Search results for: real
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5238

Search results for: real

18 Efficacy of Solanum anguivi Lam Fruits (African Bitter Berry) in Lowering Glucose Levels in Diabetes Mellitus and Increasing Survival

Authors: Aisha Musaazi Sebunya Nakitto, Anika E. Wagner, Yusuf B. Byaruhanga, John H. Muyonga

Abstract:

The prevalence and burden of diabetes are rapidly increasing globally, stemming from changes in lifestyle and dietary habits. Although several drugs are available to treat type 2 diabetes mellitus (T2DM), many are accompanied by several side effects and are often costly. Solanum anguivi Lam. fruits (SALF) are bitter berries that commonly grow in the wild and are traditionally cultivated by many globally as a remedy for T2DM. This effect is likely attributable to the presence of bioactive compounds such as phenolics, flavonoids, saponins, alkaloids, and vitamin C in SALF. In this study, we investigated the morphological characteristics of different SALF accessions and the effect of ripeness stages and thermal treatments on the bioactive compounds contents (BCC) and antioxidant activity (AA) of SALF accessions. Using the fruit fly Drosophila melanogaster (D. melanogaster) model, we explored the potential impact of dietary SALF in preventing and treating T2DM phenotypes. Morphological characterization was conducted based on descriptors of Solanum species. The BCC and AA of SALF at different ripeness stages (unripe, yellow, orange, and red) and after thermal treatments were determined using spectrophotometry, HPLC, and gravimetry. Male and female fruit flies were fed a high-sugar diet (HSD) to induce a T2DM-like phenotype, while control flies were fed on SY10 medium for up to 24 days. Experimental flies were exposed to HSD supplemented with 5 or 10 mg/ml SALF. The therapeutic and prevention effect of SALF in T2DM-like phenotype was investigated on weight, climbing activity, glucose and triglyceride contents, survival, and gene expression of PPARγ co-activator 1α fly homolog Srl and Drosophila insulin-like peptides. Methods in fly studies included Gustatory assay, Climbing assay, Glucose GOD-PAP assay, Triglyceride GPO-PAP assay, Roti-Quant®, and Real Time-PCR analysis. The ripeness stage significantly influenced SALF BCC and AA, and this was dependent on the accession. The unripe stage had the highest AA and total phenolics and flavonoids; the orange stage was rich in saponins, while the red stage had the highest alkaloid contents. Boiling and steaming increased the total phenolics and AA up to 4-fold and 3-fold, respectively. Drying at low temperatures resulted in higher phenolics and AA than the control. In the therapeutic model, the HSD-fed female flies exhibited elevated glucose levels, which exhibited a dose-dependent reduction upon exposure to a SALF-supplemented diet. Female flies fed on a SALF+ HSD exhibited a significant increase in survival compared to HSD-fed and control diet-fed flies. SALF supplementation did not alter the weights, fitness, and triglyceride levels of female flies in comparison with HSD-only-fed flies. The mRNA levels of Srl decreased in HSD-fed flies compared to the control-fed, with no effect observed in females exposed to HSD+SALF. Similarly, in the preventative model, the SALF diet resulted in higher survival of supplemented flies compared to controls. Consumption of boiled unripe SALF may result in the highest health benefits due to the high phenolic contents and antioxidant activity observed. Dietary intake of SALF significantly lowered glucose levels and increased survival of the D. melanogaster model. Additional studies in higher organisms are needed to explore the preventative and therapeutic potential of SALF in T2DM.

Keywords: antioxidant activity, bioactive compounds, bitter berries, Drosophila melanogaster, Solanum anguivi, type 2 diabetes mellitus, survival

Procedia PDF Downloads 30
17 Optical Coherence Tomography in Differentiation of Acute and Non-Healing Wounds

Authors: Ananya Barui, Provas Banerjee, Jyotirmoy Chatterjee

Abstract:

Application of optical technology in medicine and biology has a long track-record. In this endeavor, OCT is able to attract both engineers and biologists to work together in the field of photonics for establishing a striking non-invasive imaging technology. In contrast to other in vivo imaging modalities like Raman imaging, confocal imaging, two-photon microscopy etc. which can perform in vivo imaging upto 100-200 micron depth due to limitation in numerical aperture or scattering, however, OCT can achieve high-resolution imaging upto few millimeters of tissue structures depending on their refractive index in different anatomical location. This tomographic system depends on interference of two light waves in an interferometer to produce a depth profile of specimen. In wound healing, frequent collection of biopsies for follow-up of repair process could be avoided by such imaging technique. Real time skin OCT (the optical biopsy) has efficacy in deeper and faster illumination of cutaneou tissue to acquire high resolution cross sectional images of their internal micro-structure. Swept Source-OCT (SS-OCT), a novel imaging technique, can generate high-speed depth profile (~ 2 mm) of wound at a sweeping rate of laser with micron level resolution and optimum coherent length of 5-6 mm. Normally multi-layered skin tissue depicts different optical properties along with variation in thickness, refractive index and composition (i.e. keratine layer, water, fat etc.) according to their anatomical location. For instance, stratum corneum, the upper-most and relatively dehydrated layer of epidermis reflects more light and produces more lucid and a sharp demarcation line with rest of the hydrated epidermal region. During wound healing or regeneration, optical properties of cutaneous tissue continuously altered with maturation of wound bed. More mature and less hydrated tissue component reflects more light and becomes visible as a brighter area in comparison to immature region which content higher amount water or fat that depicts as a darker area in OCT image. Non-healing wound possess prolonged inflammation and inhibits nascent proliferative stage. Accumulation of necrotic tissues also prevents the repair of non-healing wounds. Due to high resolution and potentiality to reflect the compositional aspects of tissues in terms of their optical properties, this tomographic method may facilitate in differentiating non-healing and acute wounds in addition to clinical observations. Non-invasive OCT offers better insight regarding specific biological status of tissue in health and pathological conditions, OCT images could be associated with histo-pathological ‘gold standard’. This correlated SS-OCT and microscopic evaluation of the wound edges can provide information regarding progressive healing and maturation of the epithelial components. In the context of searching analogy between two different imaging modalities, their relative performances in imaging of healing bed were estimated for probing an alternative approach. Present study validated utility of SS-OCT in revealing micro-anatomic structure in the healing bed with newer information. Exploring precise correspondence of OCT images features with histo-chemical findings related to epithelial integrity of the regenerated tissue could have great implication. It could establish the ‘optical biopsy’ as a potent non-invasive diagnostic tool for cutaneous pathology.

Keywords: histo-pathology, non invasive imaging, OCT, wound healing

Procedia PDF Downloads 279
16 The Role of Uzbek Music Culture in Tourism

Authors: Odina Omonjonova

Abstract:

The Uzbek people have a rich history and a rapidly developing music culture for several centuries. Monuments, shrines, places of culture and spirituality, which are the most beautiful proofs of history, show that this country has been a center of wisdom since ancient times. Nowadays, Uzbekistan is opening its face to the world with its unique spiritual heritage, historical monuments, peaceful corners and beautiful landscapes. Tourists from many countries visit and get acquainted with Uzbek culture and history and acknowledge it with great respect. The place of traditional music in describing the national color on the world scale is incomparable. Oral folk works that have reached this period, lapar, yalla, songs and ‘Shashmaqom’ are the intangible spiritual wealth of the Uzbek people. They embody the ancient and great history, spiritual world, artistic philosophy, spirit and values of our nation. National music is the main part of the culture of the nation, and here it is worth emphasizing the importance of music in the tourism of Uzbekistan. Foreign guests can enjoy our national music in various ways: (1) Concerts: There are many concert halls and cultural centers in the cities of Uzbekistan, where many concerts and events are held. Well-known musicians, singers and ensembles add more beauty to the beauty of these places, performing musical samples in Shashmaqom and other traditional styles. In these concert programs, tourists will have the opportunity to listen to works of art in an attractive live performance. (2) Festivals: Many music festivals are held in Uzbekistan throughout the year. The ‘Sharq Taronalari’ international music festival is a unique holiday where musicians from all over the world gather to celebrate the diversity of musical traditions. In recent years, traditional music has been played regularly in a number of festivals such as the ‘International Maqom Festival’, ‘International Craft Festival’ and ‘Boysun Bahari’ held in our country, which has increased the attention of travelers to our music culture. (3) Cultural seminars. Tourists interested in hands-on musical experience can participate in musical workshops. These classes allow tourists to learn to play traditional musical instruments and even participate in group activities. (4) Street musicians: In the central places and ancient streets of Uzbekistan's cities, we can meet street musicians playing soulful tunes. Performing and singing folklore samples on modern instruments directly attracts foreign guests. In Uzbekistan, national music and tourism have a direct and indirect connection. Music serves as a bridge between the country's history and its modern identity and enriches the travel experience. The impact of national music on tourism goes beyond mere statistics. Although tourist arrivals have increased significantly due to music-related attractions, the real impact lies in the stories and live testimonies of visitors. Travelers often say that the rhythms of Uzbekistan touched their hearts and broadened their worldview. In addition, music tourism strengthens the country's economy, provides employment, supports local artisans and performers, and provides an opportunity to showcase their talents to a global audience. In short, Uzbekistan is not only a place of interest, but it is among the countries that attract travelers with its unique national music. Uzbek music, folklore, songs, from the wonderful melodies of ‘Shashmaqom’ to the attractive sounds of traditional musical instruments, give aesthetic and spiritual pleasure and are important in organizing a large-scale trip for tourists visiting the country.

Keywords: traditional music, folklore, shashmaqom, tourism, festivals, street musicians, traditional musical instruments

Procedia PDF Downloads 39
15 Harnessing the Power of Artificial Intelligence: Advancements and Ethical Considerations in Psychological and Behavioral Sciences

Authors: Nayer Mofidtabatabaei

Abstract:

Advancements in artificial intelligence (AI) have transformed various fields, including psychology and behavioral sciences. This paper explores the diverse ways in which AI is applied to enhance research, diagnosis, therapy, and understanding of human behavior and mental health. We discuss the potential benefits and challenges associated with AI in these fields, emphasizing the ethical considerations and the need for collaboration between AI researchers and psychological and behavioral science experts. Artificial Intelligence (AI) has gained prominence in recent years, revolutionizing multiple industries, including healthcare, finance, and entertainment. One area where AI holds significant promise is the field of psychology and behavioral sciences. AI applications in this domain range from improving the accuracy of diagnosis and treatment to understanding complex human behavior patterns. This paper aims to provide an overview of the various AI applications in psychological and behavioral sciences, highlighting their potential impact, challenges, and ethical considerations. Mental Health Diagnosis AI-driven tools, such as natural language processing and sentiment analysis, can analyze large datasets of text and speech to detect signs of mental health issues. For example, chatbots and virtual therapists can provide initial assessments and support to individuals suffering from anxiety or depression. Autism Spectrum Disorder (ASD) Diagnosis AI algorithms can assist in early ASD diagnosis by analyzing video and audio recordings of children's behavior. These tools help identify subtle behavioral markers, enabling earlier intervention and treatment. Personalized Therapy AI-based therapy platforms use personalized algorithms to adapt therapeutic interventions based on an individual's progress and needs. These platforms can provide continuous support and resources for patients, making therapy more accessible and effective. Virtual Reality Therapy Virtual reality (VR) combined with AI can create immersive therapeutic environments for treating phobias, PTSD, and social anxiety. AI algorithms can adapt VR scenarios in real-time to suit the patient's progress and comfort level. Data Analysis AI aids researchers in processing vast amounts of data, including survey responses, brain imaging, and genetic information. Privacy Concerns Collecting and analyzing personal data for AI applications in psychology and behavioral sciences raise significant privacy concerns. Researchers must ensure the ethical use and protection of sensitive information. Bias and Fairness AI algorithms can inherit biases present in training data, potentially leading to biased assessments or recommendations. Efforts to mitigate bias and ensure fairness in AI applications are crucial. Transparency and Accountability AI-driven decisions in psychology and behavioral sciences should be transparent and subject to accountability. Patients and practitioners should understand how AI algorithms operate and make decisions. AI applications in psychological and behavioral sciences have the potential to transform the field by enhancing diagnosis, therapy, and research. However, these advancements come with ethical challenges that require careful consideration. Collaboration between AI researchers and psychological and behavioral science experts is essential to harness AI's full potential while upholding ethical standards and privacy protections. The future of AI in psychology and behavioral sciences holds great promise, but it must be navigated with caution and responsibility.

Keywords: artificial intelligence, psychological sciences, behavioral sciences, diagnosis and therapy, ethical considerations

Procedia PDF Downloads 70
14 Northern Nigeria Vaccine Direct Delivery System

Authors: Evelyn Castle, Adam Thompson

Abstract:

Background: In 2013, the Kano State Primary Health Care Management Board redesigned its Routine immunization supply chain from diffused pull to direct delivery push. It addressed issues around stockouts and reduced time spent by health facility staff collecting, and reporting on vaccine usage. The health care board sought the help of a 3PL for twice-monthly deliveries from its cold store to 484 facilities across 44 local governments. eHA’s Health Delivery Systems group formed a 3PL to serve 326 of these new facilities in partnership with the State. We focused on designing and implementing a technology system throughout. Basic methodologies: GIS Mapping: - Planning the delivery of vaccines to hundreds of health facilities requires detailed route planning for delivery vehicles. Mapping the road networks across Kano and Bauchi with a custom routing tool provided information for the optimization of deliveries. Reducing the number of kilometers driven each round by 20%, - reducing cost and delivery time. Direct Delivery Information System: - Vaccine Direct Deliveries are facilitated through pre-round planning (driven by health facility database, extensive GIS, and inventory workflow rules), manager and driver control panel customizing delivery routines and reporting, progress dashboard, schedules/routes, packing lists, delivery reports, and driver data collection applications. Move: Last Mile Logistics Management System: - MOVE has improved vaccine supply information management to be timely, accurate and actionable. Provides stock management workflow support, alerts management for cold chain exceptions/stock outs, and on-device analytics for health and supply chain staff. Software was built to be offline-first with user-validated interface and experience. Deployed to hundreds of vaccine storage site the improved information tools helps facilitate the process of system redesign and change management. Findings: - Stock-outs reduced from 90% to 33% - Redesigned current health systems and managing vaccine supply for 68% of Kano’s wards. - Near real time reporting and data availability to track stock. - Paperwork burdens of health staff have been dramatically reduced. - Medicine available when the community needs it. - Consistent vaccination dates for children under one to prevent polio, yellow fever, tetanus. - Higher immunization rates = Lower infection rates. - Hundreds of millions of Naira worth of vaccines successfully transported. - Fortnightly service to 326 facilities in 326 wards across 30 Local Government areas. - 6,031 cumulative deliveries. - Over 3.44 million doses transported. - Minimum travel distance covered in a round of delivery is 2000 kms & maximum of 6297 kms. - 153,409 kms travelled by 6 drivers. - 500 facilities in 326 wards. - Data captured and synchronized for the first time. - Data driven decision making now possible. Conclusion: eHA’s Vaccine Direct delivery has met challenges in Kano and Bauchi State and provided a reliable delivery service of vaccinations that ensure t health facilities can run vaccination clinics for children under one. eHA uses innovative technology that delivers vaccines from Northern Nigerian zonal stores straight to healthcare facilities. Helped healthcare workers spend less time managing supplies and more time delivering care, and will be rolled out nationally across Nigeria.

Keywords: direct delivery information system, health delivery system, GIS mapping, Northern Nigeria, vaccines

Procedia PDF Downloads 373
13 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 75
12 Assessing How Liberal Arts Colleges Can Teach Undergraduate Students about Key Issues in Migration, Immigration, and Human Rights

Authors: Hao Huang

Abstract:

INTRODUCTION: The Association of American Colleges and Universities (AACU) recommends the development of ‘high-impact practices,’ in an effort to increase rates of student retention and student engagement at undergraduate institutions. To achieve these goals, the Scripps College Humanities Institute and HI Fellows Seminar not only featured distinguished academics presenting their scholarship about current immigration policy and its consequences in the USA and around the world but integrated socially significant community leaders and creative activists/artivists in public talks, student workshops and collaborative art events. Students participated in experiential learning that involved guest personal presentations and discussions, oral history interviews that applied standard oral history methodologies, detailed cultural documentation, collaborative artistic interventions, and weekly posts in Internet Digital Learning Environment Sakai collaborative course forums and regular responses to other students’ comments. Our teaching pedagogies addressed the four learning styles outlined in Kolb’s Learning Style Inventory. PROJECT DESCRIPTION: Over the academic year 2017-18, the Scripps College Humanities Institute and HI Fellows Seminar presented a Fall 2017 topic, ‘The World at Our Doorsteps: Immigration and Deportation in Los Angeles’. Our purpose was to address how current federal government anti-immigration measures have affected many students of color, some of whom are immigrants, many of whom are related to and are friends with people who are impacted by the attitudes as well as the practices of the U.S. Citizenship and Immigration Services. In Spring 2018, we followed with the topic, ‘Exclusive Nationalisms: Global Migration and Immigration’. This addresses the rise of white supremacists who have ascended to position of power worldwide, in America, Europe, Russia, and xenophobic nationalisms in China, Myanmar and the Philippines. Recent scholarship has suggested the existence of categories of refugees beyond the political or social, who fit into the more inclusive category of migrants. ASSESSMENT METHODOLOGIES: Assessment methodologies not only included qualitative student interviews and quantitative student evaluations in standard rubric format, but also Outcome Assessments, Formative Evaluations, and Outside Guest Teacher feedback. These indicated that the most effective educational practices involved collaborative inquiry in undergraduate research, community-based learning, and capstone projects. Assessments of E-portfolios, written and oral coursework, and final creative projects with associated 10-12 page analytic paper revealed that students developed their understanding of how government and social organizations work; they developed communication skills that enhanced working with others from different backgrounds; they developed their ability to thoughtfully evaluate their course performance by adopting reflective practices; they gained analytic and interpretive skills that encouraged self-confidence and self- initiative not only academically, but also with regards to independent projects. CONCLUSION: Most importantly, the Scripps Humanities Institute experiential learning project spurred on real-world actions by our students, such as a public symposium on how to cope with bigots, a student tutoring program for immigrant staff children, student negotiations with the administration to establish meaningful, sustainable diversity and inclusion programs on-campus. Activism is not only to be taught to and for our students– it has to be enacted by our students.

Keywords: immigration, migration, human rights, learning assessment

Procedia PDF Downloads 131
11 Transforming Mindsets and Driving Action through Environmental Sustainability Education: A Course in Case Studies and Project-Based Learning in Public Education

Authors: Sofia Horjales, Florencia Palma

Abstract:

Our society is currently experiencing a profound transformation, demanding a proactive response from governmental bodies and higher education institutions to empower the next generation as catalysts for change. Environmental sustainability is rooted in the critical need to maintain the equilibrium and integrity of natural ecosystems, ensuring the preservation of precious natural resources and biodiversity for the benefit of both present and future generations. It is an essential cornerstone of sustainable development, complementing social and economic sustainability. In this evolving landscape, active methodologies take a central role, aligning perfectly with the principles of the 2030 Agenda for Sustainable Development and emerging as a pivotal element of teacher education. The emphasis on active learning methods has been driven by the urgent need to nurture sustainability and instill social responsibility in our future leaders. The Universidad Tecnológica of Uruguay (UTEC) is a public, technologically-oriented institution established in 2012. UTEC is dedicated to decentralization, expanding access to higher education throughout Uruguay, and promoting inclusive social development. Operating through Regional Technological Institutes (ITRs) and associated centers spread across the country, UTEC faces the challenge of remote student populations. To address this, UTEC utilizes e-learning for equal opportunities, self-regulated learning, and digital skills development, enhancing communication among students, teachers, and peers through virtual classrooms. The Interdisciplinary Continuing Education Program is part of the Innovation and Entrepreneurship Department of UTEC. The main goal is to strengthen innovation skills through a transversal and multidisciplinary approach. Within this Program, we have developed a Case of Study and Project-Based Learning Virtual Course designed for university students and open to the broader UTEC community. The primary aim of this course is to establish a strong foundation for comprehending and addressing environmental sustainability issues from an interdisciplinary perspective. Upon completing the course, we expect students not only to understand the intricate interactions between social and ecosystem environments but also to utilize their knowledge and innovation skills to develop projects that offer enhancements or solutions to real-world challenges. Our course design centers on innovative learning experiences, rooted in active methodologies. We explore the intersection of these methods with sustainability and social responsibility in the education of university students. A paramount focus lies in gathering student feedback, empowering them to autonomously generate ideas with guidance from instructors, and even defining their own project topics. This approach underscores that when students are genuinely engaged in subjects of their choice, they not only acquire the necessary knowledge and skills but also develop essential attributes like effective communication, critical thinking, and problem-solving abilities. These qualities will benefit them throughout their lifelong learning journey. We are convinced that education serves as the conduit to merge knowledge and cultivate interdisciplinary collaboration, igniting awareness and instigating action for environmental sustainability. While systemic changes are undoubtedly essential for society and the economy, we are making significant progress by shaping perspectives and sparking small, everyday actions within the UTEC community. This approach empowers our students to become engaged global citizens, actively contributing to the creation of a more sustainable future.

Keywords: active learning, environmental education, project-based learning, soft skills development

Procedia PDF Downloads 71
10 Transforming Emergency Care: Revolutionizing Obstetrics and Gynecology Operations for Enhanced Excellence

Authors: Lolwa Alansari, Hanen Mrabet, Kholoud Khaled, Abdelhamid Azhaghdani, Sufia Athar, Aska Kaima, Zaineb Mhamdia, Zubaria Altaf, Almunzer Zakaria, Tamara Alshadafat

Abstract:

Introduction: The Obstetrics and Gynecology Emergency Department at Alwakra Hospital has faced significant challenges, which have been further worsened by the impact of the COVID-19 pandemic. These challenges involve issues such as overcrowding, extended wait times, and a notable surge in demand for emergency care services. Moreover, prolonged waiting times have emerged as a primary factor contributing to situations where patients leave without receiving attention, known as left without being seen (LWBS), and unexpectedly abscond. Addressing the issue of insufficient patient mobility in the obstetrics and gynecology emergency department has brought about substantial improvements in patient care, healthcare administration, and overall departmental efficiency. These changes have not only alleviated overcrowding but have also elevated the quality of emergency care, resulting in higher patient satisfaction, better outcomes, and operational rewards. Methodology: The COVID-19 pandemic has served as a catalyst for substantial transformations in the obstetrics and gynecology emergency, aligning seamlessly with the strategic direction of Hamad Medical Corporation (HMC). The fundamental aim of this initiative is to revolutionize the operational efficiency of the OB-GYN ED. To accomplish this mission, a range of transformations has been initiated, focusing on essential areas such as digitizing systems, optimizing resource allocation, enhancing budget efficiency, and reducing overall costs. The project utilized the Plan-Do-Study-Act (PDSA) model, involving a diverse team collecting baseline data and introducing throughput improvements. Post-implementation data and feedback were analysed, leading to the integration of effective interventions into standard procedures. These interventions included optimized space utilization, real-time communication, bedside registration, technology integration, pre-triage screening, enhanced communication and patient education, consultant presence, and a culture of continuous improvement. These strategies significantly reduced waiting times, enhancing both patient care and operational efficiency. Results: Results demonstrated a substantial reduction in overall average waiting time, dropping from 35 to approximately 14 minutes by August 2023. The wait times for priority 1 cases have been reduced from 22 to 0 minutes, and for priority 2 cases, the wait times have been reduced from 32 to approximately 13.6 minutes. The proportion of patients spending less than 8 hours in the OB ED observation beds rose from 74% in January 2022 to over 98% in 2023. Notably, there was a remarkable decrease in LWBS and absconded patient rates from 2020 to 2023. Conclusion: The project initiated a profound change in the department's operational environment. Efficiency became deeply embedded in the unit's culture, promoting teamwork among staff that went beyond the project's original focus and had a positive influence on operations in other departments. This effectiveness not only made processes more efficient but also resulted in significant cost reductions for the hospital. These cost savings were achieved by reducing wait times, which in turn led to fewer prolonged patient stays and reduced the need for additional treatments. These continuous improvement initiatives have now become an integral part of the Obstetrics and Gynecology Division's standard operating procedures, ensuring that the positive changes brought about by the project persist and evolve over time.

Keywords: overcrowding, waiting time, person centered care, quality initiatives

Procedia PDF Downloads 65
9 Gamification Beyond Competition: the Case of DPG Lab Collaborative Learning Program for High-School Girls by GameLab KBTU and UNICEF in Kazakhstan

Authors: Nazym Zhumabayeva, Aleksandr Mezin, Alexandra Knysheva

Abstract:

Women's underrepresentation in STEM is critical, worsened by ineffective engagement in educational practices. UNICEF Kazakhstan and GameLab KBTU's collaborative initiatives aim to enhance female STEM participation by fostering an inclusive environment. Learning from LEVEL UP's 2023 program, which featured a hackathon, the 2024 strategy pivots towards non-competitive gamification. Although the data from last year's project showed higher than average student engagement, observations and in-depth interviews with participants showed that the format was stressful for the girls, making them focus on points rather than on other values. This study presents a gamified educational system, DPG Lab, aimed at incentivizing young women's participation in STEM through the development of digital public goods (DPGs). By prioritizing collaborative gamification elements, the project seeks to create an inclusive learning environment that increases engagement and interest in STEM among young women. The DPG Lab aims to find a solution to minimize competition and support collaboration. The project is designed to motivate female participants towards the development of digital solutions through an introduction to the concept of DPGs. It consists of a short online course, a simulation videogame, and a real-time online quest with an offline finale at the KBTU campus. The online course offers short video lectures on open-source development and DPG standards. The game facilitates the practical application of theoretical knowledge, enriching the learning experience. Learners can also participate in a quest that encourages participants to develop DPG ideas in teams by choosing missions throughout the quest path. At the offline quest finale, the participants will meet in person to exchange experiences and accomplishments without engaging in comparative assessments: the quest ensures that each team’s trajectory is distinct by design. This marks a shift from competitive hackathons to a collaborative format, recognizing the unique contributions and achievements of each participant. The pilot batch of students is scheduled to commence in April 2024, with the finale anticipated in June. It is projected that this group will comprise 50 female high-school students from various regions across Kazakhstan. Expected outcomes include increased engagement and interest in STEM fields among young female participants, positive emotional and psychological impact through an emphasis on collaborative learning environments, and improved understanding and skills in DPG development. GameLab KBTU intends to undertake a hypothesis evaluation, employing a methodology similar to that utilized in the preceding LEVEL UP project. This approach will encompass the compilation of quantitative metrics (conversion funnels, test results, and surveys) and qualitative data from in-depth interviews and observational studies. For comparative analysis, a select group of participants from the previous year's project will be recruited to engage in the DPG Lab. By developing and implementing a gamified framework that emphasizes inclusion, engagement, and collaboration, the study seeks to provide practical knowledge about effective gamification strategies for promoting gender diversity in STEM. The expected outcomes of this initiative can contribute to the broader discussion on gamification in education and gender equality in STEM by offering a replicable and scalable model for similar interventions around the world.

Keywords: collaborative learning, competitive learning, digital public goods, educational gamification, emerging regions, STEM, underprivileged groups

Procedia PDF Downloads 62
8 Critical Factors for Successful Adoption of Land Value Capture Mechanisms – An Exploratory Study Applied to Indian Metro Rail Context

Authors: Anjula Negi, Sanjay Gupta

Abstract:

Paradigms studied inform inadequacies of financial resources, be it to finance metro rails for construction or to meet operational revenues or to derive profits in the long term. Funding sustainability is far and wide for much-needed public transport modes, like urban rail or metro rails, to be successfully operated. India embarks upon a sustainable transport journey and has proposed metro rail systems countrywide. As an emerging economic leader, its fiscal constraints are paramount, and the land value capture (LVC) mechanism provides necessary support and innovation toward development. India’s metro rail policy promotes multiple methods of financing, including private-sector investments and public-private-partnership. The critical question that remains to be addressed is what factors can make such mechanisms work. Globally, urban rail is a revolution noted by many researchers as future mobility. Researchers in this study deep dive by way of literature review and empirical assessments into factors that can lead to the adoption of LVC mechanisms. It is understood that the adoption of LVC methods is in the nascent stages in India. Research posits numerous challenges being faced by metro rail agencies in raising funding and for incremental value capture. A few issues pertaining to land-based financing, inter alia: are long-term financing, inter-institutional coordination, economic/ market suitability, dedicated metro funds, land ownership issues, piecemeal approach to real estate development, property development legal frameworks, etc. The question under probe is what are the parameters that can lead to success in the adoption of land value capture (LVC) as a financing mechanism. This research provides insights into key parameters crucial to the adoption of LVC in the context of Indian metro rails. Researchers have studied current forms of LVC mechanisms at various metro rails of the country. This study is significant as little research is available on the adoption of LVC, which is applicable to the Indian context. Transit agencies, State Government, Urban Local Bodies, Policy makers and think tanks, Academia, Developers, Funders, Researchers and Multi-lateral agencies may benefit from this research to take ahead LVC mechanisms in practice. The study deems it imperative to explore and understand key parameters that impact the adoption of LVC. Extensive literature review and ratification by experts working in the metro rails arena were undertaken to arrive at parameters for the study. Stakeholder consultations in the exploratory factor analysis (EFA) process were undertaken for principal component extraction. 43 seasoned and specialized experts participated in a semi-structured questionnaire to scale the maximum likelihood on each parameter, represented by various types of stakeholders. Empirical data was collected on chosen eighteen parameters, and significant correlation was extracted for output descriptives and inferential statistics. Study findings reveal these principal components as institutional governance framework, spatial planning features, legal frameworks, funding sustainability features and fiscal policy measures. In particular, funding sustainability features highlight sub-variables of beneficiaries to pay and use of multiple revenue options towards success in LVC adoption. Researchers recommend incorporation of these variables during early stage in design and project structuring for success in adoption of LVC. In turn leading to improvements in revenue sustainability of a public transport asset and help in undertaking informed transport policy decisions.

Keywords: Exploratory factor analysis, land value capture mechanism, financing metro rails, revenue sustainability, transport policy

Procedia PDF Downloads 81
7 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines

Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri

Abstract:

This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.

Keywords: wind turbines, aeroelasticity, repetitive control, periodic systems

Procedia PDF Downloads 249
6 Translation of Self-Inject Contraception Training Objectives Into Service Performance Outcomes

Authors: Oluwaseun Adeleke, Samuel O. Ikani, Simeon Christian Chukwu, Fidelis Edet, Anthony Nwala, Mopelola Raji, Simeon Christian Chukwu

Abstract:

Background: Health service providers are offered in-service training periodically to strengthen their ability to deliver services that are ethical, quality, timely and safe. Not all capacity-building courses have successfully resulted in intended service delivery outcomes because of poor training content, design, approach, and ambiance. The Delivering Innovations in Selfcare (DISC) project developed a Moment of Truth innovation, which is a proven training model focused on improving consumer/provider interaction that leads to an increase in the voluntary uptake of subcutaneous depot medroxyprogesterone acetate (DMPA-SC) self-injection among women who opt for injectable contraception. Methodology: Six months after training on a moment of truth (MoT) training manual, the project conducted two intensive rounds of qualitative data collection and triangulation that included provider, client, and community mobilizer interviews, facility observations, and routine program data collection. Respondents were sampled according to a convenience sampling approach, and data collected was analyzed using a codebook and Atlas-TI. Providers and clients were interviewed to understand their experience, perspective, attitude, and awareness about the DMPA-SC self-inject. Data were collected from 12 health facilities in three states – eight directly trained and four cascades trained. The research team members came together for a participatory analysis workshop to explore and interpret emergent themes. Findings: Quality-of-service delivery and performance outcomes were observed to be significantly better in facilities whose providers were trained directly trained by the DISC project than in sites that received indirect training through master trainers. Facilities that were directly trained recorded SI proportions that were twice more than in cascade-trained sites. Direct training comprised of full-day and standalone didactic and interactive sessions constructed to evoke commitment, passion and conviction as well as eliminate provider bias and misconceptions in providers by utilizing human interest stories and values clarification exercises. Sessions also created compelling arguments using evidence and national guidelines. The training also prioritized demonstration sessions, utilized job aids, particularly videos, strengthened empathetic counseling – allaying client fears and concerns about SI, trained on positioning self-inject first and side effects management. Role plays and practicum was particularly useful to enable providers to retain and internalize new knowledge. These sessions provided experiential learning and the opportunity to apply one's expertise in a supervised environment where supportive feedback is provided in real-time. Cascade Training was often a shorter and abridged form of MoT training that leveraged existing training already planned by master trainers. This training was held over a four-hour period and was less emotive, focusing more on foundational DMPA-SC knowledge such as a reorientation to DMPA-SC, comparison of DMPA-SC variants, counseling framework and skills, data reporting and commodity tracking/requisition – no facility practicums. Training on self-injection was not as robust, presumably because they were not directed at methods in the contraceptive mix that align with state/organizational sponsored objectives – in this instance, fostering LARC services. Conclusion: To achieve better performance outcomes, consideration should be given to providing training that prioritizes practice-based and emotive content. Furthermore, a firm understanding and conviction about the value training offers improve motivation and commitment to accomplish and surpass service-related performance outcomes.

Keywords: training, performance outcomes, innovation, family planning, contraception, DMPA-SC, self-care, self-injection.

Procedia PDF Downloads 85
5 Modeling the Human Harbor: An Equity Project in New York City, New York USA

Authors: Lauren B. Birney

Abstract:

The envisioned long-term outcome of this three-year research, and implementation plan is for 1) teachers and students to design and build their own computational models of real-world environmental-human health phenomena occurring within the context of the “Human Harbor” and 2) project researchers to evaluate the degree to which these integrated Computer Science (CS) education experiences in New York City (NYC) public school classrooms (PreK-12) impact students’ computational-technical skill development, job readiness, career motivations, and measurable abilities to understand, articulate, and solve the underlying phenomena at the center of their models. This effort builds on the partnership’s successes over the past eight years in developing a benchmark Model of restoration-based Science, Technology, Engineering, and Math (STEM) education for urban public schools and achieving relatively broad-based implementation in the nation’s largest public school system. The Billion Oyster Project Curriculum and Community Enterprise for Restoration Science (BOP-CCERS STEM + Computing) curriculum, teacher professional developments, and community engagement programs have reached more than 200 educators and 11,000 students at 124 schools, with 84 waterfront locations and Out of School of Time (OST) programs. The BOP-CCERS Partnership is poised to develop a more refined focus on integrating computer science across the STEM domains; teaching industry-aligned computational methods and tools; and explicitly preparing students from the city’s most under-resourced and underrepresented communities for upwardly mobile careers in NYC’s ever-expanding “digital economy,” in which jobs require computational thinking and an increasing percentage require discreet computer science technical skills. Project Objectives include the following: 1. Computational Thinking (CT) Integration: Integrate computational thinking core practices across existing middle/high school BOP-CCERS STEM curriculum as a means of scaffolding toward long term computer science and computational modeling outcomes. 2. Data Science and Data Analytics: Enabling Researchers to perform interviews with Teachers, students, community members, partners, stakeholders, and Science, Technology, Engineering, and Mathematics (STEM) industry Professionals. Collaborative analysis and data collection were also performed. As a centerpiece, the BOP-CCERS partnership will expand to include a dedicated computer science education partner. New York City Department of Education (NYCDOE), Computer Science for All (CS4ALL) NYC will serve as the dedicated Computer Science (CS) lead, advising the consortium on integration and curriculum development, working in tandem. The BOP-CCERS Model™ also validates that with appropriate application of technical infrastructure, intensive teacher professional developments, and curricular scaffolding, socially connected science learning can be mainstreamed in the nation’s largest urban public school system. This is evidenced and substantiated in the initial phases of BOP-CCERS™. The BOP-CCERS™ student curriculum and teacher professional development have been implemented in approximately 24% of NYC public middle schools, reaching more than 250 educators and 11,000 students directly. BOP-CCERS™ is a fully scalable and transferable educational model, adaptable to all American school districts. In all settings of the proposed Phase IV initiative, the primary beneficiary group will be underrepresented NYC public school students who live in high-poverty neighborhoods and are traditionally underrepresented in the STEM fields, including African Americans, Latinos, English language learners, and children from economically disadvantaged households. In particular, BOP-CCERS Phase IV will explicitly prepare underrepresented students for skilled positions within New York City’s expanding digital economy, computer science, computational information systems, and innovative technology sectors.

Keywords: computer science, data science, equity, diversity and inclusion, STEM education

Procedia PDF Downloads 58
4 Enhancing Disaster Resilience: Advanced Natural Hazard Assessment and Monitoring

Authors: Mariza Kaskara, Stella Girtsou, Maria Prodromou, Alexia Tsouni, Christodoulos Mettas, Stavroula Alatza, Kyriaki Fotiou, Marios Tzouvaras, Charalampos Kontoes, Diofantos Hadjimitsis

Abstract:

Natural hazard assessment and monitoring are crucial in managing the risks associated with fires, floods, and geohazards, particularly in regions prone to these natural disasters, such as Greece and Cyprus. Recent advancements in technology, developed by the BEYOND Center of Excellence of the National Observatory of Athens, have been successfully applied in Greece and are now set to be transferred to Cyprus. The implementation of these advanced technologies in Greece has significantly improved the country's ability to respond to these natural hazards. For wildfire risk assessment, a scalar wildfire occurrence risk index is created based on the predictions of machine learning models. Predicting fire danger is crucial for the sustainable management of forest fires as it provides essential information for designing effective prevention measures and facilitating response planning for potential fire incidents. A reliable forecast of fire danger is a key component of integrated forest fire management and is heavily influenced by various factors that affect fire ignition and spread. The fire risk model is validated by the sensitivity and specificity metric. For flood risk assessment, a multi-faceted approach is employed, including the application of remote sensing techniques, the collection and processing of data from the most recent population and building census, technical studies and field visits, as well as hydrological and hydraulic simulations. All input data are used to create precise flood hazard maps according to various flooding scenarios, detailed flood vulnerability and flood exposure maps, which will finally produce the flood risk map. Critical points are identified, and mitigation measures are proposed for the worst-case scenario, namely, refuge areas are defined, and escape routes are designed. Flood risk maps can assist in raising awareness and save lives. Validation is carried out through historical flood events using remote sensing data and records from the civil protection authorities. For geohazards monitoring (e.g., landslides, subsidence), Synthetic Aperture Radar (SAR) and optical satellite imagery are combined with geomorphological and meteorological data and other landslide/ground deformation contributing factors. To monitor critical infrastructures, including dams, advanced InSAR methodologies are used for identifying surface movements through time. Monitoring these hazards provides valuable information for understanding processes and could lead to early warning systems to protect people and infrastructure. Validation is carried out through both geotechnical expert evaluations and visual inspections. The success of these systems in Greece has paved the way for their transfer to Cyprus to enhance Cyprus's capabilities in natural hazard assessment and monitoring. This transfer is being made through capacity building activities, fostering continuous collaboration between Greek and Cypriot experts. Apart from the knowledge transfer, small demonstration actions are implemented to showcase the effectiveness of these technologies in real-world scenarios. In conclusion, the transfer of advanced natural hazard assessment technologies from Greece to Cyprus represents a significant step forward in enhancing the region's resilience to disasters. EXCELSIOR project funds knowledge exchange, demonstration actions and capacity-building activities and is committed to empower Cyprus with the tools and expertise to effectively manage and mitigate the risks associated with these natural hazards. Acknowledgement:Authors acknowledge the 'EXCELSIOR': ERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment H2020 Widespread Teaming project.

Keywords: earth observation, monitoring, natural hazards, remote sensing

Procedia PDF Downloads 38
3 Numerical Simulation of Von Karman Swirling Bioconvection Nanofluid Flow from a Deformable Rotating Disk

Authors: Ali Kadir, S. R. Mishra, M. Shamshuddin, O. Anwar Beg

Abstract:

Motivation- Rotating disk bio-reactors are fundamental to numerous medical/biochemical engineering processes including oxygen transfer, chromatography, purification and swirl-assisted pumping. The modern upsurge in biologically-enhanced engineering devices has embraced new phenomena including bioconvection of micro-organisms (photo-tactic, oxy-tactic, gyrotactic etc). The proven thermal performance superiority of nanofluids i.e. base fluids doped with engineered nanoparticles has also stimulated immense implementation in biomedical designs. Motivated by these emerging applications, we present a numerical thermofluid dynamic simulation of the transport phenomena in bioconvection nanofluid rotating disk bioreactor flow. Methodology- We study analytically and computationally the time-dependent three-dimensional viscous gyrotactic bioconvection in swirling nanofluid flow from a rotating disk configuration. The disk is also deformable i.e. able to extend (stretch) in the radial direction. Stefan blowing is included. The Buongiorno dilute nanofluid model is adopted wherein Brownian motion and thermophoresis are the dominant nanoscale effects. The primitive conservation equations for mass, radial, tangential and axial momentum, heat (energy), nanoparticle concentration and micro-organism density function are formulated in a cylindrical polar coordinate system with appropriate wall and free stream boundary conditions. A mass convective condition is also incorporated at the disk surface. Forced convection is considered i.e. buoyancy forces are neglected. This highly nonlinear, strongly coupled system of unsteady partial differential equations is normalized with the classical Von Karman and other transformations to render the boundary value problem (BVP) into an ordinary differential system which is solved with the efficient Adomian decomposition method (ADM). Validation with earlier Runge-Kutta shooting computations in the literature is also conducted. Extensive computations are presented (with the aid of MATLAB symbolic software) for radial and circumferential velocity components, temperature, nanoparticle concentration, micro-organism density number and gradients of these functions at the disk surface (radial local skin friction, local circumferential skin friction, Local Nusselt number, Local Sherwood number, motile microorganism mass transfer rate). Main Findings- Increasing radial stretching parameter decreases radial velocity and radial skin friction, reduces azimuthal velocity and skin friction, decreases local Nusselt number and motile micro-organism mass wall flux whereas it increases nano-particle local Sherwood number. Disk deceleration accelerates the radial flow, damps the azimuthal flow, decreases temperatures and thermal boundary layer thickness, depletes the nano-particle concentration magnitudes (and associated nano-particle species boundary layer thickness) and furthermore decreases the micro-organism density number and gyrotactic micro-organism species boundary layer thickness. Increasing Stefan blowing accelerates the radial flow and azimuthal (circumferential flow), elevates temperatures of the nanofluid, boosts nano-particle concentration (volume fraction) and gyrotactic micro-organism density number magnitudes whereas suction generates the reverse effects. Increasing suction effect reduces radial skin friction and azimuthal skin friction, local Nusselt number, and motile micro-organism wall mass flux whereas it enhances the nano-particle species local Sherwood number. Conclusions - Important transport characteristics are identified of relevance to real bioreactor nanotechnological systems not discussed in previous works. ADM is shown to achieve very rapid convergence and highly accurate solutions and shows excellent promise in simulating swirling multi-physical nano-bioconvection fluid dynamics problems. Furthermore, it provides an excellent complement to more general commercial computational fluid dynamics simulations.

Keywords: bio-nanofluids, rotating disk bioreactors, Von Karman swirling flow, numerical solutions

Procedia PDF Downloads 156
2 Tool for Maxillary Sinus Quantification in Computed Tomography Exams

Authors: Guilherme Giacomini, Ana Luiza Menegatti Pavan, Allan Felipe Fattori Alves, Marcela de Oliveira, Fernando Antonio Bacchim Neto, José Ricardo de Arruda Miranda, Seizo Yamashita, Diana Rodrigues de Pina

Abstract:

The maxillary sinus (MS), part of the paranasal sinus complex, is one of the most enigmatic structures in modern humans. The literature has suggested that MSs function as olfaction accessories, to heat or humidify inspired air, for thermoregulation, to impart resonance to the voice and others. Thus, the real function of the MS is still uncertain. Furthermore, the MS anatomy is complex and varies from person to person. Many diseases may affect the development process of sinuses. The incidence of rhinosinusitis and other pathoses in the MS is comparatively high, so, volume analysis has clinical value. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure, which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust, and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression, and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to quantify MS volume proved to be robust, fast, and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to automatically quantify MS volume proved to be robust, fast and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases.

Keywords: maxillary sinus, support vector machine, region growing, volume quantification

Procedia PDF Downloads 504
1 Impacts of Transformational Leadership: Petronas Stations in Sabah, Malaysia

Authors: Lizinis Cassendra Frederick Dony, Jirom Jeremy Frederick Dony, Cyril Supain Christopher

Abstract:

The purpose of this paper is to improve the devotion to leadership through HR practices implementation at the PETRONAS stations. This emphasize the importance of personal grooming and Customer Care hospitality training for their front line working individuals and teams’ at PETRONAS stations in Sabah. Based on Thomas Edison, International Leadership Journal, theory, research, education and development practice and application to all organizational phenomena may affect or be affected by leadership. FINDINGS – PETRONAS in short called Petroliam Nasional Berhad is a Malaysian oil and gas company that was founded on August 17, 1974. Wholly owned by the Government of Malaysia, the corporation is vested with the entire oil and gas resources in Malaysia and is entrusted with the responsibility of developing and adding value to these resources. Fortune ranks PETRONAS as the 68th largest company in the world in 2012. It also ranks PETRONAS as the 12th most profitable company in the world and the most profitable in Asia. As of the end of March 2005, the PETRONAS Group comprised 103 wholly owned subsidiaries, 19 partly owned outfits and 57 associated companies. The group is engaged in a wide spectrum of petroleum activities, including upstream exploration and production of oil and gas to downstream oil refining, marketing and distribution of petroleum products, trading, gas processing and liquefaction, gas transmission pipeline network operations, marketing of liquefied natural gas; petrochemical manufacturing and marketing; shipping; automotive engineering and property investment. PETRONAS has growing their marketing channel in a competitive market. They have combined their resources to pursue common goals. PETRONAS provides opportunity to carry out Industrial Training Job Placement to the University students in Malaysia for 6-8 months. The effects of the Industrial Training have exposed them to the real working environment experience acting representing on behalf of General Manager for almost one year. Thus, the management education and reward incentives schemes have aspire the working teams transformed to gain their good leadership. Furthermore, knowledge and experiences are very important in the human capital development transformation. SPSS extends the accurate analysis PETRONAS achievement through 280 questionnaires and 81 questionnaires through excel calculation distributed to interview face to face with the customers, PETRONAS dealers and front desk staffs stations in the 17 stations in Kota Kinabalu, Sabah. Hence, this research study will improve its service quality innovation and business sustainability performance optimization. ORIGINALITY / VALUE – The impact of Transformational Leadership practices have influenced the working team’s behaviour as a Brand Ambassadors of PETRONAS. Finally, the findings correlation indicated that PETRONAS stations needs more HR resources practices to deploy more customer care retention resources in mitigating the business challenges in oil and gas industry. Therefore, as the business established at stiff competition globally (Cooper, 2006; Marques and Simon, 2006), it is crucial for the team management should be capable to minimize noises risk, financial risk and mitigating any other risks as a whole at the optimum level. CONCLUSION- As to conclude this research found that both transformational and transactional contingent reward leadership4 were positively correlated with ratings of platoon potency and ratings of leadership for the platoon leader and sergeant were moderately inter correlated. Due to this identification, we recommended that PETRONAS management should offers quality team management in PETRONAS stations in a broader variety of leadership training specialization in the operation efficiency at the front desk Customer Care hospitality. By having the reliability and validity of job experiences, it leverages diversity teamwork and cross collaboration. Other than leveraging factor, PETRONAS also will strengthen the interpersonal front liners effectiveness and enhance quality of interaction through effective communication. Finally, through numerous CSR correlation studies regression PETRONAS performance on Corporate Social Performance and several control variables.1 CSR model activities can be mis-specified if it is not controllable under R & D which evident in various feedbacks collected from the local communities and younger generation is inclined to higher financial expectation from PETRONAS. But, however, it created a huge impact on the nation building as part of its social adaptability overreaching their business stakeholders’ satisfaction in Sabah.

Keywords: human resources practices implementation (hrpi), source of competitive advantage in people’s development (socaipd), corporate social responsibility (csr), service quality at front desk stations (sqafd), impacts of petronas leadership (iopl)

Procedia PDF Downloads 349