research design was employed to assess the impact of AI on various TL issues, such as teacher workloads, a lack of qualified educators, low academic performance, unequal access to education and educational resources, a lack of participation in learning, and poor access and participation based on gender, place of origin, and disability. The study concludes that AI can be an effective policy response to TL issues in Ghana, as it has the potential to increase students’ participation in learning, increase access to quality education, reduce teacher workloads, and provide more personalized instruction. The findings of this study are significant for filling in the gaps in AI research in Ghana and other developing countries and for motivating the government and educational institutions to implement AI in TL, as this would ensure quality, access, and participation in education and help Ghana industrialize.

Keywords: artificial intelligence, teacher, learner, students, policy response

Procedia PDF Downloads 92
4050 Women Perception of Spatial Safety Relating to Working in Historic Cairo’s Retail Street Markets

Authors: Toka M. Abufarag

Abstract:

This research primarily studies the correlation between the existence of different spatial factors in relation to the perception of females towards safely participating in the labor force within selected areas of economic bustle in Historic Cairo. This research measures the following independent variables: (1) perception regarding spatial safety on the street as controlled by street network, (2) vegetation as a facilitator and inhibitor of feeling safe in public places, and (3) outdoor lighting; in relation to the following dependent variable: the perception of females towards safely participating in the labor force in Historic Cairo. The objective of this research lies within adding to the design guidelines of urban design and planning in terms of design recommendations, making them more inclusive, especially those dealing with conserving and enhancing the built environment of old and historic cities. It is hypothesized that a balanced male-to-female ratio in terms of street activity, increased visibility of street in terms of its volume, a decrease in street obstacles, creation of open sighted vegetation, and increased visibility due to proper lighting will show up as positive response relating to the female perception of safety. The site chosen as an area to host this exercise of data collection is Al-Ataba. The site is within the borders of Historic Cairo and was chosen for two reasons: firstly, it provides a major source of economic bustle in Historic Cairo; and secondly, it hosts retail economic activities. This is a cross-sectional study. The data collected will consist of three parts: (1) observations by the researcher regarding the percentage of female participation, as well as perception of females on site, (2) interviews with women working on-site regarding the percentage of female participation, as well as their perception on participating, and (3) an anonymous online survey that studies the perception of a random sample of women towards the site as a place to exist in. The survey will aid in producing design recommendations on how to design an open 'souk' that suits women’s perception of a safe space.

Keywords: urban design, women empowerment, safety perception, street markets, historic Cairo

Procedia PDF Downloads 125
4049 Collapsed World Heritage Site: Supply Chain Effect: Case Study of Monument in Kathmandu Valley after the Devastating Earthquake in Nepal

Authors: Rajaram Mahat, Roshan Khadka

Abstract:

Nepal has remained a land of diverse people and culture consisting more than hundred ethnic and caste groups with 92 different languages. Each ethnic and cast group have their own common culture. Kathmandu, the capital city of Nepal is one of the multi-ethnic, lingual and cultural ancient places. Dozens of monuments with the history of more than thousand years are located in Kathmandu Valley. More or less all of the heritage site have been affected by devastating earthquake in April and May 2015. This study shows the most popular tourist and pilgrim’s destination like Kathmandu Darbar Square, Bhaktapur Darbarsquare, Patan Darbar Square, Swayambhunath temple complex, Dharahara Tower, Pasupatinath Hindu Religious Complex etc. have been massively destroyed. This paper analyses the socio economic consequence to the community people of world heritage site after devastating earthquake in Kathmandu Valley. Initial findings indicate that domestic and international current tourists flow have decreased by 41% and average 23% of local craft shop, curio shop, hotel, restaurant, grocery store, footpath shop including employment of tourist guide have been closed down as well as travel & tour business has decreased by 12%. Supply chain effect is noticeably shown in particular collapsed world heritage sites. It has also seen negative impact to National economy as well. This study has recommended to government of Nepal and other donor to reconstruct the collapse world heritage sites and to preserve the other existing world heritage site with treatment of earthquake resist structure as soon as possible.

Keywords: world heritage, community, earthquake, supply chain effect

Procedia PDF Downloads 254
4048 Application of Signature Verification Models for Document Recognition

Authors: Boris M. Fedorov, Liudmila P. Goncharenko, Sergey A. Sybachin, Natalia A. Mamedova, Ekaterina V. Makarenkova, Saule Rakhimova

Abstract:

In modern economic conditions, the question of the possibility of correct recognition of a signature on digital documents in order to verify the expression of will or confirm a certain operation is relevant. The additional complexity of processing lies in the dynamic variability of the signature for each individual, as well as in the way information is processed because the signature refers to biometric data. The article discusses the issues of using artificial intelligence models in order to improve the quality of signature confirmation in document recognition. The analysis of several possible options for using the model is carried out. The results of the study are given, in which it is possible to correctly determine the authenticity of the signature on small samples.

Keywords: signature recognition, biometric data, artificial intelligence, neural networks

Procedia PDF Downloads 148
4047 Modelling Soil Inherent Wind Erodibility Using Artifical Intellligent and Hybrid Techniques

Authors: Abbas Ahmadi, Bijan Raie, Mohammad Reza Neyshabouri, Mohammad Ali Ghorbani, Farrokh Asadzadeh

Abstract:

In recent years, vast areas of Urmia Lake in Dasht-e-Tabriz has dried up leading to saline sediments exposure on the surface lake coastal areas being highly susceptible to wind erosion. This study was conducted to investigate wind erosion and its relevance to soil physicochemical properties and also modeling of wind erodibility (WE) using artificial intelligence techniques. For this purpose, 96 soil samples were collected from 0-5 cm depth in 414000 hectares using stratified random sampling method. To measure the WE, all samples (<8 mm) were exposed to 5 different wind velocities (9.5, 11, 12.5, 14.1 and 15 m s-1 at the height of 20 cm) in wind tunnel and its relationship with soil physicochemical properties was evaluated. According to the results, WE varied within the range of 76.69-9.98 (g m-2 min-1)/(m s-1) with a mean of 10.21 and coefficient of variation of 94.5% showing a relatively high variation in the studied area. WE was significantly (P<0.01) affected by soil physical properties, including mean weight diameter, erodible fraction (secondary particles smaller than 0.85 mm) and percentage of the secondary particle size classes 2-4.75, 1.7-2 and 0.1-0.25 mm. Results showed that the mean weight diameter, erodible fraction and percentage of size class 0.1-0.25 mm demonstrated stronger relationship with WE (coefficients of determination were 0.69, 0.67 and 0.68, respectively). This study also compared efficiency of multiple linear regression (MLR), gene expression programming (GEP), artificial neural network (MLP), artificial neural network based on genetic algorithm (MLP-GA) and artificial neural network based on whale optimization algorithm (MLP-WOA) in predicting of soil wind erodibility in Dasht-e-Tabriz. Among 32 measured soil variable, percentages of fine sand, size classes of 1.7-2.0 and 0.1-0.25 mm (secondary particles) and organic carbon were selected as the model inputs by step-wise regression. Findings showed MLP-WOA as the most powerful artificial intelligence techniques (R2=0.87, NSE=0.87, ME=0.11 and RMSE=2.9) to predict soil wind erodibility in the study area; followed by MLP-GA, MLP, GEP and MLR and the difference between these methods were significant according to the MGN test. Based on the above finding MLP-WOA may be used as a promising method to predict soil wind erodibility in the study area.

Keywords: wind erosion, erodible fraction, gene expression programming, artificial neural network

Procedia PDF Downloads 71
4046 Estimating Groundwater Seepage Rates: Case Study at Zegveld, Netherlands

Authors: Wondmyibza Tsegaye Bayou, Johannes C. Nonner, Joost Heijkers

Abstract:

This study aimed to identify and estimate dynamic groundwater seepage rates using four comparative methods; the Darcian approach, the water balance approach, the tracer method, and modeling. The theoretical background to these methods is put together in this study. The methodology was applied to a case study area at Zegveld following the advice of the Water Board Stichtse Rijnlanden. Data collection has been from various offices and a field campaign in the winter of 2008/09. In this complex confining layer of the study area, the location of the phreatic groundwater table is at a shallow depth compared to the piezometric water level. Data were available for the model years 1989 to 2000 and winter 2008/09. The higher groundwater table shows predominately-downward seepage in the study area. Results of the study indicated that net recharge to the groundwater table (precipitation excess) and the ditch system are the principal sources for seepage across the complex confining layer. Especially in the summer season, the contribution from the ditches is significant. Water is supplied from River Meije through a pumping system to meet the ditches' water demand. The groundwater seepage rate was distributed unevenly throughout the study area at the nature reserve averaging 0.60 mm/day for the model years 1989 to 2000 and 0.70 mm/day for winter 2008/09. Due to data restrictions, the seepage rates were mainly determined based on the Darcian method. Furthermore, the water balance approach and the tracer methods are applied to compute the flow exchange within the ditch system. The site had various validated groundwater levels and vertical flow resistance data sources. The phreatic groundwater level map compared with TNO-DINO groundwater level data values overestimated the groundwater level depth by 28 cm. The hydraulic resistance values obtained based on the 3D geological map compared with the TNO-DINO data agreed with the model values before calibration. On the other hand, the calibrated model significantly underestimated the downward seepage in the area compared with the field-based computations following the Darcian approach.

Keywords: groundwater seepage, phreatic water table, piezometric water level, nature reserve, Zegveld, The Netherlands

Procedia PDF Downloads 85
4045 Artificial Neural Network Reconstruction of Proton Exchange Membrane Fuel Cell Output Profile under Transient Operation

Authors: Ge Zheng, Jun Peng

Abstract:

Unbalanced power output from individual cells of Proton Exchange Membrane Fuel Cell (PEMFC) has direct effects on PEMFC stack performance, in particular under transient operation. In the paper, a multi-layer ANN (Artificial Neural Network) model Radial Basis Functions (RBF) has been developed for predicting cells' output profiles by applying gas supply parameters, cooling conditions, temperature measurement of individual cells, etc. The feed-forward ANN model was validated with experimental data. Influence of relevant parameters of RBF on the network accuracy was investigated. After adequate model training, the modelling results show good correspondence between actual measurements and reconstructed output profiles. Finally, after the model was used to optimize the stack output performance under steady-state and transient operating conditions, it suggested that the developed ANN control model can help PEMFC stack to have obvious improvement on power output under fast acceleration process.

Keywords: proton exchange membrane fuel cell, PEMFC, artificial neural network, ANN, cell output profile, transient

Procedia PDF Downloads 169
4044 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality

Authors: Sirilak Areerachakul

Abstract:

Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.

Keywords: artificial neural network, geographic information system, water quality, computer science

Procedia PDF Downloads 343
4043 Applied Bayesian Regularized Artificial Neural Network for Up-Scaling Wind Speed Profile and Distribution

Authors: Aghbalou Nihad, Charki Abderafi, Saida Rahali, Reklaoui Kamal

Abstract:

Maximize the benefit from the wind energy potential is the most interest of the wind power stakeholders. As a result, the wind tower size is radically increasing. Nevertheless, choosing an appropriate wind turbine for a selected site require an accurate estimate of vertical wind profile. It is also imperative from cost and maintenance strategy point of view. Then, installing tall towers or even more expensive devices such as LIDAR or SODAR raises the costs of a wind power project. Various models were developed coming within this framework. However, they suffer from complexity, generalization and lacks accuracy. In this work, we aim to investigate the ability of neural network trained using the Bayesian Regularization technique to estimate wind speed profile up to height of 100 m based on knowledge of wind speed lower heights. Results show that the proposed approach can achieve satisfactory predictions and proof the suitability of the proposed method for generating wind speed profile and probability distributions based on knowledge of wind speed at lower heights.

Keywords: bayesian regularization, neural network, wind shear, accuracy

Procedia PDF Downloads 502
4042 Covid-19, Diagnosis with Computed Tomography and Artificial Intelligence, in a Few Simple Words

Authors: Angelis P. Barlampas

Abstract:

Target: The (SARS-CoV-2) is still a threat. AI software could be useful, categorizing the disease into different severities and indicate the extent of the lesions. Materials and methods: AI is a new revolutionary technique, which uses powered computerized systems, to do what a human being does more rapidly, more easily, as accurate and diagnostically safe as the original medical report and, in certain circumstances, even better, saving time and helping the health system to overcome problems, such as work overload and human fatigue. Results: It will be given an effort to describe to the inexperienced reader (see figures), as simple as possible, how an artificial intelligence system diagnoses computed tomography pictures. First, the computerized machine learns the physiologic motives of lung parenchyma by being feeded with normal structured images of the lung tissue. Having being used to recognizing normal structures, it can then easily indentify the pathologic ones, as their images do not fit to known normal picture motives. It is the same way as when someone spends his free time in reading magazines with quizzes, such as <> and <>. General conclusion: The AI mimics the physiological processes of the human mind, but it does that more efficiently and rapidly and provides results in a few seconds, whereas an experienced radiologist needs many days to do that, or even worse, he is unable to accomplish such a huge task.

Keywords: covid-19, artificial intelligence, automated imaging, CT, chest imaging

Procedia PDF Downloads 51
4041 Occurrence of Half-Metallicity by Sb-Substitution in Non-Magnetic Fe₂TiSn

Authors: S. Chaudhuri, P. A. Bhobe

Abstract:

Fe₂TiSn is a non-magnetic full Heusler alloy with a small gap (~ 0.07 eV) at the Fermi level. The electronic structure is highly symmetric in both the spin bands and a small percentage of substitution of holes or electrons can push the system towards spin polarization. A stable 100% spin polarization or half-metallicity is very desirable in the field of spintronics, making Fe₂TiSn a highly attractive material. However, this composition suffers from an inherent anti-site disorder between Fe and Ti sites. This paper reports on the method adopted to control the anti-site disorder and the realization of the half-metallic ground state in Fe₂TiSn, achieved by chemical substitution. Here, Sb was substituted at Sn site to obtain Fe₂TiSn₁₋ₓSbₓ compositions with x = 0, 0.1, 0.25, 0.5 and 0.6. All prepared compositions with x ≤ 0.6 exhibit long-range L2₁ ordering and a decrease in Fe – Ti anti-site disorder. The transport and magnetic properties of Fe₂TiSn₁₋ₓSbₓ compositions were investigated as a function of temperature in the range, 5 K to 400 K. Electrical resistivity, magnetization, and Hall voltage measurements were carried out. All the experimental results indicate the presence of the half-metallic ground state in x ≥ 0.25 compositions. However, the value of saturation magnetization is small, indicating the presence of compensated magnetic moments. The observed magnetic moments' values are in close agreement with the Slater–Pauling rule in half-metallic systems. Magnetic interactions in Fe₂TiSn₁₋ₓSbₓ are understood from the local crystal structural perspective using extended X-ray absorption fine structure (EXAFS) spectroscopy. The changes in bond distances extracted from EXAFS analysis can be correlated with the hybridization between constituent atoms and hence the RKKY type magnetic interactions that govern the magnetic ground state of these alloys. To complement the experimental findings, first principle electronic structure calculations were also undertaken. The spin-polarized DOS complies with the experimental results for Fe₂TiSn₁₋ₓSbₓ. Substitution of Sb (an electron excess element) at Sn–site shifts the majority spin band to the lower energy side of Fermi level, thus making the system 100% spin polarized and inducing long-range magnetic order in an otherwise non-magnetic Fe₂TiSn. The present study concludes that a stable half-metallic system can be realized in Fe₂TiSn with ≥ 50% Sb – substitution at Sn – site.

Keywords: antisite disorder, EXAFS, Full Heusler alloy, half metallic ferrimagnetism, RKKY interactions

Procedia PDF Downloads 139