Search results for: biaxial seismic excitation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1318

Search results for: biaxial seismic excitation

838 Experimental and Simulation Analysis of an Innovative Steel Shear Wall with Semi-Rigid Beam-to-Column Connections

Authors: E. Faizan, Wahab Abdul Ghafar, Tao Zhong

Abstract:

Steel plate shear walls (SPSWs) are a robust lateral load resistance structure because of their high flexibility and efficient energy dissipation when subjected to seismic loads. This research investigates the seismic performance of an innovative infill web strip (IWS-SPSW) and a typical unstiffened steel plate shear wall (USPSW). As a result, two 1:3 scale specimens of an IWS-SPSW and USPSW with a single story and a single bay were built and subjected to a cyclic lateral loading methodology. In the prototype, the beam-to-column connections were accomplished with the assistance of semi-rigid end-plate connectors. IWS-SPSW demonstrated exceptional ductility and shear load-bearing capacity during the testing process, with no cracks or other damage occurring. In addition, the IWS-SPSW could effectively dissipate energy without causing a significant amount of beam-column connection distortion. The shear load-bearing capacity of the USPSW was exceptional. However, it exhibited low ductility, severe infill plate corner ripping, and huge infill web plate cracks. The FE models were created and then confirmed using the experimental data. It has been demonstrated that the infill web strips of an SPSW system can affect the system's high performance and total energy dissipation. In addition, a parametric analysis was carried out to evaluate the material qualities of the IWS, which can considerably improve the system's seismic performances. These properties include the steel's strength as well as its thickness.

Keywords: steel shear walls, seismic performance, failure mode, hysteresis response, nonlinear finite element analysis, parametric study

Procedia PDF Downloads 74
837 Seismic Performance Evaluation of Diagrid Components

Authors: Taejin Kim, Heonwoo Lee, Jong-Ho Kim, Dongchul Lee

Abstract:

Recently, there have been various high-rise building projects which reflect unique inspiration from architects to their feature. And it is frequently found that some of these buildings have diagrid structural system. Diagrid system provides engineers many options for structural plan, since it has triangular module so it can form a number of complex shapes. Unlike braced frame systems, diagonal members in diagrid system resist gravity and horizontal loads simultaneously. Correspondingly, diagrid members take roles of both beams and columns, and it is expected that their ductile capacity may depend on the amount of gravity loads. However, not enough studies have been made for this issue so far, which means that there is demand of examination on the seismic behavior of diagrid members under large gravity loads. Therefore, in this study, the ductile capacity of diagrid members was evaluated through analytical and experimental method. Several cases that have different vertical load condition were set up for both approaches to consider the effect of initial compression force due to gravity load. Regarding the result, it was found that buckling in a diagonal member occurs at smaller drift angle when larger gravity load acts on the specimen, which also reduces the amount of energy dissipation. It means that axial stress in a diagonal member reaches critical buckling force early due to the combined axial force from not only horizontal load but also gravity load.

Keywords: buckling, diagrid, ductility, seismic performance

Procedia PDF Downloads 405
836 Seismic Behavior of Masonry Reinforced Concrete Composite Columns

Authors: Hassane Ousalem, Hideki Kimura, Akitoshi Hamada, Masuda Hiroyuki

Abstract:

To provide tall unreinforced brick masonry walls of a century-old existing building with sufficient resistance against earthquake loading actions, additional reinforced concrete columns were integrated into the building at some designated locations and jointed to the existing masonry walls through dowel shear steel bars, resulting in composite structural elements. As conditions at the interface between the existing masonry and newly added reinforced concrete parts were not well grasped and the behavior of such composite elements would be complex, the experimental investigation was carried out. Three relatively large specimens were tested to investigate the overall behavior of brick masonry-reinforced concrete composite elements under lateral cyclic loadings. Confining the brick walls on only one side or on two opposite sides, as well as providing different amounts of dowel shear steel bars at the interface were the main parameters of the investigation. Test results showed that such strengthening provide a good seismic performance even at very large lateral drifts and the investigated amount of shear dowel lead to a good performance level that would result in a considerable cost reduction of the strengthening.

Keywords: unreinforced masonry, reinforced concrete, composite column, seismic strengthening, structural testing

Procedia PDF Downloads 218
835 Analisys of Cereal Flours by Fluorescence Spectroscopy and PARAFAC

Authors: Lea Lenhardt, Ivana Zeković, Tatjana Dramićanin, Miroslav D. Dramićanin

Abstract:

Rapid and sensitive analytical technologies for food analysis are needed to respond to the growing public interest in food quality and safety. In this context, fluorescence spectroscopy offers several inherent advantages for the characterization of food products: high sensitivity, low price, objective, relatively fast and non-destructive. The objective of this work was to investigate the potential of fluorescence spectroscopy coupled with multi-way technique for characterization of cereal flours. Fluorescence landscape also known as excitation-emission matrix (EEM) spectroscopy utilizes multiple-color illumination, with the full fluorescence spectrum recorded for each excitation wavelength. EEM was measured on various types of cereal flours (wheat, oat, barley, rye, corn, buckwheat and rice). Obtained spectra were analyzed using PARAllel FACtor analysis (PARAFAC) in order to decompose the spectra and identify underlying fluorescent components. Results of the analysis indicated the presence of four fluorophores in cereal flours. It has been observed that relative concentration of fluorophores varies between different groups of flours. Based on these findings we can conclude that application of PARAFAC analysis on fluorescence data is a good foundation for further qualitative analysis of cereal flours.

Keywords: cereals, fluors, fluorescence, PARAFAC

Procedia PDF Downloads 665
834 Modeling and System Identification of a Variable Excited Linear Direct Drive

Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke

Abstract:

Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.

Keywords: force variations, linear direct drive, modeling and system identification, variable excitation flux

Procedia PDF Downloads 370
833 Sensitivity Analysis of Pile-Founded Fixed Steel Jacket Platforms

Authors: Mohamed Noureldin, Jinkoo Kim

Abstract:

The sensitivity of the seismic response parameters to the uncertain modeling variables of pile-founded fixed steel jacket platforms are investigated using tornado diagram, first-order second-moment, and static pushover analysis techniques. The effects of both aleatory and epistemic uncertainty on seismic response parameters have been investigated for an existing offshore platform. The sources of uncertainty considered in the present study are categorized into three different categories: the uncertainties associated with the soil-pile modeling parameters in clay soil, the platform jacket structure modeling parameters, and the uncertainties related to ground motion excitations. It has been found that the variability in parameters such as yield strength or pile bearing capacity has almost no effect on the seismic response parameters considered, whereas the global structural response is highly affected by the ground motion uncertainty. Also, some uncertainty in soil-pile property such as soil-pile friction capacity has a significant impact on the response parameters and should be carefully modeled. Based on the results, it is highlighted that which uncertain parameters should be considered carefully and which can be assumed with reasonable engineering judgment during the early structural design stage of fixed steel jacket platforms.

Keywords: fixed jacket offshore platform, pile-soil structure interaction, sensitivity analysis

Procedia PDF Downloads 375
832 Analytical Evaluation on Structural Performance and Optimum Section of CHS Damper

Authors: Daniel Y. Abebe, Jeonghyun Jang, Jaehyouk Choi

Abstract:

This study aims to evaluate the effective size, section and structural characteristics of circular hollow steel (CHS) damper. CHS damper is among steel dampers which are used widely for seismic energy dissipation because they are easy to install, maintain and are inexpensive. CHS damper dissipates seismic energy through metallic deformation due to the geometrical elasticity of circular shape and fatigue resistance around connection part. After calculating the effective size, which is found to be height to diameter ratio of √("3"), nonlinear FE analyses were carried out to evaluate the structural characteristics and effective section (diameter-to-ratio).

Keywords: circular hollow steel damper, structural characteristics, effective size, effective section, large deformation, FE analysis

Procedia PDF Downloads 361
831 Numerical Simulation of Seismic Process Accompanying the Formation of Shear-Type Fault Zone in Chuya-Kuray Depressions

Authors: Mikhail O. Eremin

Abstract:

Seismic activity around the world is clearly a threat to people's lives, as well as infrastructure and capital construction. It is the instability of the latter to powerful earthquakes that most often causes human casualties. Therefore, during construction it is necessary to take into account the risks of large-scale natural disasters. The task of assessing the risks of natural disasters is one of the most urgent at the present time. The final goal of any study of earthquakes is forecasting. This is especially important for seismically active regions of the planet where earthquakes occur frequently. Gorni Altai is one of such regions. In work, we developed the physical-mathematical model of stress-strain state evolution of loaded geomedium with the purpose of numerical simulation of seismic process accompanying the formation of Chuya-Kuray fault zone Gorni Altay, Russia. We build a structural model on the base of seismotectonic and paleoseismogeological investigations, as well as SRTM-data. Base of mathematical model is the system of equations of solid mechanics which includes the fundamental conservation laws and constitutive equations for elastic (Hooke's law) and inelastic deformation (modified model of Drucker-Prager-Nikolaevskii). An initial stress state of the model correspond to gravitational. Then we simulate an activation of a buried dextral strike-slip paleo-fault located in the basement of the model. We obtain the stages of formation and the structure of Chuya-Kuray fault zone. It is shown that results of numerical simulation are in good agreement with field observations in statistical sense. Simulated seismic process is strongly bound to the faults - lineaments with high degree of inelastic strain localization. Fault zone represents en-echelon system of dextral strike-slips according to the Riedel model. The system of surface lineaments is represented with R-, R'-shear bands, X- and Y-shears, T-fractures. Simulated seismic process obeys the laws of Gutenberg-Richter and Omori. Thus, the model describes a self-similar character of deformation and fracture of rocks and geomedia. We also modified the algorithm of determination of separate slip events in the model due to the features of strain rates dependence vs time.

Keywords: Drucker-Prager model, fault zone, numerical simulation, Riedel bands, seismic process, strike-slip fault

Procedia PDF Downloads 140
830 Earthquake Relocations and Constraints on the Lateral Velocity Variations along the Gulf of Suez, Using the Modified Joint Hypocenter Method Determination

Authors: Abu Bakr Ahmed Shater

Abstract:

Hypocenters of 250 earthquakes recorded by more than 5 stations from the Egyptian seismic network around the Gulf of Suez were relocated and the seismic stations correction for the P-wave is estimated, using the modified joint hypocenter method determination. Five stations TR1, SHR, GRB, ZAF and ZET have minus signs in the station P-wave travel time corrections and their values are -0.235, -0.366, -0.288, -0.366 and -0.058, respectively. It is possible to assume that, the underground model in this area has a particular characteristic of high velocity structure in which the other stations TR2, RDS, SUZ, HRG and ZNM have positive signs and their values are 0.024, 0.187, 0.314, 0.645 and 0.145, respectively. It is possible to assume that, the underground model in this area has particular characteristic of low velocity structure. The hypocenteral location determined by the Modified joint hypocenter method is more precise than those determined by the other routine work program. This method simultaneously solves the earthquake locations and station corrections. The station corrections reflect, not only the different crustal conditions in the vicinity of the stations, but also the difference between the actual and modeled seismic velocities along each of the earthquake - station ray paths. The stations correction obtained is correlated with the major surface geological features in the study area. As a result of the relocation, the low velocity area appears in the northeastern and southwestern sides of the Gulf of Suez, while the southeastern and northwestern parts are of high velocity area.

Keywords: gulf of Suez, seismicity, relocation of hypocenter, joint hypocenter determination

Procedia PDF Downloads 358
829 Energy Efficient Construction and the Seismic Resistance of Passive Houses

Authors: Vojko Kilar, Boris Azinović, David Koren

Abstract:

Recently, an increasing trend of passive and low-energy buildings transferring form non earthquake-prone to earthquake-prone regions has thrown out the question about the seismic safety of such buildings. The paper describes the most commonly used thermal insulating materials and the special details, which could be critical from the point of view of earthquake resistance. The most critical appeared to be the cases of buildings founded on the RC foundation slab lying on a thermal insulation (TI) layer made of extruded polystyrene (XPS). It was pointed out that in such cases the seismic response of such buildings might differ to response of their fixed based counterparts. The main parameters that need special designers’ attention are: the building’s lateral top displacement, the ductility demand of the superstructure, the foundation friction coefficient demand, the maximum compressive stress in the TI layer and the percentage of the uplifted foundation. The analyses have shown that the potentially negative influences of inserting the TI under the foundation slab could be expected only for slender high-rise buildings subjected to severe earthquakes. Oppositely it was demonstrated for the foundation friction coefficient demand which could exceed the capacity value yet in the case of low-rise buildings subjected to moderate earthquakes. Some suggestions to prevent the horizontal shifts are also given.

Keywords: earthquake response, extruded polystyrene (XPS), low-energy buildings, foundations on thermal insulation layer

Procedia PDF Downloads 252
828 Modeling of Historical Lime Masonry Structure in Abaqus

Authors: Ram Narayan Khare, Adhyatma Khare, Aradhna Shrivastava

Abstract:

In this study, numerical modeling of ‘Lime Surkhi’ masonry building has been carried out for a prototype ancient building situated at seismic zone III using the Finite Element Method by Abaqus software. The model is designed in order to get the failure envelope and then decide the best method of retrofitting the structure so that the structure is made to withstand more decades, given its historical background. Previously, due to a lack of technologies, it was difficult to determine the mode of failure. Present technological development can predict the mode of failure, and subsequently, the structure can be refabricated accordingly. The study makes an important addition to the understanding of retrofitting ancient and old buildings based on the results of FEM modeling.

Keywords: seismic retrofitting, Abaqus, FEM, historic building, Lime Surkhi masonry

Procedia PDF Downloads 31
827 Ground Motion Modelling in Bangladesh Using Stochastic Method

Authors: Mizan Ahmed, Srikanth Venkatesan

Abstract:

Geological and tectonic framework indicates that Bangladesh is one of the most seismically active regions in the world. The Bengal Basin is at the junction of three major interacting plates: the Indian, Eurasian, and Burma Plates. Besides there are many active faults within the region, e.g. the large Dauki fault in the north. The country has experienced a number of destructive earthquakes due to the movement of these active faults. Current seismic provisions of Bangladesh are mostly based on earthquake data prior to the 1990. Given the record of earthquakes post 1990, there is a need to revisit the design provisions of the code. This paper compares the base shear demand of three major cities in Bangladesh: Dhaka (the capital city), Sylhet, and Chittagong for earthquake scenarios of magnitudes 7.0MW, 7.5MW, 8.0MW and 8.5MW using a stochastic model. In particular, the stochastic model allows the flexibility to input region specific parameters such as shear wave velocity profile (that were developed from Global Crustal Model CRUST2.0) and include the effects of attenuation as individual components. Effects of soil amplification were analysed using the Extended Component Attenuation Model (ECAM). Results show that the estimated base shear demand is higher in comparison with code provisions leading to the suggestion of additional seismic design consideration in the study regions.

Keywords: attenuation, earthquake, ground motion, Stochastic, seismic hazard

Procedia PDF Downloads 249
826 Effect of Wind Braces to Earthquake Resistance of Steel Structures

Authors: H. Gokdemir

Abstract:

All structures are subject to vertical and lateral loads. Under these loads, structures make deformations and deformation values of structural elements mustn't exceed their capacity for structural stability. Especially, lateral loads cause critical deformations because of their random directions and magnitudes. Wind load is one of the lateral loads which can act in any direction and any magnitude. Although wind has nearly no effect on reinforced concrete structures, it must be considered for steel structures, roof systems and slender structures like minarets. Therefore, every structure must be able to resist wind loads acting parallel and perpendicular to any side. One of the effective methods for resisting lateral loads is assembling cross steel elements between columns which are called as wind bracing. These cross elements increases lateral rigidity of a structure and prevent exceeding of deformation capacity of the structural system. So, this means cross elements are also effective in resisting earthquake loads too. In this paper; Effects of wind bracing to earthquake resistance of structures are studied. Structure models (with and without wind bracing) are generated and these models are solved under both earthquake and wind loads with different seismic zone parameters. It is concluded by the calculations that; in low-seismic risk zones, wind bracing can easily resist earthquake loads and no additional reinforcement for earthquake loads is necessary. Similarly; in high-seismic risk zones, earthquake cross elements resist wind loads too.

Keywords: wind bracings, earthquake, steel structures, vertical and lateral loads

Procedia PDF Downloads 470
825 Numerical Study of Piled Raft Foundation Under Vertical Static and Seismic Loads

Authors: Hamid Oumer Seid

Abstract:

Piled raft foundation (PRF) is a union of pile and raft working together through the interaction of soil-pile, pile-raft, soil-raft and pile-pile to provide adequate bearing capacity and controlled settlement. A uniform pile positioning is used in PRF; however, there is a wide room for optimization through parametric study under vertical load to result in a safer and economical foundation. Addis Ababa is found in seismic zone 3 with a peak ground acceleration (PGA) above the threshold of damage, which makes investigating the performance of PRF under seismic load considering the dynamic kinematic soil structure interaction (SSI) vital. The study area is located in Addis Ababa around Mexico (commercial bank) and Kirkos (Nib, Zemen and United Bank) in which input parameters (pile length, pile diameter, pile spacing, raft area, raft thickness and load) are taken. A finite difference-based numerical software, FLAC3D V6, was used for the analysis. The Kobe (1995) and Northridge (1994) earthquakes were selected, and deconvolution analysis was done. A close load sharing between pile and raft was achieved at a spacing of 7D with different pile lengths and diameters. The maximum settlement reduction achieved is 9% for a pile of 2m diameter by increasing length from 10m to 20m, which shows pile length is not effective in reducing settlement. The installation of piles results in an increase in the negative bending moment of the raft compared with an unpiled raft. Hence, the optimized design depends on pile spacing and the raft edge length, while pile length and diameter are not significant parameters. An optimized piled raft configuration (𝐴𝐺/𝐴𝑅 = 0.25 at the center and piles provided around the edge) has reduced pile number by 40% and differential settlement by 95%. The dynamic analysis shows acceleration plot at the top of the piled raft has PGA of 0.25𝑚2/𝑠𝑒𝑐 and 0.63𝑚2/𝑠𝑒𝑐 for Northridge (1994) and Kobe (1995) earthquakes, respectively, due to attenuation of seismic waves. Pile head displacement (maximum is 2mm, and it is under the allowable limit) is affected by the PGA rather than the duration of an earthquake. End bearing and friction PRF performed similarly under two different earthquakes except for their vertical settlement considering SSI. Hence, PRF has shown adequate resistance to seismic loads.

Keywords: FLAC3D V6, earthquake, optimized piled raft foundation, pile head department

Procedia PDF Downloads 26
824 Blast Load Resistance of Bridge Columns

Authors: Amir Kavousifard, Lan Lin

Abstract:

The objective of this study is to evaluate the effects of the detailing in the seismic design of reinforced concrete (RC) bridge columns on the blast load resistance. A generic two-span continuous RC bridge located in Victoria, British Columbia, which represents the highest seismicity in Canada, was examined in the study. The bridge superstructure consists of a single cell box girder while the substructure consists of two circular columns. The bridge was designed according to the 2006 Canadian Highway Bridge Design Code. More specifically, response spectrum analysis was performed to determine the seismic demands using CSI Bridge. The 3D blast load analysis is carried out in the platform of LS-DYNA. Two charge heights, i.e., one at the mid-height of the column and the other at the bottom of the column, are considered. For each height, three cases are analyzed in order to investigate the effects of standoff and charge weight on the structural response. The blast load resistance of the column is assessed in terms of the concrete failure mechanism, steel stress distribution, and column lateral displacement. The results from the study indicate that a column designed in accordance with the code requirements could survive during the blast attack. Spiral columns perform much better than tied columns. The results also show that the charge weight has more impact on the structural response than the standoff. These results are beneficial for the development of the Canadian standards for the design of bridges under blast loads.

Keywords: blast, bridge, charge, height, seismic, standoff

Procedia PDF Downloads 19
823 The Implementation of Poisson Impedance Inversion to Improve Hydrocarbon Reservoir Characterization in Poseidon Field, Browse Basin, Australia

Authors: Riky Tri Hartagung, Mohammad Syamsu Rosid

Abstract:

The lithology prediction process, as well as the fluid content is the most important part in the reservoir characterization. One of the methods used in this process is the simultaneous seismic inversion method. In the Posseidon field, Browse Basin, Australia, the parameters generated through simultaneous seismic inversion are not able to characterize the reservoir accurately because of the overlapping impedance values between hydrocarbon sand, water sand, and shale, which causes a high level of ambiguity in the interpretation. The Poisson Impedance inversion provides a solution to this problem by rotating the impedance a few degrees, which is obtained through the coefficient c. Coefficient c is obtained through the Target Correlation Coefficient Analysis (TCCA) by finding the optimum correlation coefficient between Poisson Impedance and the target log, namely gamma ray, effective porosity, and resistivity. Correlation of each of these target logs will produce Lithology Impedance (LI) which is sensitive to lithology sand, Porosity Impedance (ϕI) which is sensitive to porous sand, and Fluid Impedance (FI) which is sensitive to fluid content. The results show that PI gives better results in separating hydrocarbon saturated reservoir zones. Based on the results of the LI-GR crossplot, the ϕI-effective porosity crossplot, and the FI-Sw crossplot with optimum correlations of 0.74, 0.91, and 0.82 respectively, it shows that the lithology of hidrocarbon-saturated porous sand is at the value of LI ≤ 2800 (m/s)(g *cc), ϕI ≤ 5500 (m/s)(g*cc), and FI ≤ 4000 (m/s)(g*cc). The presence of low values of LI, ϕI, and FI correlates accurately with the presence of hydrocarbons in the well. Each value of c is then applied to the seismic data. The results show that the PI inversion gives a good distribution of Hydrocarbon-saturated porous sand lithology. The distribution of hydrocarbon saturated porous sand on the seismic inversion section is seen in the northeast – southwest direction, which is estimated as the direction of gas distribution.

Keywords: reservoir characterization, poisson impedance, browse basin, poseidon field

Procedia PDF Downloads 124
822 Centrifuge Modelling Approach on Sysmic Loading Analysis of Clay: A Geotechnical Study

Authors: Anthony Quansah, Tresor Ntaryamira, Shula Mushota

Abstract:

Models for geotechnical centrifuge testing are usually made from re-formed soil, allowing for comparisons with naturally occurring soil deposits. However, there is a fundamental omission in this process because the natural soil is deposited in layers creating a unique structure. Nonlinear dynamics of clay material deposit is an essential part of changing the attributes of ground movements when subjected to solid seismic loading, particularly when diverse intensification conduct of speeding up and relocation are considered. The paper portrays a review of axis shaking table tests and numerical recreations to explore the offshore clay deposits subjected to seismic loadings. These perceptions are accurately reenacted by DEEPSOIL with appropriate soil models and parameters reviewed from noteworthy centrifuge modeling researches. At that point, precise 1-D site reaction investigations are performed on both time and recurrence spaces. The outcomes uncover that for profound delicate clay is subjected to expansive quakes, noteworthy increasing speed lessening may happen close to the highest point of store because of soil nonlinearity and even neighborhood shear disappointment; nonetheless, huge enhancement of removal at low frequencies are normal in any case the forces of base movements, which proposes that for dislodging touchy seaward establishments and structures, such intensified low-recurrence relocation reaction will assume an essential part in seismic outline. This research shows centrifuge as a tool for creating a layered sample important for modelling true soil behaviour (such as permeability) which is not identical in all directions. Currently, there are limited methods for creating layered soil samples.

Keywords: seismic analysis, layered modeling, terotechnology, finite element modeling

Procedia PDF Downloads 155
821 Analysis of the Elastic Energy Released and Characterization of the Eruptive Episodes Intensity’s during 2014-2015 at El Reventador Volcano, Ecuador

Authors: Paúl I. Cornejo

Abstract:

The elastic energy released through Strombolian explosions has been quite studied, detailing various processes, sources, and precursory events at several volcanoes. We realized an analysis based on the relative partitioning of the elastic energy radiated into the atmosphere and ground by Strombolian-type explosions recorded at El Reventador volcano, using infrasound and seismic signals at high and moderate seismicity episodes during intense eruptive stages of explosive and effusive activity. Our results show that considerable values of Volcano Acoustic-Seismic Ratio (VASR or η) are obtained at high seismicity stages. VASR is a physical diagnostic of explosive degassing that we used to compare eruption mechanisms at El Reventador volcano for two datasets of explosions recorded at a Broad-Band BB seismic and infrasonic station located at ~5 kilometers from the vent. We conclude that the acoustic energy EA released during explosive activity (VASR η = 0.47, standard deviation σ = 0.8) is higher than the EA released during effusive activity; therefore, producing the highest values of η. Furthermore, we realized the analysis and characterization of the eruptive intensity for two episodes at high seismicity, calculating a η three-time higher for an episode of effusive activity with an occasional explosive component (η = 0.32, and σ = 0.42), than a η for an episode of only effusive activity (η = 0.11, and σ = 0.18), but more energetic.

Keywords: effusive, explosion quakes, explosive, Strombolian, VASR

Procedia PDF Downloads 184
820 Effects of Earthquake Induced Debris to Pedestrian and Community Street Network Resilience

Authors: Al-Amin, Huanjun Jiang, Anayat Ali

Abstract:

Reinforced concrete frames (RC), especially Ordinary RC frames, are prone to structural failures/collapse during seismic events, leading to a large proportion of debris from the structures, which obstructs adjacent areas, including streets. These blocked areas severely impede post-earthquake resilience. This study uses computational simulation (FEM) to investigate the amount of debris generated by the seismic collapse of an ordinary reinforced concrete moment frame building and its effects on the adjacent pedestrian and road network. A three-story ordinary reinforced concrete frame building, primarily designed for gravity load and earthquake resistance, was selected for analysis. Sixteen different ground motions were applied and scaled up until the total collapse of the tested building to evaluate the failure mode under various seismic events. Four types of collapse direction were identified through the analysis, namely aligned (positive and negative) and skewed (positive and negative), with aligned collapse being more predominant than skewed cases. The amount and distribution of debris around the collapsed building were assessed to investigate the interaction between collapsed buildings and adjacent street networks. An interaction was established between a building that collapsed in an aligned direction and the adjacent pedestrian walkway and narrow street located in an unplanned old city. The FEM model was validated against an existing shaking table test. The presented results can be utilized to simulate the interdependency between the debris generated from the collapse of seismic-prone buildings and the resilience of street networks. These findings provide insights for better disaster planning and resilient infrastructure development in earthquake-prone regions.

Keywords: building collapse, earthquake-induced debris, ORC moment resisting frame, street network

Procedia PDF Downloads 85
819 Evaluation on Effective Size and Hysteresis Characteristics of CHS Damper

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

This study aims to evaluate the effective size and hysteresis characteristics of Circular Hollow Steel (CHS) damper. CHS damper is among steel dampers which are used widely for seismic energy dissipation because they are easy to install, maintain and are low cost. CHS damper dissipates seismic energy through metallic deformation due to the geometrical elasticity of circular shape and fatigue resistance around connection part. After calculating the effective size, which is found to be height to diameter ratio of √ ("3”), nonlinear FE analyses were conducted to evaluate the hysteresis characteristics. To verify the analysis simulation quasi static loading was carried out and the result was compared and satisfactory result was obtained.

Keywords: SS400 steel, circular hollow steel damper, effective size, quasi static loading, FE analysis

Procedia PDF Downloads 431
818 Modern Seismic Design Approach for Buildings with Hysteretic Dampers

Authors: Vanessa A. Segovia, Sonia E. Ruiz

Abstract:

The use of energy dissipation systems for seismic applications has increased worldwide, thus it is necessary to develop practical and modern criteria for their optimal design. Here, a direct displacement-based seismic design approach for frame buildings with hysteretic energy dissipation systems (HEDS) is applied. The building is constituted by two individual structural systems consisting of: 1) A main elastic structural frame designed for service loads and 2) A secondary system, corresponding to the HEDS, that controls the effects of lateral loads. The procedure implies to control two design parameters: A) The stiffness ratio (α=K_frame/K_(total system)), and B) The strength ratio (γ= V_damper / V_(total system)). The proposed damage-controlled approach contributes to the design of a more sustainable and resilient building because the structural damage is concentrated on the HEDS. The reduction of the design displacement spectrum is done by means of a damping factor (recently published) for elastic structural systems with HEDS, located in Mexico City. Two limit states are verified: Serviceability and near collapse. Instead of the traditional trial-error approach, a procedure that allows the designer to establish the preliminary sizes of the structural elements of both systems is proposed. The design methodology is applied to an 8-story steel building with buckling restrained braces, located in soft soil of Mexico City. With the aim of choosing the optimal design parameters, a parametric study is developed considering different values of α and γ. The simplified methodology is for preliminary sizing, design, and evaluation of the effectiveness of HEDS, and it constitutes a modern and practical tool that enables the structural designer to select the best design parameters.

Keywords: damage-controlled buildings, direct displacement-based seismic design, optimal hysteretic energy dissipation systems, hysteretic dampers

Procedia PDF Downloads 483
817 Soil Characteristics and Liquefaction Potential of the Bengkulu Region Based on the Microtremor Method

Authors: Aditya Setyo Rahman, Dwikorita Karnawati, Muzli, Dadang Permana, Sigit Pramono, Fajri Syukur Rahmatullah, Oriza Sativa, Moehajirin, Edy Santoso, Nur Hidayati Oktavia, Ardian Yudhi Octantyo, Robby Wallansha, Juwita Sari Pradita, Nur Fani Habibah, Audia Kaluku, Amelia Chelcea, Yoga Dharma Persada, Anton Sugiharto

Abstract:

Earthquake vibrations on the surface are not only affected by the magnitude of the earthquake and the distance from the hypocenter but also by the characteristics of the local soil. Variations and changes in soil characteristics from the depth of the bedrock to the surface can cause an amplification of earthquake vibrations that also affect the impact they may have on the surface. Soil characteristics vary widely even at relatively close distances, so for earthquake hazard mapping in cities with earthquake threats, it is necessary to study the characteristics of the local soil on a detailed or micro-scale (microzonation). This study proposes seismic microzonation and liquefaction potential based on microtremor observations. We carried out 143 microtremor observations, and the observation sites were spread across all populated sub-districts in Bengkulu City; the results showed that the dominance of Bengkulu City had medium soil types with a dominant period value of 0.4 < T₀ < 0.6, and there was one location with soft soil characteristics in the river, shaved with T₀ > 0.6. These results correlate with the potential for liquefaction as indicated by a seismic vulnerability index (K𝓰) greater than 5.

Keywords: microtremor, dominant period, microzonation, seismic vulnerability index

Procedia PDF Downloads 119
816 Vibration control of Bridge Super structure using Tuned Mass Damper (TMD)

Authors: Tauhidur Rahman, Dhrubajyoti Thakuria

Abstract:

In this article, vibration caused by earthquake excitation, wind load and the high-speed vehicle in the superstructure has been studied. An attempt has been made to control these vibrations using passive Tuned Mass Dampers (TMD). Tuned mass damper consists of a mass, spring, and viscous damper which dissipates the vibration energy of the primary structure at the damper of the TMD. In the present paper, the concrete box girder bridge superstructure is considered and is modeled using MIDAS software. The bridge is modeled as Euler-Bernoulli beam to study the responses imposed by high-speed vehicle, earthquake excitation and wind load. In the present study, comparative study for the responses has been done considering different velocities of the train. The results obtained in this study are based on Indian standard loadings specified in Indian Railways Board (Bridge Rules). A comparative study has been done for the responses of the high-speed vehicle with and without Tuned Mass Dampers. The results indicate that there is a significant reduction in displacement and acceleration in the bridge superstructure when Tuned Mass Damper is used.

Keywords: bridge superstructure, high speed vehicle, tuned mass damper, TMD, vibration control

Procedia PDF Downloads 403
815 Particle Swarm Optimization Based Vibration Suppression of a Piezoelectric Actuator Using Adaptive Fuzzy Sliding Mode Controller

Authors: Jin-Siang Shaw, Patricia Moya Caceres, Sheng-Xiang Xu

Abstract:

This paper aims to integrate the particle swarm optimization (PSO) method with the adaptive fuzzy sliding mode controller (AFSMC) to achieve vibration attenuation in a piezoelectric actuator subject to base excitation. The piezoelectric actuator is a complicated system made of ferroelectric materials and its performance can be affected by nonlinear hysteresis loop and unknown system parameters and external disturbances. In this study, an adaptive fuzzy sliding mode controller is proposed for the vibration control of the system, because the fuzzy sliding mode controller is designed to tackle the unknown parameters and external disturbance of the system, and the adaptive algorithm is aimed for fine-tuning this controller for error converging purpose. Particle swarm optimization method is used in order to find the optimal controller parameters for the piezoelectric actuator. PSO starts with a population of random possible solutions, called particles. The particles move through the search space with dynamically adjusted speed and direction that change according to their historical behavior, allowing the values of the particles to quickly converge towards the best solutions for the proposed problem. In this paper, an initial set of controller parameters is applied to the piezoelectric actuator which is subject to resonant base excitation with large amplitude vibration. The resulting vibration suppression is about 50%. Then PSO is applied to search for an optimal controller in the neighborhood of this initial controller. The performance of the optimal fuzzy sliding mode controller found by PSO indeed improves up to 97.8% vibration attenuation. Finally, adaptive version of fuzzy sliding mode controller is adopted for further improving vibration suppression. Simulation result verifies the performance of the adaptive controller with 99.98% vibration reduction. Namely the vibration of the piezoelectric actuator subject to resonant base excitation can be completely annihilated using this PSO based adaptive fuzzy sliding mode controller.

Keywords: adaptive fuzzy sliding mode controller, particle swarm optimization, piezoelectric actuator, vibration suppression

Procedia PDF Downloads 146
814 Probing The Electronic Excitation Induced Structural Phase Transition In Nd2zr2o7 Using X-ray Techniques

Authors: Yogendar Singh, Parasmani Rajput, Pawan Kumar Kulriya

Abstract:

Understanding the radiation response of the pyrochlore structured ceramics in the nuclear reactor core-like environment is of quite an interest for their utilization as host matrices. Electronic excitation (100 MeV I7+) induced crystalline to amorphous phase transition in Nd2Zr2O7 pyrochlore synthesized through three steps solid-state sintering method was investigated. The x-ray diffraction, along with Raman spectroscopy and x-ray absorption spectroscopy experiments conducted on pristine and irradiated pyrochlore, showed an increase in the rate of amorphization with ion fluence. XRD results indicate that specimen is completely amorphized on irradiation at the highest fluence of 5×1013 ions/cm2. The EXAFS spectra of the K-Zr edge and the Nd LIII edge confirmed a significant change in the chemical environment of Nd upon swift heavy ion irradiation. Observation of a large change in the intensity of K-Zr pre-edge spectra is also a good indicator of the phase transition from pyrochlore to the amorphous phase, which is supported by the FT modulus of the LIII-Nd edge. However, the chemical environment of Zr is less affected by irradiation, but it clearly exhibits an increase in the degree of disorder.

Keywords: nuclear host matrices, swift heavy ion irradiation, x-ray absorption spectroscopy, pyrochlore oxides

Procedia PDF Downloads 103
813 Effect of Column Stiffness and Orientation on Seismic Behaviour of Buildings with Vertical Irregularities

Authors: Saraswati Verma, Ankit Batra

Abstract:

In the modern day, structures are designed with a lot of complexities due to economical, aesthetical, and functional needs causing various levels of irregularities to be induced. In the past, several studies have repeatedly shown that irregular structures suffer more damage than regular structures during earthquakes. The present study makes an effort to study the contribution of the orientation of columns in the seismic behaviour of buildings with vertical irregularities namely, soft storey irregularity, mass irregularity and geometric irregularity. The response of the various models is analysed using sap2000 version 14. The parameters through which a comparative response is investigated are displacement, variation in the stiffness contribution, and inter-storey drift. Models with different configurations of column orientations were studied for each vertical irregularity and it was observed that column orientation contributed significantly in affecting a better seismic response. Square columns of the same cross-sectional area showed a good response as compared to that of rectangular columns. The study concludes that as displacement values for buildings with a soft storey and mass irregularity are very high, square columns could be used to minimise the effect of displacement in x and y-axis. In buildings with geometric irregularity, exterior column orientations can be played with to enhance the stiffness in the shorter direction to control the displacement and drift values in both x and y directions.

Keywords: soft storey, mass irregularity, geometric irregularity, column orientation, square column

Procedia PDF Downloads 378
812 Influence of Optimization Method on Parameters Identification of Hyperelastic Models

Authors: Bale Baidi Blaise, Gilles Marckmann, Liman Kaoye, Talaka Dya, Moustapha Bachirou, Gambo Betchewe, Tibi Beda

Abstract:

This work highlights the capabilities of particles swarm optimization (PSO) method to identify parameters of hyperelastic models. The study compares this method with Genetic Algorithm (GA) method, Least Squares (LS) method, Pattern Search Algorithm (PSA) method, Beda-Chevalier (BC) method and the Levenberg-Marquardt (LM) method. Four classic hyperelastic models are used to test the different methods through parameters identification. Then, the study compares the ability of these models to reproduce experimental Treloar data in simple tension, biaxial tension and pure shear.

Keywords: particle swarm optimization, identification, hyperelastic, model

Procedia PDF Downloads 171
811 Effect of Changing Iron Content and Excitation Frequency on Magnetic Particle Imaging Signal: A Comparative Study of Synomag® Nanoparticles

Authors: Kalthoum Riahi, Max T. Rietberg, Javier Perez y Perez, Corné Dijkstra, Bennie ten Haken, Lejla Alic

Abstract:

Magnetic nanoparticles (MNPs) are widely used to facilitate magnetic particle imaging (MPI) which has the potential to become the leading diagnostic instrument for biomedical imaging. This comparative study assesses the effects of changing iron content and excitation frequency on point-spread function (PSF) representing the effect of magnetization reversal. PSF is quantified by features of interest for MPI: i.e., drive field amplitude and full-width-at-half-maximum (FWHM). A superparamagnetic quantifier (SPaQ) is used to assess differential magnetic susceptibility of two commercially available MNPs: Synomag®-D50 and Synomag®-D70. For both MNPs, the signal output depends on increase in drive field frequency and amount of iron-oxide, which might be hampering the sensitivity of MPI systems that perform on higher frequencies. Nevertheless, there is a clear potential of Synomag®-D for a stable MPI resolution, especially in case of 70 nm version, that is independent of either drive field frequency or amount of iron-oxide.

Keywords: magnetic nanoparticles, MNPs, differential magnetic susceptibility, DMS, magnetic particle imaging, MPI, magnetic relaxation, Synomag®-D

Procedia PDF Downloads 140
810 Effect of Rainflow Cycle Number on Fatigue Lifetime of an Arm of Vehicle Suspension System

Authors: Hatem Mrad, Mohamed Bouazara, Fouad Erchiqui

Abstract:

Fatigue, is considered as one of the main cause of mechanical properties degradation of mechanical parts. Probability and reliability methods are appropriate for fatigue analysis using uncertainties that exist in fatigue material or process parameters. Current work deals with the study of the effect of the number and counting Rainflow cycle on fatigue lifetime (cumulative damage) of an upper arm of the vehicle suspension system. The major part of the fatigue damage induced in suspension arm is caused by two main classes of parameters. The first is related to the materials properties and the second is the road excitation or the applied force of the passenger’s number. Therefore, Young's modulus and road excitation are selected as input parameters to conduct repetitive simulations by Monte Carlo (MC) algorithm. Latin hypercube sampling method is used to generate these parameters. Response surface method is established according to fatigue lifetime of each combination of input parameters according to strain-life method. A PYTHON script was developed to automatize finite element simulations of the upper arm according to a design of experiments.

Keywords: fatigue, monte carlo, rainflow cycle, response surface, suspension system

Procedia PDF Downloads 256
809 Efficient Moment Frame Structure

Authors: Mircea I. Pastrav, Cornelia Baera, Florea Dinu

Abstract:

A different concept for designing and detailing of reinforced concrete precast frame structures is analyzed in this paper. The new detailing of the joints derives from the special hybrid moment frame joints. The special reinforcements of this alternative detailing, named modified special hybrid joint, are bondless with respect to both column and beams. Full scale tests were performed on a plan model, which represents a part of 5 story structure, cropped in the middle of the beams and columns spans. Theoretical approach was developed, based on testing results on twice repaired model, subjected to lateral seismic type loading. Discussion regarding the modified special hybrid joint behavior and further on widening research needed concludes the presentation.

Keywords: modified hybrid joint, repair, seismic loading type, acceptance criteria

Procedia PDF Downloads 523