Search results for: Indigenous practices
9 Gamification Beyond Competition: the Case of DPG Lab Collaborative Learning Program for High-School Girls by GameLab KBTU and UNICEF in Kazakhstan
Authors: Nazym Zhumabayeva, Aleksandr Mezin, Alexandra Knysheva
Abstract:
Women's underrepresentation in STEM is critical, worsened by ineffective engagement in educational practices. UNICEF Kazakhstan and GameLab KBTU's collaborative initiatives aim to enhance female STEM participation by fostering an inclusive environment. Learning from LEVEL UP's 2023 program, which featured a hackathon, the 2024 strategy pivots towards non-competitive gamification. Although the data from last year's project showed higher than average student engagement, observations and in-depth interviews with participants showed that the format was stressful for the girls, making them focus on points rather than on other values. This study presents a gamified educational system, DPG Lab, aimed at incentivizing young women's participation in STEM through the development of digital public goods (DPGs). By prioritizing collaborative gamification elements, the project seeks to create an inclusive learning environment that increases engagement and interest in STEM among young women. The DPG Lab aims to find a solution to minimize competition and support collaboration. The project is designed to motivate female participants towards the development of digital solutions through an introduction to the concept of DPGs. It consists of a short online course, a simulation videogame, and a real-time online quest with an offline finale at the KBTU campus. The online course offers short video lectures on open-source development and DPG standards. The game facilitates the practical application of theoretical knowledge, enriching the learning experience. Learners can also participate in a quest that encourages participants to develop DPG ideas in teams by choosing missions throughout the quest path. At the offline quest finale, the participants will meet in person to exchange experiences and accomplishments without engaging in comparative assessments: the quest ensures that each team’s trajectory is distinct by design. This marks a shift from competitive hackathons to a collaborative format, recognizing the unique contributions and achievements of each participant. The pilot batch of students is scheduled to commence in April 2024, with the finale anticipated in June. It is projected that this group will comprise 50 female high-school students from various regions across Kazakhstan. Expected outcomes include increased engagement and interest in STEM fields among young female participants, positive emotional and psychological impact through an emphasis on collaborative learning environments, and improved understanding and skills in DPG development. GameLab KBTU intends to undertake a hypothesis evaluation, employing a methodology similar to that utilized in the preceding LEVEL UP project. This approach will encompass the compilation of quantitative metrics (conversion funnels, test results, and surveys) and qualitative data from in-depth interviews and observational studies. For comparative analysis, a select group of participants from the previous year's project will be recruited to engage in the DPG Lab. By developing and implementing a gamified framework that emphasizes inclusion, engagement, and collaboration, the study seeks to provide practical knowledge about effective gamification strategies for promoting gender diversity in STEM. The expected outcomes of this initiative can contribute to the broader discussion on gamification in education and gender equality in STEM by offering a replicable and scalable model for similar interventions around the world.Keywords: collaborative learning, competitive learning, digital public goods, educational gamification, emerging regions, STEM, underprivileged groups
Procedia PDF Downloads 698 Blockchain Based Hydrogen Market (BBH₂): A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change
Authors: Volker Wannack
Abstract:
Regional, national, and international strategies focusing on hydrogen (H₂) and blockchain are driving significant advancements in hydrogen and blockchain technology worldwide. These strategies lay the foundation for the groundbreaking "Blockchain Based Hydrogen Market (BBH₂)" project. The primary goal of this project is to develop a functional Blockchain Minimum Viable Product (B-MVP) for the hydrogen market. The B-MVP will leverage blockchain as an enabling technology with a common database and platform, facilitating secure and automated transactions through smart contracts. This innovation will revolutionize logistics, trading, and transactions within the hydrogen market. The B-MVP has transformative potential across various sectors. It benefits renewable energy producers, surplus energy-based hydrogen producers, hydrogen transport and distribution grid operators, and hydrogen consumers. By implementing standardized, automated, and tamper-proof processes, the B-MVP enhances cost efficiency and enables transparent and traceable transactions. Its key objective is to establish the verifiable integrity of climate-friendly "green" hydrogen by tracing its supply chain from renewable energy producers to end users. This emphasis on transparency and accountability promotes economic, ecological, and social sustainability while fostering a secure and transparent market environment. A notable feature of the B-MVP is its cross-border operability, eliminating the need for country-specific data storage and expanding its global applicability. This flexibility not only broadens its reach but also creates opportunities for long-term job creation through the establishment of a dedicated blockchain operating company. By attracting skilled workers and supporting their training, the B-MVP strengthens the workforce in the growing hydrogen sector. Moreover, it drives the emergence of innovative business models that attract additional company establishments and startups and contributes to long-term job creation. For instance, data evaluation can be utilized to develop customized tariffs and provide demand-oriented network capacities to producers and network operators, benefitting redistributors and end customers with tamper-proof pricing options. The B-MVP not only brings technological and economic advancements but also enhances the visibility of national and international standard-setting efforts. Regions implementing the B-MVP become pioneers in climate-friendly, sustainable, and forward-thinking practices, generating interest beyond their geographic boundaries. Additionally, the B-MVP serves as a catalyst for research and development, facilitating knowledge transfer between universities and companies. This collaborative environment fosters scientific progress, aligns with strategic innovation management, and cultivates an innovation culture within the hydrogen market. Through the integration of blockchain and hydrogen technologies, the B-MVP promotes holistic innovation and contributes to a sustainable future in the hydrogen industry. The implementation process involves evaluating and mapping suitable blockchain technology and architecture, developing and implementing the blockchain, smart contracts, and depositing certificates of origin. It also includes creating interfaces to existing systems such as nomination, portfolio management, trading, and billing systems, testing the scalability of the B-MVP to other markets and user groups, developing data formats for process-relevant data exchange, and conducting field studies to validate the B-MVP. BBH₂ is part of the "Technology Offensive Hydrogen" funding call within the research funding of the Federal Ministry of Economics and Climate Protection in the 7th Energy Research Programme of the Federal Government.Keywords: hydrogen, blockchain, sustainability, innovation, structural change
Procedia PDF Downloads 1767 SEAWIZARD-Multiplex AI-Enabled Graphene Based Lab-On-Chip Sensing Platform for Heavy Metal Ions Monitoring on Marine Water
Authors: M. Moreno, M. Alique, D. Otero, C. Delgado, P. Lacharmoise, L. Gracia, L. Pires, A. Moya
Abstract:
Marine environments are increasingly threatened by heavy metal contamination, including mercury (Hg), lead (Pb), and cadmium (Cd), posing significant risks to ecosystems and human health. Traditional monitoring techniques often fail to provide the spatial and temporal resolution needed for real-time detection of these contaminants, especially in remote or harsh environments. SEAWIZARD addresses these challenges by leveraging the flexibility, adaptability, and cost-effectiveness of printed electronics, with the integration of microfluidics to develop a compact, portable, and reusable sensor platform designed specifically for real-time monitoring of heavy metal ions in seawater. The SEAWIZARD sensor is a multiparametric Lab-on-Chip (LoC) device, a miniaturized system that integrates several laboratory functions into a single chip, drastically reducing sample volumes and improving adaptability. This platform integrates three printed graphene electrodes for the simultaneous detection of Hg, Cd and Pb via square wave voltammetry. These electrodes share the reference and the counter electrodes to improve space efficiency. Additionally, it integrates printed pH and temperature sensors to correct environmental interferences that may impact the accuracy of metal detection. The pH sensor is based on a carbon electrode with iridium oxide electrodeposited while the temperature sensor is graphene based. A protective dielectric layer is printed on top of the sensor to safeguard it in harsh marine conditions. The use of flexible polyethylene terephthalate (PET) as the substrate enables the sensor to conform to various surfaces and operate in challenging environments. One of the key innovations of SEAWIZARD is its integrated microfluidic layer, fabricated from cyclic olefin copolymer (COC). This microfluidic component allows a controlled flow of seawater over the sensing area, allowing for significant improved detection limits compared to direct water sampling. The system’s dual-channel design separates the detection of heavy metals from the measurement of pH and temperature, ensuring that each parameter is measured under optimal conditions. In addition, the temperature sensor is finely tuned with a serpentine-shaped microfluidic channel to ensure precise thermal measurements. SEAWIZARD also incorporates custom electronics that allow for wireless data transmission via Bluetooth, facilitating rapid data collection and user interface integration. Embedded artificial intelligence further enhances the platform by providing an automated alarm system, capable of detecting predefined metal concentration thresholds and issuing warnings when limits are exceeded. This predictive feature enables early warnings of potential environmental disasters, such as industrial spills or toxic levels of heavy metal pollutants, making SEAWIZARD not just a detection tool, but a comprehensive monitoring and early intervention system. In conclusion, SEAWIZARD represents a significant advancement in printed electronics applied to environmental sensing. By combining flexible, low-cost materials with advanced microfluidics, custom electronics, and AI-driven intelligence, SEAWIZARD offers a highly adaptable and scalable solution for real-time, high-resolution monitoring of heavy metals in marine environments. Its compact and portable design makes it an accessible, user-friendly tool with the potential to transform water quality monitoring practices and provide critical data to protect marine ecosystems from contamination-related risks.Keywords: lab-on-chip, printed electronics, real-time monitoring, microfluidics, heavy metal contamination
Procedia PDF Downloads 426 Development Programmes Requirements for Managing and Supporting the Ever-Dynamic Job Roles of Middle Managers in Higher Education Institutions: The Espousal Demanded from Human Resources Department; Case Studies of a New University in United Kingdom
Authors: Mohamed Sameer Mughal, Andrew D. Ross, Damian J. Fearon
Abstract:
Background: The fast-paced changing landscape of UK Higher Education Institution (HEIs) is poised by changes and challenges affecting Middle Managers (MM) in their job roles. MM contribute to the success of HEIs by balancing the equilibrium and pass organization strategies from senior staff towards operationalization directives to junior staff. However, this study showcased from the data analyzed during the semi structured interviews; MM job role is becoming more complex due to changes and challenges creating colossal pressures and workloads in day-to-day working. Current development programmes provisions by Human Resources (HR) departments in such HEIs are not feasible, applicable, and matching the true essence and requirements of MM who suggest that programmes offered by HR are too generic to suit their precise needs and require tailor made espousal to work effectively in their pertinent job roles. Methodologies: This study aims to capture demands of MM Development Needs (DN) by means of a conceptual model as conclusive part of the research that is divided into 2 phases. Phase 1 initiated by carrying out 2 pilot interviews with a retired Emeritus status professor and HR programmes development coordinator. Key themes from the pilot and literature review subsidized into formulation of 22 set of questions (Kvale and Brinkmann) in form of interviewing questionnaire during qualitative data collection. Data strategy and collection consisted of purposeful sampling of 12 semi structured interviews (n=12) lasting approximately an hour for all participants. The MM interviewed were at faculty and departmental levels which included; deans (n=2), head of departments (n=4), subject leaders (n=2), and lastly programme leaders (n=4). Participants recruitment was carried out via emails and snowballing technique. The interviews data was transcribed (verbatim) and managed using Computer Assisted Qualitative Data Analysis using Nvivo ver.11 software. Data was meticulously analyzed using Miles and Huberman inductive approach of positivistic style grounded theory, whereby key themes and categories emerged from the rich data collected. The data was precisely coded and classified into case studies (Robert Yin); with a main case study, sub cases (4 classes of MM) and embedded cases (12 individual MMs). Major Findings: An interim conceptual model emerged from analyzing the data with main concepts that included; key performance indicators (KPI’s), HEI effectiveness and outlook, practices, processes and procedures, support mechanisms, student events, rules, regulations and policies, career progression, reporting/accountability, changes and challenges, and lastly skills and attributes. Conclusion: Dynamic elements affecting MM includes; increase in government pressures, student numbers, irrelevant development programmes, bureaucratic structures, transparency and accountability, organization policies, skills sets… can only be confronted by employing structured development programmes originated by HR that are not provided generically. Future Work: Stage 2 (Quantitative method) of the study plans to validate the interim conceptual model externally through fully completed online survey questionnaire (Bram Oppenheim) from external HEIs (n=150). The total sample targeted is 1500 MM. Author contribution focuses on enhancing management theory and narrow the gap between by HR and MM development programme provision.Keywords: development needs (DN), higher education institutions (HEIs), human resources (HR), middle managers (MM)
Procedia PDF Downloads 2375 Modeling the Human Harbor: An Equity Project in New York City, New York USA
Authors: Lauren B. Birney
Abstract:
The envisioned long-term outcome of this three-year research, and implementation plan is for 1) teachers and students to design and build their own computational models of real-world environmental-human health phenomena occurring within the context of the “Human Harbor” and 2) project researchers to evaluate the degree to which these integrated Computer Science (CS) education experiences in New York City (NYC) public school classrooms (PreK-12) impact students’ computational-technical skill development, job readiness, career motivations, and measurable abilities to understand, articulate, and solve the underlying phenomena at the center of their models. This effort builds on the partnership’s successes over the past eight years in developing a benchmark Model of restoration-based Science, Technology, Engineering, and Math (STEM) education for urban public schools and achieving relatively broad-based implementation in the nation’s largest public school system. The Billion Oyster Project Curriculum and Community Enterprise for Restoration Science (BOP-CCERS STEM + Computing) curriculum, teacher professional developments, and community engagement programs have reached more than 200 educators and 11,000 students at 124 schools, with 84 waterfront locations and Out of School of Time (OST) programs. The BOP-CCERS Partnership is poised to develop a more refined focus on integrating computer science across the STEM domains; teaching industry-aligned computational methods and tools; and explicitly preparing students from the city’s most under-resourced and underrepresented communities for upwardly mobile careers in NYC’s ever-expanding “digital economy,” in which jobs require computational thinking and an increasing percentage require discreet computer science technical skills. Project Objectives include the following: 1. Computational Thinking (CT) Integration: Integrate computational thinking core practices across existing middle/high school BOP-CCERS STEM curriculum as a means of scaffolding toward long term computer science and computational modeling outcomes. 2. Data Science and Data Analytics: Enabling Researchers to perform interviews with Teachers, students, community members, partners, stakeholders, and Science, Technology, Engineering, and Mathematics (STEM) industry Professionals. Collaborative analysis and data collection were also performed. As a centerpiece, the BOP-CCERS partnership will expand to include a dedicated computer science education partner. New York City Department of Education (NYCDOE), Computer Science for All (CS4ALL) NYC will serve as the dedicated Computer Science (CS) lead, advising the consortium on integration and curriculum development, working in tandem. The BOP-CCERS Model™ also validates that with appropriate application of technical infrastructure, intensive teacher professional developments, and curricular scaffolding, socially connected science learning can be mainstreamed in the nation’s largest urban public school system. This is evidenced and substantiated in the initial phases of BOP-CCERS™. The BOP-CCERS™ student curriculum and teacher professional development have been implemented in approximately 24% of NYC public middle schools, reaching more than 250 educators and 11,000 students directly. BOP-CCERS™ is a fully scalable and transferable educational model, adaptable to all American school districts. In all settings of the proposed Phase IV initiative, the primary beneficiary group will be underrepresented NYC public school students who live in high-poverty neighborhoods and are traditionally underrepresented in the STEM fields, including African Americans, Latinos, English language learners, and children from economically disadvantaged households. In particular, BOP-CCERS Phase IV will explicitly prepare underrepresented students for skilled positions within New York City’s expanding digital economy, computer science, computational information systems, and innovative technology sectors.Keywords: computer science, data science, equity, diversity and inclusion, STEM education
Procedia PDF Downloads 614 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 713 Regenerative Agriculture Standing at the Intersection of Design, Mycology, and Soil Fertility
Authors: Andrew Gennett
Abstract:
Designing for fungal development means embracing the symbiotic relationship between the living system and built environment. The potential of mycelium post-colonization is explored for the fabrication of advanced pure mycelium products, going beyond the conventional methods of aggregating materials. Fruiting induction imparts desired material properties such as enhanced environmental resistance. Production approach allows for simultaneous generation of multiple products while scaling up raw materials supply suitable for architectural applications. The following work explores the integration of fungal environmental perception with computational design of built fruiting chambers. Polyporales, are classified by their porous reproductive tissues supported by a wood-like context tissue covered by a hard waterproofing coat of hydrobpobins. Persisting for years in the wild, these species represent material properties that would be highly desired in moving beyond flat sheets of arial mycelium as with leather or bacon applications. Understanding the inherent environmental perception of fungi has become the basis for working with and inducing desired hyphal differentiation. Working within the native signal interpretation of a mycelium mass during fruiting induction provides the means to apply textures and color to the final finishing coat. A delicate interplay between meeting human-centered goals while designing around natural processes of living systems represents a blend of art and science. Architecturally, physical simulations inform model design for simple modular fruiting chambers that change as fungal growth progresses, while biological life science principles describe the internal computations occurring within the fungal hyphae. First, a form filling phase of growth is controlled by growth chamber environment. Second, an initiation phase of growth forms the final exterior finishing texture. Hyphal densification induces cellular cascades, in turn producing the classical hardened cuticle, UV protective molecule production, as well, as waterproofing finish. Upon fruiting process completion, the fully colonized spent substrate holds considerable value and is not considered waste. Instead, it becomes a valuable resource in the next cycle of production scale-up. However, the acquisition of new substrate resources poses a critical question, particularly as these resources become increasingly scarce. Pursuing a regenerative design paradigm from the environmental perspective, the usage of “agricultural waste” for architectural materials would prove a continuation of the destructive practices established by the previous industrial regime. For these residues from fields and forests serve a vital ecological role protecting the soil surface in combating erosion while reducing evaporation and fostering a biologically diverse food web. Instead, urban centers have been identified as abundant sources of new substrate material. Diverting the waste from secondary locations such as food processing centers, papers mills, and recycling facilities not only reduces landfill burden but leverages the latent value of these waste steams as precious resources for mycelium cultivation. In conclusion, working with living systems through innovative built environments for fungal development, provides the needed gain of function and resilience of mycelium products. The next generation of sustainable fungal products will go beyond the current binding process, with a focus upon reducing landfill burden from urban centers. In final considerations, biophilic material builds to an ecologically regenerative recycling production cycle.Keywords: regenerative agriculture, mycelium fabrication, growth chamber design, sustainable resource acquisition, fungal morphogenesis, soil fertility
Procedia PDF Downloads 672 Innovative Practices That Have Significantly Scaled up Depot Medroxy Progesterone Acetate-SC Self-Inject Services
Authors: Oluwaseun Adeleke, Samuel O. Ikani, Fidelis Edet, Anthony Nwala, Mopelola Raji, Simeon Christian Chukwu
Abstract:
Background The Delivering Innovations in Selfcare (DISC) project promotes universal access to quality selfcare services beginning with subcutaneous depot medroxy progesterone acetate (DMPA-SC) contraceptive self-injection (SI) option. Self-inject (SI) offers women a highly effective and convenient option that saves them frequent trips to providers. Its increased use has the potential to improve the efficiency of an overstretched healthcare system by reducing provider workloads. State Social and Behavioral Change Communications (SBCC) Officers lead project demand creation and service delivery innovations that have resulted in significant increases in SI uptake among women who opt for injectables. Strategies Service Delivery Innovations The implementation of the "Moment of Truth (MoT)" innovation helped providers overcome biases and address client fear and reluctance to self-inject. Bi-annual program audits and supportive mentoring visits helped providers retain their competence and motivation. Proper documentation, tracking, and replenishment of commodities were ensured through effective engagement with State Logistics Units. The project supported existing state monitoring and evaluation structures to effectively record and report subcutaneous depot medroxy progesterone acetate (DMPA-SC) service utilization. Demand creation Innovations SBCC Officers provide oversight, routinely evaluate performance, trains, and provides feedback for the demand creation activities implemented by community mobilizers (CMs). The scope and intensity of training given to CMs affect the outcome of their work. The project operates a demand creation model that uses a schedule to inform the conduct of interpersonal and group events. Health education sessions are specifically designed to counter misinformation, address questions and concerns, and educate target audience in an informed choice context. The project mapped facilities and their catchment areas and enlisted the support of identified influencers and gatekeepers to enlist their buy-in prior to entry. Each mobilization event began with pre-mobilization sensitization activities, particularly targeting male groups. Context-specific interventions were informed by the religious, traditional, and cultural peculiarities of target communities. Mobilizers also support clients to engage with and navigate online digital Family Planning (FP) online portals such as DiscoverYourPower website, Facebook page, digital companion (chat bot), interactive voice response (IVR), radio and television (TV) messaging. This improves compliance and provides linkages to nearby facilities. Results The project recorded 136,950 self-injection (SI) visits and a self-injection (SI) proportion rate that increased from 13 percent before the implementation of interventions in 2021 to 62 percent currently. The project cost-effectively demonstrated catalytic impact by leveraging state and partner resources, institutional platforms, and geographic scope to scale up interventions. The project also cost effectively demonstrated catalytic impact by leveraging on the state and partner resources, institutional platforms, and geographic scope to sustainably scale-up these strategies. Conclusion Using evidence-informed iterations of service delivery and demand creation models have been useful to significantly drive self-injection (SI) uptake. It will be useful to consider this implementation model during program design. Contemplation should also be given to systematic and strategic execution of strategies to optimize impact.Keywords: family planning, contraception, DMPA-SC, self-care, self-injection, innovation, service delivery, demand creation.
Procedia PDF Downloads 791 Effect of Inoculation with Consortia of Plant-Growth Promoting Bacteria on Biomass Production of the Halophyte Salicornia ramosissima
Authors: Maria João Ferreira, Natalia Sierra-Garcia, Javier Cremades, Carla António, Ana M. Rodrigues, Helena Silva, Ângela Cunha
Abstract:
Salicornia ramosissima, a halophyte that grows naturally in coastal areas of the northern hemisphere, is often considered the most promising halophyte candidate for extensive crop cultivation and saline agriculture practices. The expanding interest in this plant surpasses its use as gourmet food and includes their potential application as a source of bioactive compounds for the pharmaceutical industry. Despite growing well in saline soils, sustainable and ecologically friendly techniques to enhance crop production and the nutritional value of this plant are still needed. The root microbiome of S. ramosissima proved to be a source of taxonomically diverse plant growth-promoting bacteria (PGPB). Halotolerant strains of Bacillus, Salinicola, Pseudomonas, and Brevibacterium, among other genera, exhibit a broad spectrum of plant-growth promotion traits [e.g., 3-indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophores, phosphate solubilization, Nitrogen fixation] and express a wide range of extracellular enzyme activities. In this work, three plant growth-promoting bacteria strains (Brevibacterium casei EB3, Pseudomonas oryzihabitans RL18, and Bacillus aryabhattai SP20) isolated from the rhizosphere and the endosphere of S. ramosissima roots from different saltmarshes along the Portuguese coast were inoculated in S. ramosissima seeds. Plants germinated from inoculated seeds were grown for three months in pots filled with a mixture of perlite and estuarine sediment (1:1) in greenhouse conditions and later transferred to a growth chamber, where they were maintained two months with controlled photoperiod, temperature, and humidity. Pots were placed on trays containing the irrigation solution (Hoagland’s solution 20% added with 10‰ marine salt). Before reaching the flowering stage, plants were collected, and the fresh and dry weight of aerial parts was determined. Non-inoculated seeds were used as a negative control. Selected dried stems from the most promising treatments were later analyzed by GC-TOF-MS for primary metabolite composition. The efficiency of inoculation and persistence of the inoculum was assessed by Next Generation Sequencing. Inoculations with single strain EB3 and co-inoculations with EB3+RL18 and EB3+RL18+SP20 (All treatment) resulted in significantly higher biomass production (fresh and dry weight) compared to non-inoculated plants. Considering fresh weight alone, inoculation with isolates SP20 and RL18 also caused a significant positive effect. Combined inoculation with the consortia SP20+EB3 or SP20+RL18 did not significantly improve biomass production. The analysis of the profile of primary metabolites will provide clues on the mechanisms by which the growth-enhancement effect of the inoculants operates in the plants. These results sustain promising prospects for the use of rhizospheric and endophytic PGPB as biofertilizers, reducing environmental impacts and operational costs of agrochemicals and contributing to the sustainability and cost-effectiveness of saline agriculture. Acknowledgments: This work was supported by project Rhizomis PTDC/BIA-MIC/29736/2017 financed by Fundação para a Ciência e Tecnologia (FCT) through the Regional Operational Program of the Center (02/SAICT/2017) with FEDER funds (European Regional Development Fund, FNR, and OE) and by FCT through CESAM (UIDP/50017/2020 + UIDB/50017/2020), LAQV-REQUIMTE (UIDB/50006/2020). We also acknowledge FCT/FSE for the financial support to Maria João Ferreira through a PhD grant (PD/BD/150363/2019). We are grateful to Horta dos Peixinhos for their help and support during sampling and seed collection. We also thank Glória Pinto for her collaboration providing us the use of the growth chambers during the final months of the experiment and Enrique Mateos-Naranjo and Jennifer Mesa-Marín of the Departamento de Biología Vegetal y Ecología, the University of Sevilla for their advice regarding the growth of salicornia plants in greenhouse conditions.Keywords: halophytes, PGPB, rhizosphere engineering, biofertilizers, primary metabolite profiling, plant inoculation, Salicornia ramosissima
Procedia PDF Downloads 164