Search results for: electrical safety
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5177

Search results for: electrical safety

317 Development of a Test Plant for Parabolic Trough Solar Collectors Characterization

Authors: Nelson Ponce Jr., Jonas R. Gazoli, Alessandro Sete, Roberto M. G. Velásquez, Valério L. Borges, Moacir A. S. de Andrade

Abstract:

The search for increased efficiency in generation systems has been of great importance in recent years to reduce the impact of greenhouse gas emissions and global warming. For clean energy sources, such as the generation systems that use concentrated solar power technology, this efficiency improvement impacts a lower investment per kW, improving the project’s viability. For the specific case of parabolic trough solar concentrators, their performance is strongly linked to their geometric precision of assembly and the individual efficiencies of their main components, such as parabolic mirrors and receiver tubes. Thus, for accurate efficiency analysis, it should be conducted empirically, looking for mounting and operating conditions like those observed in the field. The Brazilian power generation and distribution company Eletrobras Furnas, through the R&D program of the National Agency of Electrical Energy, has developed a plant for testing parabolic trough concentrators located in Aparecida de Goiânia, in the state of Goiás, Brazil. The main objective of this test plant is the characterization of the prototype concentrator that is being developed by the company itself in partnership with Eudora Energia, seeking to optimize it to obtain the same or better efficiency than the concentrators of this type already known commercially. This test plant is a closed pipe system where a pump circulates a heat transfer fluid, also calledHTF, in the concentrator that is being characterized. A flow meter and two temperature transmitters, installed at the inlet and outlet of the concentrator, record the parameters necessary to know the power absorbed by the system and then calculate its efficiency based on the direct solar irradiation available during the test period. After the HTF gains heat in the concentrator, it flows through heat exchangers that allow the acquired energy to be dissipated into the ambient. The goal is to keep the concentrator inlet temperature constant throughout the desired test period. The developed plant performs the tests in an autonomous way, where the operator must enter the HTF flow rate in the control system, the desired concentrator inlet temperature, and the test time. This paper presents the methodology employed for design and operation, as well as the instrumentation needed for the development of a parabolic trough test plant, being a guideline for standardization facilities.

Keywords: parabolic trough, concentrated solar power, CSP, solar power, test plant, energy efficiency, performance characterization, renewable energy

Procedia PDF Downloads 102
316 Spatial Design Transformation of Mount Merapi's Dwellings Using Diachronic Approach

Authors: Catharina Dwi Astuti Depari, Gregorius Agung Setyonugroho

Abstract:

In concern for human safety, living in disaster-prone areas is twofold: it is profoundly cataclysmic yet perceptibly contributive. This paradox could be identified in Kalitengah Lor Sub-village community who inhabit Mount Merapi’s most hazardous area, putting them to the highest exposure to eruptions’ cataclysmic impacts. After the devastating incident in 2010, through the Action Plan for Rehabilitation and Reconstruction, the National Government with immediate aid from humanitarian agencies initiated a relocation program by establishing nearly 2,613 temporary shelters throughout the mountain’s region. The problem arose as some of the most affected communities including those in Kalitengah Lor Sub-village, persistently refused to relocate. The obnoxious experience of those living in temporary shelters resulted from the program’s failure to support a long-term living was assumed to instigate the rejection. From the psychological standpoint, this phenomenon reflects the emotional bond between the affected communities with their former dwellings. Regarding this, the paper aims to reveal the factors influencing the emotional attachment of Kalitengah Lor community to their former dwellings including the dwellings’ spatial design transformation prior and post the eruption in 2010. The research adopted Likert five scale-questionnaire comprising a wide range of responses from strongly agree to strongly disagree. The responses were then statistically measured, leading to consensus that provides bases for further interpretations toward the local’s characteristics. Using purposive unit sampling technique, 50 respondents from 217 local households were randomly selected. Questions in the questionnaire were developed with concerns on the aspects of place attachment concept: affection, cognitive, behavior, and perception. Combined with quantitative method, the research adopted diachronic method which was aimed to analyze the spatial design transformation of each dwelling in relation to the inhabitant’s daily activities and personal preferences. The research found that access to natural resources like sand mining, agricultural farms and wood forests, social relationship and physical proximity from house to personal asset like cattle shed, are the dominant factors encouraging the locals to emotionally attached to their former dwellings. Consequently, each dwelling’s spatial design is suffered from changes in which the current house is typically larger in dimension and the bathroom is replaced by public toilet located outside the house’s backyard. Relatively unchanged, the cattle shed is still located in front of the house, the continuous visual relationship, particularly between the living and family room, is maintained, as well as the main orientation of the house towards the local street.

Keywords: diachronic method, former dwellings, local’s characteristics, place attachment, spatial design transformation

Procedia PDF Downloads 148
315 Mobile Phones, (Dis) Empowerment and Female Headed Households: Trincomalee, Sri Lanka

Authors: S. A. Abeykoon

Abstract:

This study explores the empowerment potential of the mobile phone, the widely penetrated and greatly affordable communication technology in Sri Lanka, for female heads of households in Trincomalee District, Sri Lanka-an area recovering from the effects of a 30-year civil war and the 2004 Boxing Day Tsunami. It also investigates how the use of mobile phones by these women is shaped and appropriated by the gendered power relations and inequalities in their respective communities and by their socio-economic factors and demographic characteristics. This qualitative study is based on the epistemology of constructionism; interpretivist, functionalist and critical theory approaches; and the process of action research. The data collection was conducted from September 2014 to November 2014 in two Divisional Secretaries of the Trincomalee District, Sri Lanka. A total of 30 semi-structured depth interviews and six focus groups with the female heads of households of Sinhalese, Tamil and Muslim ethnicities were conducted using purposive, representative and snowball sampling methods. The Grounded theory method was used to analyze transcribed interviews, focus group discussions and field notes that were coded and categorized in accordance with the research questions and the theoretical framework of the study. The findings of the study indicated that the mobile phone has mainly enabled the participants to balance their income earning activities and family responsibilities and has been useful in maintaining their family and social relationships, occupational duties and in making decisions. Thus, it provided them a higher level of security, safety, reassurance and self-confidence in carrying out their daily activities. They also practiced innovative strategies for the effective and efficient use of their mobile expenses. Although participants whose husbands or relatives have migrated were more tended to use smart phones, mobile literacy level of the majority of the participants was at a lower level limited to making and receiving calls and using SMS (Short Message Service) services. However, their interaction with the mobile phone was significantly shaped by the gendered power relations and their multiple identities based on their ethnicity, religion, class, education, profession and age. Almost all the participants were precautious of giving their mobile numbers to and have been harassed with ‘nuisance calls’ from men. For many, ownership and use of their mobile phone was shaped and influenced by their children and migrated husbands. Although these practices limit their use of the technology, there were many instances that they challenged these gendered harassments. While man-made and natural destructions have disempowered and victimized the women in the Sri Lankan society, they have also liberated women making them stronger and transforming their agency and traditional gender roles. Therefore, their present position in society is reflected in their mobile phone use as they assist such women to be more self-reliant and liberated, yet making them disempowered at some time.

Keywords: mobile phone, gender power relations, empowerment, female heads of households

Procedia PDF Downloads 315
314 Dynamic Changes in NT-proBNP Levels in Unrelated Donors during Hematopoietic Stem Cells Mobilization

Authors: Natalia V. Minaeva, Natalia A. Zorina, Marina N. Khorobrikh, Philipp S. Sherstnev, Tatiana V. Krivokorytova, Alexander S. Luchinin, Maksim S. Minaev, Igor V. Paramonov

Abstract:

Background. Over the last few decades, the Center for International Blood and Marrow Transplant Research (CIBMTR) and the World Marrow Donor Association (WMDA) have been actively working to ensure the safety of the hematopoietic stem cell (HSC) donation process. Registration of adverse events that may occur during the donation period and establishing a relationship between donation and side effects are included in the WMDA international standards. The level of blood serum N-terminal pro-brain natriuretic peptide (NT-proBNP) is an early marker of myocardial stress. Due to the high analytical sensitivity and specificity, laboratory assessment of NT-proBNP makes it possible to objectively diagnose myocardial dysfunction. It is well known that the main stimulus for proBNP synthesis and secretion from atrial and ventricular cardiac myocytes is myocyte stretch and increasement of myocardial extensibility and pressure in the heart chambers. Аim. The aim of the study was to assess the dynamic changes in the levels of blood serum N-terminal pro-brain natriuretic peptide of unrelated donors at various stages of hematopoietic stem cell mobilization. Materials. We have examined 133 unrelated donors, including 92 men and 41 women, that have been included into the study. The NT-proBNP levels were measured before the start of mobilization, then on the day of apheresis, and after the donation of allogeneic HSC. The relationship between NT-proBNP levels and body mass index (BMI), ferritin, hemoglobin, and white blood cells (WBC) levels was assessed on the day of apheresis. The median age of donors was 34 years. Mobilization of HSCs was managed with filgrastim administration at a dose of 10 μg/kg daily for 4-5 days. The first leukocytapheresis was performed on day 4 from the start of filgrastim administration. Quantitative values of the blood serum NT-proBNP level are presented as a median (Me), first and third quartiles (Q1-Q3). Comparative analysis was carried out using the t-test and correlation analysis as well by Spearman method. Results. The baseline blood serum NT-proBNP levels in all 133 donors were within the reference values (<125 pg/ml) and equaled 21,6 (10,0; 43,3) pg/ml. At the same time, the level of NT-proBNP in women was significantly higher than that of men. On the day of the HSC apheresis, a significant increase of blood serum NT-proBNP levels was detected and equald 131,2 (72,6; 165,3) pg/ml (p<0,001), with higher rates in female donors. A statistically significant weak inverse correleation was established between the level of NT-proBNP and the BMI of donors (-0.18, p = 0,03), as well as the level of hemoglobin (-0.33, p <0,001), and ferritin levels (-0.19, p = 0,03). No relationship has been established between the magnitude of WBC levels achieved as a result of the mobilization of HSC on the day of leukocytapheresis. A day after the apheresis, the blood serum NT-proBNP levels still exceeded the reference values, but there was a decreasing tendency. Conclusion. An increase of the blood serum NT-proBNP level in unrelated donors during the mobilization of HSC was established. Future studies should clarify the reason for this phenomenon, as well as its effects on donors' long-term health.

Keywords: unrelated donors, mobilization, hematopoietic stem cells, N-terminal pro-brain natriuretic peptide

Procedia PDF Downloads 81
313 Electronic Waste Analysis And Characterization Study: Management Input For Highly Urbanized Cities

Authors: Jilbert Novelero, Oliver Mariano

Abstract:

In a world where technological evolution and competition to create innovative products are at its peak, problems on Electronic Waste (E-Waste) are now becoming a global concern. E-waste is said to be any electrical or electronic devices that have reached the terminal of its useful life. The major issue are the volume and the raw materials used in crafting E-waste which is non-biodegradable and contains hazardous substances that are toxic to human health and the environment. The objective of this study is to gather baseline data in terms of the composition of E-waste in the solid waste stream and to determine the top 5 E-waste categories in a highly urbanized city. Recommendations in managing these wastes for its reduction were provided which may serve as a guide for acceptance and implementation in the locality. Pasig City was the chosen beneficiary of the research output and through the collaboration of the City Government of Pasig and its Solid Waste Management Office (SWMO); the researcher successfully conducted the Electronic Waste Analysis and Characterization Study (E-WACS) to achieve the objectives. E-WACS that was conducted on April 2019 showed that E-waste ranked 4th which comprises the 10.39% of the overall solid waste volume. Out of 345, 127.24kg which is the total daily domestic waste generation in the city, E-waste covers 35,858.72kg. Moreover, an average of 40 grams was determined to be the E-waste generation per person per day. The top 5 E-waste categories were then classified after the analysis. The category which ranked first is the office and telecommunications equipment that contained the 63.18% of the total generated E-waste. Second in ranking was the household appliances category with 21.13% composition. Third was the lighting devices category with 8.17%. Fourth on ranking was the consumer electronics and batteries category which was composed of 5.97% and fifth was the wires and cables category where it comprised the 1.41% of the average generated E-waste samples. One of the recommendations provided in this research is the implementation of the Pasig City Waste Advantage Card. The card can be used as a privilege card and earned points can be converted to avail of and enjoy services such as haircut, massage, dental services, medical check-up, and etc. Another recommendation raised is for the LGU to encourage a communication or dialogue with the technology and electronics manufacturers and distributors and international and local companies to plan the retrieval and disposal of the E-wastes in accordance with the Extended Producer Responsibility (EPR) policy where producers are given significant responsibilities for the treatment and disposal of post-consumer products.

Keywords: E-waste, E-WACS, E-waste characterization, electronic waste, electronic waste analysis

Procedia PDF Downloads 101
312 Theoretical Framework and Empirical Simulation of Policy Design on Trans-Dimensional Resource Recycling

Authors: Yufeng Wu, Yifan Gu, Bin Li, Wei Wang

Abstract:

Resource recycling process contains a subsystem with interactions of three dimensions including coupling allocation of primary and secondary resources, responsibility coordination of stakeholders in forward and reverse supply chains, and trans-boundary transfer of hidden resource and environmental responsibilities between regions. Overlap or lack of responsibilities is easy to appear at the intersection of the three management dimensions. It is urgent to make an overall design of the policy system for recycling resources. From theoretical perspective, this paper analyzes the unique external differences of resource and environment in various dimensions and explores the reason why the effects of trans-dimensional policies are strongly correlated. Taking the example of the copper resources contained in the waste electrical and electronic equipment, this paper constructs reduction effect accounting model of resources recycling and set four trans-dimensional policy scenarios including resources tax and environmental tax reform of the raw and secondary resources, application of extended producer responsibility system, promotion of clean development mechanism, and strict entry barriers of imported wastes. In these ways, the paper simulates the impact effect of resources recycling process on resource deduction and emission reduction of waste water and gas, and constructs trans-dimensional policy mix scenario through integrating dominant strategy. The results show that combined application of various dimensional policies can achieve incentive compatibility and the trans-dimensional policy mix scenario can reach a better effect. Compared with baseline scenario, this scenario will increase 91.06% copper resources reduction effect and improve emission reduction of waste water and gas by eight times from 2010 to 2030. This paper further analyzes the development orientation of policies in various dimension. In resource dimension, the combined application of compulsory, market and authentication methods should be promoted to improve the use ratio of secondary resources. In supply chain dimension, resource value, residual functional value and potential information value contained in waste products should be fully excavated to construct a circular business system. In regional dimension, it should give full play to the comparative advantages of manufacturing power to improve China’s voice in resource recycling in the world.

Keywords: resource recycling, trans-dimension, policy design, incentive compatibility, life cycle

Procedia PDF Downloads 109
311 Proposals for the Practical Implementation of the Biological Monitoring of Occupational Exposure for Antineoplastic Drugs

Authors: Mireille Canal-Raffin, Nadege Lepage, Antoine Villa

Abstract:

Context: Most antineoplastic drugs (AD) have a potential carcinogenic, mutagenic and/or reprotoxic effect and are classified as 'hazardous to handle' by National Institute for Occupational Safety and Health Their handling increases with the increase of cancer incidence. AD contamination from workers who handle AD and/or care for treated patients is, therefore, a major concern for occupational physicians. As part of the process of evaluation and prevention of chemical risks for professionals exposed to AD, Biological Monitoring of Occupational Exposure (BMOE) is the tool of choice. BMOE allows identification of at-risk groups, monitoring of exposures, assessment of poorly controlled exposures and the effectiveness and/or wearing of protective equipment, and documenting occupational exposure incidents to AD. This work aims to make proposals for the practical implementation of the BMOE for AD. The proposed strategy is based on the French good practice recommendations for BMOE, issued in 2016 by 3 French learned societies. These recommendations have been adapted to occupational exposure to AD. Results: AD contamination of professionals is a sensitive topic, and the BMOE requires the establishment of a working group and information meetings within the concerned health establishment to explain the approach, objectives, and purpose of monitoring. Occupational exposure to AD is often discontinuous and 2 steps are essential upstream: a study of the nature and frequency of AD used to select the Biological Exposure Indice(s) (BEI) most representative of the activity; a study of AD path in the institution to target exposed professionals and to adapt medico-professional information sheet (MPIS). The MPIS is essential to gather the necessary elements for results interpretation. Currently, 28 urinary specific BEIs of AD exposure have been identified, and corresponding analytical methods have been published: 11 BEIs were AD metabolites, and 17 were AD. Results interpretation is performed by groups of homogeneous exposure (GHE). There is no threshold biological limit value of interpretation. Contamination is established when an AD is detected in trace concentration or in a urine concentration equal or greater than the limit of quantification (LOQ) of the analytical method. Results can only be compared to LOQs of these methods, which must be as low as possible. For 8 of the 17 AD BEIs, the LOQ is very low with values between 0.01 to 0.05µg/l. For the other BEIs, the LOQ values were higher between 0.1 to 30µg/l. Results restitution by occupational physicians to workers should be individual and collective. Faced with AD dangerousness, in cases of workers contamination, it is necessary to put in place corrective measures. In addition, the implementation of prevention and awareness measures for those exposed to this risk is a priority. Conclusion: This work is a help for occupational physicians engaging in a process of prevention of occupational risks related to AD exposure. With the current analytical tools, effective and available, the (BMOE) to the AD should now be possible to develop in routine occupational physician practice. The BMOE may be complemented by surface sampling to determine workers' contamination modalities.

Keywords: antineoplastic drugs, urine, occupational exposure, biological monitoring of occupational exposure, biological exposure indice

Procedia PDF Downloads 111
310 Differences Between Mother and Father Perpetrators on Child Maltreatment Foster Care Outcomes: An Emphasis on Hispanic and Native American Families

Authors: Yadira Tejeda, Wynette Whitegoat, Dylan Jones, Brett Drake

Abstract:

Background and Purpose: Hispanic and American Indian/Alaska Native (AI/AN) families impacted by child protective services (CPS) continue to be a population in literature where little is known. There is less known about the fathers of these children and the safety or risk factors attributed to child maltreatment and case outcomes. However, it is known that involving fathers in children’s lives is needed for healthy development, academic achievement, and cognitive development. The few articles that have studied the impacts of engaging fathers in the CPS have found that children in general experience shorter times in foster care, are likely to reunify with their biological family, and overall have better case outcomes. The purpose of this study is to determine whether perpetrators identified as the mother, father, or both impact foster care placement in Hispanic and AI/AN families in CPS. Methods: Using NCANDS Child File data, the selected reports submitted in FY2017 with at least one substantiated allegation, i.e. those with perpetrator information. Reports were categorized into one of three categories: mom-perpetrator-only, father-perpetrator-only, and both. Reports that did not fall into any one of these three categorizations were omitted (<18%). Lastly, only reports where the mother and father self-identified as Hispanic or AI/AN were kept. Foster care placement was measured if any child in the report was placed within three months of the report date. Multilevel Logistic Regression models (random intercepts at the state and county) were used to model the relationship between report-parent type and foster care placement. Controls included Maltreatment types, number of children, any prior reports, and age of the youngest child. Results: For AI/AN reports, 64% were mom-perpetrator-only, 20% were father-perpetrator-only, and 16% both. Father-perpetrator-only reports had 60% lower odds of placement than mom-perpetrator-only, and both had 35% greater odds than mom-only. For Hispanics, 51% were mom-perpetrator-only, 30% father-perpetrator-only, and 19% both. Father-perpetrator-only reports had 74% lower odds than mom-perpetrator-only, and both had 55% greater odds than mom-perpetrator-only. Conclusion and Implications: Fatherhood research focused on prevention and intervention services should include Hispanic and AI/AN fathers to create culturally relevant and tailored services for both groups. By identifying differences in children’s CPS trajectories conditional on fathers’ involvement as a perpetrator, this analysis helps to inform where and how prevention efforts should be focused when considering variation in parental involvement for both populations. The findings indicate that the father’s involvement predicts substantial differences in the probability of future placement, with the direction depending on the mother’s joint involvement. Future research should investigate mediating pathways of these relationships while accounting for the unique experiences of AI/AN and Hispanic families. Each of these racial groups faces unique and differing challenges related to CPS, yet both groups have a shared understanding of the importance of fatherhood in the lives of children. Developing a better understanding of what is happening with Hispanic and AI/AN fathers as it relates to children's CPS experiences may result in new tools to reduce child maltreatment rates in these communities.

Keywords: child Abuse, child maltreatment, NDACAN, latino, native American

Procedia PDF Downloads 16
309 A Systematic Review of Forest School for Early Childhood Education in China: Lessons Learned from European Studies from a Perspective of Ecological System

Authors: Xiaoying Zhang

Abstract:

Forest school – an outdoor educational experience that is undertaken in an outdoor environment with trees – becomes an emerging field of early childhood education recently. In China, the benefits of natural outdoor education to children and young people’s wellness have raised attention. Although different types of outdoor-based activities have been involved in some pre-school of China, few study and practice have been conducted in terms of the notion of forest school. To comprehend the impact of forest school for children and young people, this study aims to systematically review articles on the topic of forest school in preschool education from an ecological perspective, i.e. from individual level (e.g., behavior and mental health) to microsystem level (e.g., the relationship between teachers and children) to ecosystem level. Based on PRISMA framework flow, using the key words of “Forest School” and “Early Childhood Education” for searching in Web-of-science database, a total of 33 articles were identified. Sample participants of 13 studies were not preschool children, five studies were not on forest school theme, and two literature review articles were excluded for further analysis. Finally, 13 articles were eligible for thematic analysis. According to Bronfenbrenner's ecological systems theory, there are some fingdings, on the individual level, current forest school studies are concerned about the children behavioral experience in forest school, how these experience may relate to their achievement or to develop children’s wellbeing/wellness, and how this type of learning experience may enhance children’s self-awareness on risk and safety issues. On the microsystem/mesosystem level, this review indicated that pedagogical development for forest school, risk perception from teachers and parents, social development between peers, and adult’s role in the participation of forest school were concerned, explored and discussed most frequently. On the macrosystem, the conceptualization of forest school is the key theme. Different forms of presentation in various countries with diverse cultures could provide various models of forest school education. However, there was no study investigating forest school on an ecosystem level. As for the potential benefits of physical health and mental wellness that results from forest school, it informs us to reflect the system of preschool education from the ecological perspective for Chinese children. For instance, most Chinese kindergartens ignored the significance of natural outdoor activities for children. Preschool education in China is strongly oriented by primary school system, which means pre-school children are expected to be trained as primary school students to do different subjects, such as math. Hardly any kindergarteners provide the opportunities for children and young people to take risks in a natural environment like forest school does. However, merely copying forest school model for a Chinese preschool education system will be less effective. This review of different level concerns could inform us that the localization the idea of forest school to adapt to a Chinese political, educational and cultural background. More detailed results and profound discussions will be presented in the full paper.

Keywords: early childhood education, ecological system, education development prospects in China, forest school

Procedia PDF Downloads 111
308 Evaluation of Magnificent Event of India with Special Reference to Maha Kumbha Mela (Fair) 2013-A Congregation of Millions

Authors: Sharad Kumar Kulshreshtha

Abstract:

India is a great land of cultural and traditional diversity. Its spectrums create a unique ambiance in all over the country. Specially, fairs and festivals are ancient phenomena in Indian culture. In India, there are thousands of such religious, spiritual, cultural fairs organized on auspicious occasions. These fairs reflect the effective and efficient role of social governance and responsibility of Indian society. In this context a mega event known as ‘Kumbha Mela’ literally mean ‘Kumbha Fair’ which is organize after every twelve years at (Prayaag) Allahabad an ancient city of India, now is in the state of Uttar Pradesh. Kumbh Mela is one of the largest human congregations on the Earth. The Kumbha Mela that is held here is considered to be the largest and holiest city among the four cities where Kubha fair organize. According to the Hindu religious scripture a dip for possessing the holy confluence, known as Triveni Sangam, which is a meeting point of the three sacred rivers of India i.e., –Ganges, Yamuna and Saraswati (mythical). During the Kumbha fair the River Ganges is believed to turn to nectar, bringing great blessing to everyone who bathes in it. Other activities include religious discussions, devotional singings and mass feedings pilgrims and poor. The venue for Kumbh Mela (fair) depends on the position Sun, Moon, and Jupiter which holds in that period in different zodiac signs. More than 120 Millions (12 Crore) people visited in the Kumbha Fair-2013 in Allahabad. A temporary tented city was set up for the pilgrims over an area of 2 hectares of the land along the river of Ganges. As many as 5 power substations, temporary police stations, hospitals, bus terminals, stalls were set up for providing various facilities to the visitors and thousands of volunteers participated for assistance of this event. All efforts made by fair administration to provide facility to visitors, such security and sanitation, medical care and frequent water and power supply. The efficient and timely arrangement at the Kumbha Mela attracted the attention of many government and institutions. The Harvard University of USA conducted research to find out how it was made possible. This paper will focuses on effective and efficient planning and preparation of Kumbha Fair which includes facilitation process, role of various coordinating agencies. risk management crisis management strategies Prevention, Preparedness, Response, and Recovery (PPRR Approach), emergency response plan (ERP), safety and security issues, various environmental aspects along with health hazards and hygiene crowd management, evacuation, monitoring, control and evaluation.

Keywords: event planning and facility arrangement, risk management, crowd management, India

Procedia PDF Downloads 292
307 School Accidents in Educational Establishment in Tunisia: A Five Years Retrospective Survey in the Governorate of Mahdia

Authors: Lamia Bouzgarrou, Amira Omrane, Leila Mrabet, Taoufik Khalfallah

Abstract:

Background and aims: School accidents are one of the leading causes of morbidity and mortality among pupils and students. Indeed, they may induce an elevated number of lost school days, heavy emotional and physical disabilities, and financial costs on the victims and their families. This study aims to evaluate the annual incidence of school accidents in the central Tunisian governorate of Mahdia and to identify the epidemiological profile of victims and risk factors of these accidents. Methods: A retrospective study was conducted over the period of 5 school years, focusing on school accidents that occurred in public educational institutions (primary, basic, secondary and university) in the governorate of Mahdia (area = 2 966 km² and number of inhabitants in 2014 = 410 812). All accidents declared near the only official insurance of this type of injuries (MASU: Mutual School and University Accidents), and initially taken in charge at the University Hospital of Mahdia were included. Data was collected from the MASU reporting forms and the medical records of emergency and other specialized hospital departments. Results: With 3248 identified victims, the annual incidence of school accidents was equal to 0.69 per 100 pupils and students per year. The average age of victims was 14.51 ± 0.059 years and the sex ratio was 1.58. Pupils aged between 12 and 15 years, were concerned by 46.7% of the identified accidents. The practice of sports was the most relevant circumstances of these accidents (76.2 %). In 56.58 % of cases, falls were the leading mechanism. Bruises and fractures were the most frequent lesions (32.43 % and 30.51 %). Serious school accidents were noted in 28% of cases with hospitalization in 2.27 % of them. The average lost school days, was 12.23±1.73 days. Accidents occurring during sports or leisure activities were significantly more serious (p= 0.021). Furthermore, the frequency of hospitalization was significantly higher among boys (2.81% vs. 1.43%; p= 0.035), students ≤11 years (p= 0.008), and following crush trauma (p= 0.000). In addition, the surgical interventions were statistically more frequent among male victims (p=0.00), accidents occurring during physical education sessions (p=0.000); those associated to falls (p=0.000) and to crushes mechanisms (p=0.002), and injuries affecting lower limbs (p=0.000). Following this Multi-varied analysis concluded that the severity of school accident is correlated to the activity practiced during the trauma and the geographical location of the school. Conclusion: Children and adolescents are one of the most vulnerable groups against incidents with the risk of permanent disability, mainly related to the perturbation of the growth process and physiological limitations. Our five-year study, objectified a real elevate incidence of school accident among children and adolescents, with a considerable rate of severe injuries. In any community, the promotion of adolescents and children’s health is an important indicator of the public health level. Thus, it’s important to develop a multidisciplinary prevention strategy of school accident, based on safety and security rules and adapted to the specificity of our context.

Keywords: children and adolescents, children health, injuries and disability, school accident

Procedia PDF Downloads 100
306 Ammonia Cracking: Catalysts and Process Configurations for Enhanced Performance

Authors: Frea Van Steenweghen, Lander Hollevoet, Johan A. Martens

Abstract:

Compared to other hydrogen (H₂) carriers, ammonia (NH₃) is one of the most promising carriers as it contains 17.6 wt% hydrogen. It is easily liquefied at ≈ 9–10 bar pressure at ambient temperature. More importantly, NH₃ is a carbon-free hydrogen carrier with no CO₂ emission at final decomposition. Ammonia has a well-defined regulatory framework and a good track record regarding safety concerns. Furthermore, the industry already has an existing transport infrastructure consisting of pipelines, tank trucks and shipping technology, as ammonia has been manufactured and distributed around the world for over a century. While NH₃ synthesis and transportation technological solutions are at hand, a missing link in the hydrogen delivery scheme from ammonia is an energy-lean and efficient technology for cracking ammonia into H₂ and N₂. The most explored option for ammonia decomposition is thermo-catalytic cracking which is, by itself, the most energy-efficient approach compared to other technologies, such as plasma and electrolysis, as it is the most energy-lean and robust option. The decomposition reaction is favoured only at high temperatures (> 300°C) and low pressures (1 bar) as the thermocatalytic ammonia cracking process is faced with thermodynamic limitations. At 350°C, the thermodynamic equilibrium at 1 bar pressure limits the conversion to 99%. Gaining additional conversion up to e.g. 99.9% necessitates heating to ca. 530°C. However, reaching thermodynamic equilibrium is infeasible as a sufficient driving force is needed, requiring even higher temperatures. Limiting the conversion below the equilibrium composition is a more economical option. Thermocatalytic ammonia cracking is documented in scientific literature. Among the investigated metal catalysts (Ru, Co, Ni, Fe, …), ruthenium is known to be most active for ammonia decomposition with an onset of cracking activity around 350°C. For establishing > 99% conversion reaction, temperatures close to 600°C are required. Such high temperatures are likely to reduce the round-trip efficiency but also the catalyst lifetime because of the sintering of the supported metal phase. In this research, the first focus was on catalyst bed design, avoiding diffusion limitation. Experiments in our packed bed tubular reactor set-up showed that extragranular diffusion limitations occur at low concentrations of NH₃ when reaching high conversion, a phenomenon often overlooked in experimental work. A second focus was thermocatalyst development for ammonia cracking, avoiding the use of noble metals. To this aim, candidate metals and mixtures were deposited on a range of supports. Sintering resistance at high temperatures and the basicity of the support were found to be crucial catalyst properties. The catalytic activity was promoted by adding alkaline and alkaline earth metals. A third focus was studying the optimum process configuration by process simulations. A trade-off between conversion and favorable operational conditions (i.e. low pressure and high temperature) may lead to different process configurations, each with its own pros and cons. For example, high-pressure cracking would eliminate the need for post-compression but is detrimental for the thermodynamic equilibrium, leading to an optimum in cracking pressure in terms of energy cost.

Keywords: ammonia cracking, catalyst research, kinetics, process simulation, thermodynamic equilibrium

Procedia PDF Downloads 46
305 Occurrence of Half-Metallicity by Sb-Substitution in Non-Magnetic Fe₂TiSn

Authors: S. Chaudhuri, P. A. Bhobe

Abstract:

Fe₂TiSn is a non-magnetic full Heusler alloy with a small gap (~ 0.07 eV) at the Fermi level. The electronic structure is highly symmetric in both the spin bands and a small percentage of substitution of holes or electrons can push the system towards spin polarization. A stable 100% spin polarization or half-metallicity is very desirable in the field of spintronics, making Fe₂TiSn a highly attractive material. However, this composition suffers from an inherent anti-site disorder between Fe and Ti sites. This paper reports on the method adopted to control the anti-site disorder and the realization of the half-metallic ground state in Fe₂TiSn, achieved by chemical substitution. Here, Sb was substituted at Sn site to obtain Fe₂TiSn₁₋ₓSbₓ compositions with x = 0, 0.1, 0.25, 0.5 and 0.6. All prepared compositions with x ≤ 0.6 exhibit long-range L2₁ ordering and a decrease in Fe – Ti anti-site disorder. The transport and magnetic properties of Fe₂TiSn₁₋ₓSbₓ compositions were investigated as a function of temperature in the range, 5 K to 400 K. Electrical resistivity, magnetization, and Hall voltage measurements were carried out. All the experimental results indicate the presence of the half-metallic ground state in x ≥ 0.25 compositions. However, the value of saturation magnetization is small, indicating the presence of compensated magnetic moments. The observed magnetic moments' values are in close agreement with the Slater–Pauling rule in half-metallic systems. Magnetic interactions in Fe₂TiSn₁₋ₓSbₓ are understood from the local crystal structural perspective using extended X-ray absorption fine structure (EXAFS) spectroscopy. The changes in bond distances extracted from EXAFS analysis can be correlated with the hybridization between constituent atoms and hence the RKKY type magnetic interactions that govern the magnetic ground state of these alloys. To complement the experimental findings, first principle electronic structure calculations were also undertaken. The spin-polarized DOS complies with the experimental results for Fe₂TiSn₁₋ₓSbₓ. Substitution of Sb (an electron excess element) at Sn–site shifts the majority spin band to the lower energy side of Fermi level, thus making the system 100% spin polarized and inducing long-range magnetic order in an otherwise non-magnetic Fe₂TiSn. The present study concludes that a stable half-metallic system can be realized in Fe₂TiSn with ≥ 50% Sb – substitution at Sn – site.

Keywords: antisite disorder, EXAFS, Full Heusler alloy, half metallic ferrimagnetism, RKKY interactions

Procedia PDF Downloads 119
304 Transport Properties of Alkali Nitrites

Authors: Y. Mateyshina, A.Ulihin, N.Uvarov

Abstract:

Electrolytes with different type of charge carrier can find widely application in different using, e.g. sensors, electrochemical equipments, batteries and others. One of important components ensuring stable functioning of the equipment is electrolyte. Electrolyte has to be characterized by high conductivity, thermal stability, and wide electrochemical window. In addition to many advantageous characteristic for liquid electrolytes, the solid state electrolytes have good mechanical stability, wide working range of temperature range. Thus search of new system of solid electrolytes with high conductivity is an actual task of solid state chemistry. Families of alkali perchlorates and nitrates have been investigated by us earlier. In literature data about transport properties of alkali nitrites are absent. Nevertheless, alkali nitrites MeNO2 (Me= Li+, Na+, K+, Rb+ and Cs+), except for the lithium salt, have high-temperature phases with crystal structure of the NaCl-type. High-temperature phases of nitrites are orientationally disordered, i.e. non-spherical anions are reoriented over several equivalents directions in the crystal lattice. Pure lithium nitrite LiNO2 is characterized by ionic conductivity near 10-4 S/cm at 180°C and more stable as compared with lithium nitrate and can be used as a component for synthesis of composite electrolytes. In this work composite solid electrolytes in the binary system LiNO2 - A (A= MgO, -Al2O3, Fe2O3, CeO2, SnO2, SiO2) were synthesized and their structural, thermodynamic and electrical properties investigated. Alkali nitrite was obtained by exchange reaction from water solutions of barium nitrite and alkali sulfate. The synthesized salt was characterized by X-ray powder diffraction technique using D8 Advance X-Ray Diffractometer with Cu K radiation. Using thermal analysis, the temperatures of dehydration and thermal decomposition of salt were determined.. The conductivity was measured using a two electrode scheme in a forevacuum (6.7 Pa) with an HP 4284A (Precision LCR meter) in a frequency range 20 Hz < ν < 1 MHz. Solid composite electrolytes LiNO2 - A A (A= MgO, -Al2O3, Fe2O3, CeO2, SnO2, SiO2) have been synthesized by mixing of preliminary dehydrated components followed by sintering at 250°C. In the series of nitrite of alkaline metals Li+-Cs+, the conductivity varies not monotonically with increasing radius of cation. The minimum conductivity is observed for KNO2; however, with further increase in the radius of cation in the series, the conductivity tends to increase. The work was supported by the Russian Foundation for Basic research, grant #14-03-31442.

Keywords: conductivity, alkali nitrites, composite electrolytes, transport properties

Procedia PDF Downloads 303
303 An Integrated Geophysical Investigation for Earthen Dam Inspection: A Case Study of Huai Phueng Dam, Udon Thani, Northeastern Thailand

Authors: Noppadol Poomvises, Prateep Pakdeerod, Anchalee Kongsuk

Abstract:

In the middle of September 2017, a tropical storm named ‘DOKSURI’ swept through Udon Thani, Northeastern Thailand. The storm dumped heavy rain for many hours and caused large amount of water flowing into Huai Phueng reservoir. Level of impounding water increased rapidly, and the extra water flowed over a service spillway, morning-glory type constructed by concrete material for about 50 years ago. Subsequently, a sinkhole was formed on the dam crest and five points of water piping were found on downstream slope closely to spillway. Three techniques of geophysical investigation were carried out to inspect cause of failures; Electrical Resistivity Imaging (ERI), Multichannel Analysis of Surface Wave (MASW), and Ground Penetrating Radar (GPR), respectively. Result of ERI clearly shows evidence of overtop event and heterogeneity around spillway that implied possibility of previous shape of sinkhole around the pipe. The shear wave velocity of subsurface soil measured by MASW can numerically convert to undrained shear strength of impervious clay core. Result of GPR clearly reveals partial settlements of freeboard zone at top part of the dam and also shaping new refilled material to plug the sinkhole back to the condition it should be. In addition, the GPR image is a main answer to confirm that there are not any sinkholes in the survey lines, only that found on top of the spillway. Integrity interpretation of the three results together with several evidences observed during a field walk-through and data from drilled holes can be interpreted that there are four main causes in this account. The first cause is too much water flowing over the spillway. Second, the water attacking morning glory spillway creates cracks upon concrete contact where the spillway is cross-cut to the center of the dam. Third, high velocity of water inside the concrete pipe sucking fine particle of embankment material down via those cracks and flushing out to the river channel. Lastly, loss of clay material of the dam into the concrete pipe creates the sinkhole at the crest. However, in case of failure by piping, it is possible that they can be formed both by backward erosion (internal erosion along or into embedded structure of spillway walls) and also by excess saturated water of downstream material.

Keywords: dam inspection, GPR, MASW, resistivity

Procedia PDF Downloads 223
302 The Use of Social Media Sarcasm as a Response to Media-Coverage of Iran’s Unprecedented Attack on Israel

Authors: Afif J Arabi

Abstract:

On April 15, 2024, Iran announced its unprecedented military attack by sending waves of more than 300 drones and ballistic missiles toward Israel. The Attack lasted approximately five hours and was a widely covered, distributed, and followed media event. Iran’s military action against Israel was a long-awaited action across the Middle East since the early days of the October 7th war on Gaza and after a long history of verbal threats. While people in many Arab countries stayed up past midnight in anticipation of watching the disastrous results of this unprecedented attack, voices on traditional and social media alike started to question the timed public announcement of the attack, which gave Israel at least a two-hour notice to prepare its defenses. When live news coverage started showing that nearly all the drones and missiles were intercepted by Israel – with help from the U.S. and other countries – and no deaths were reported, the social media response to this media event turned toward sarcasm, mockery, irony, and humor. Social media users posted sarcastic pictures, jokes, and comments mocking the Iranian offensive. This research examines this unique media event and the sarcastic response it generated on social media. The study aims to investigate the causes leading to media sarcasm in militarized political conflict, the social function of such generated sarcasm, and the role of social media as a platform for consuming frustration, dissatisfaction, and outrage passively through various media products. The study compares the serious traditional media coverage of the event with the humorous social media response among Arab countries. The research uses an eclectic theoretical approach using framing theory as a paradigm for understanding and investigating communication social functionalism theory in media studies to examine sarcasm. Social functionalism theory is a sociological perspective that views society as a complex system whose parts work together to promote solidarity and stability. In the context of media and sarcasm, this theory would suggest that sarcasm serves specific functions within society, such as reinforcing social norms, providing a means for social critique, or functioning as a safety valve for expressing social tension.; and a qualitative analysis of specific examples including responses of SM commentators to such manifestations of political criticism. The preliminary findings of this study point to a heightened dramatization of the televised event and a widespread belief that this attack was a staged show incongruent with Iran’s official enmity and death threats toward Israel. The social media sarcasm reinforces Arab’s view of Iran and Israel as mutual threats. This belief stems from the complex dynamics, historical context, and regional conflict surrounding these three nations: Iran, Israel, and Arabs.

Keywords: social functionalism, social media sarcasm, Television news framing, live militarized conflict coverage, iran, israel, communication theory

Procedia PDF Downloads 18
301 Influence of Urban Design on Pain and Disability in Women with Chronic Low Back Pain in Urban Cairo

Authors: Maha E. Ibrahim, Mona Abdel Aziz

Abstract:

Background: Chronic low back pain (CLBP) in urban communities represents a challenge to healthcare systems worldwide. The traditional biomedical approach to back pain has been particularly inadequate. Failure of the biomedical model to explain the poor correlation between pain and disability on the one hand, and biological and physical factors that explain those symptoms on the other has led to the adoption of the biopsychosocial model, to recognize the reciprocal influence of physical, social and psychological factors implicated in CLBP, a condition that shows higher prevalence among women residing in urban areas. Urban design of the built community has been shown to exert a significant influence on physical and psychological health. However, little research has investigated the relationship between elements of the built environment, and the level of pain and disability of women with CLBP. As Egypt embarks on building a new capital city, and new settlements proliferate, better understanding of this relationship could greatly reduce the economic and human costs of this widespread medical problem for women. Methods: This study was designed as an exploratory mixed qualitative and quantitative study. Twenty-Six women with CLBP living in two neighborhoods in Cairo, different in their urban structure, but adjacent in their locations (Old Maadi and New Maadi) were interviewed using semi-structured interviews (8 from Old Maadi and 18 from New Maadi). Located in the South of Cairo, New Maadi is a neighborhood with the characteristic modern urban style (narrow streets and tall, adjacent buildings), while Old Maadi is known for being greener, quieter and more relaxed than the usual urban districts of Cairo. The interviews examined their perceptions of the built environment, including building shapes and colors and street light, as well as their sense of safety and comfort, and how it affects their physical and psychological health in general, and their back condition in particular. In addition, they were asked to rate their level of pain and to fill the Oswestry Disability Index (ODI), and the General Health Questionnaire (GHQ-12) to rate their level of disability and psychological status, respectively. Results: Women in both districts had moderate to severe pain and moderate disability with no significant differences between the two districts. However, those living in New Maadi had significantly worse scores on the GHQ-12 than those living in Old Maadi. Most women did not feel that specific elements of the built environment affected their back pain, however, they expressed distress of the elements that were ugly, distorted or damaged, especially where there were no ways of avoiding or fixing them. Furthermore, most women affirmed that the unsightly and uncomfortable elements of their neighborhoods affected their mood states and were a constant source of stress. Conclusion: This exploratory study concludes that elements of the urban built environment do not exert a direct effect on CLBP. However, the perception of women regarding these elements does affect their mood states, and their levels of stress, making them a possible indirect cause of increased suffering in these women.

Keywords: built environment, chronic back pain, disability, urban Cairo

Procedia PDF Downloads 135
300 Performance Evaluation of Various Displaced Left Turn Intersection Designs

Authors: Hatem Abou-Senna, Essam Radwan

Abstract:

With increasing traffic and limited resources, accommodating left-turning traffic has been a challenge for traffic engineers as they seek balance between intersection capacity and safety; these are two conflicting goals in the operation of a signalized intersection that are mitigated through signal phasing techniques. Hence, to increase the left-turn capacity and reduce the delay at the intersections, the Florida Department of Transportation (FDOT) moves forward with a vision of optimizing intersection control using innovative intersection designs through the Transportation Systems Management & Operations (TSM&O) program. These alternative designs successfully eliminate the left-turn phase, which otherwise reduces the conventional intersection’s (CI) efficiency considerably, and divide the intersection into smaller networks that would operate in a one-way fashion. This study focused on the Crossover Displaced Left-turn intersections (XDL), also known as Continuous Flow Intersections (CFI). The XDL concept is best suited for intersections with moderate to high overall traffic volumes, especially those with very high or unbalanced left turn volumes. There is little guidance on determining whether partial XDL intersections are adequate to mitigate the overall intersection condition or full XDL is always required. The primary objective of this paper was to evaluate the overall intersection performance in the case of different partial XDL designs compared to a full XDL. The XDL alternative was investigated for 4 different scenarios; partial XDL on the east-west approaches, partial XDL on the north-south approaches, partial XDL on the north and east approaches and full XDL on all 4 approaches. Also, the impact of increasing volume on the intersection performance was considered by modeling the unbalanced volumes with 10% increment resulting in 5 different traffic scenarios. The study intersection, located in Orlando Florida, is experiencing recurring congestion in the PM peak hour and is operating near capacity with volume to a capacity ratio closer to 1.00 due to the presence of two heavy conflicting movements; southbound and westbound. The results showed that a partial EN XDL alternative proved to be effective and compared favorably to a full XDL alternative followed by the partial EW XDL alternative. The analysis also showed that Full, EW and EN XDL alternatives outperformed the NS XDL and the CI alternatives with respect to the throughput, delay and queue lengths. Significant throughput improvements were remarkable at the higher volume level with percent increase in capacity of 25%. The percent reduction in delay for the critical movements in the XDL scenarios compared to the CI scenario ranged from 30-45%. Similarly, queue lengths showed percent reduction in the XDL scenarios ranging from 25-40%. The analysis revealed how partial XDL design can improve the overall intersection performance at various demands, reduce the costs associated with full XDL and proved to outperform the conventional intersection. However, partial XDL serving low volumes or only one of the critical movements while other critical movements are operating near or above capacity do not provide significant benefits when compared to the conventional intersection.

Keywords: continuous flow intersections, crossover displaced left-turn, microscopic traffic simulation, transportation system management and operations, VISSIM simulation model

Procedia PDF Downloads 294
299 Design of Ultra-Light and Ultra-Stiff Lattice Structure for Performance Improvement of Robotic Knee Exoskeleton

Authors: Bing Chen, Xiang Ni, Eric Li

Abstract:

With the population ageing, the number of patients suffering from chronic diseases is increasing, among which stroke is a high incidence for the elderly. In addition, there is a gradual increase in the number of patients with orthopedic or neurological conditions such as spinal cord injuries, nerve injuries, and other knee injuries. These diseases are chronic, with high recurrence and complications, and normal walking is difficult for such patients. Nowadays, robotic knee exoskeletons have been developed for individuals with knee impairments. However, the currently available robotic knee exoskeletons are generally developed with heavyweight, which makes the patients uncomfortable to wear, prone to wearing fatigue, shortening the wearing time, and reducing the efficiency of exoskeletons. Some lightweight materials, such as carbon fiber and titanium alloy, have been used for the development of robotic knee exoskeletons. However, this increases the cost of the exoskeletons. This paper illustrates the design of a new ultra-light and ultra-stiff truss type of lattice structure. The lattice structures are arranged in a fan shape, which can fit well with circular arc surfaces such as circular holes, and it can be utilized in the design of rods, brackets, and other parts of a robotic knee exoskeleton to reduce the weight. The metamaterial is formed by continuous arrangement and combination of small truss structure unit cells, which changes the diameter of the pillar section, geometrical size, and relative density of each unit cell. It can be made quickly through additive manufacturing techniques such as metal 3D printing. The unit cell of the truss structure is small, and the machined parts of the robotic knee exoskeleton, such as connectors, rods, and bearing brackets, can be filled and replaced by gradient arrangement and non-uniform distribution. Under the condition of satisfying the mechanical properties of the robotic knee exoskeleton, the weight of the exoskeleton is reduced, and hence, the patient’s wearing fatigue is relaxed, and the wearing time of the exoskeleton is increased. Thus, the efficiency and wearing comfort, and safety of the exoskeleton can be improved. In this paper, a brief description of the hardware design of the prototype of the robotic knee exoskeleton is first presented. Next, the design of the ultra-light and ultra-stiff truss type of lattice structures is proposed, and the mechanical analysis of the single-cell unit is performed by establishing the theoretical model. Additionally, simulations are performed to evaluate the maximum stress-bearing capacity and compressive performance of the uniform arrangement and gradient arrangement of the cells. Finally, the static analysis is performed for the cell-filled rod and the unmodified rod, respectively, and the simulation results demonstrate the effectiveness and feasibility of the designed ultra-light and ultra-stiff truss type of lattice structures. In future studies, experiments will be conducted to further evaluate the performance of the designed lattice structures.

Keywords: additive manufacturing, lattice structures, metamaterial, robotic knee exoskeleton

Procedia PDF Downloads 86
298 Effect of Wheat Germ Agglutinin- and Lactoferrin-Grafted Catanionic Solid Lipid Nanoparticles on Targeting Delivery of Etoposide to Glioblastoma Multiforme

Authors: Yung-Chih Kuo, I-Hsin Wang

Abstract:

Catanionic solid lipid nanoparticles (CASLNs) with surface wheat germ agglutinin (WGA) and lactoferrin (Lf) were formulated for entrapping and releasing etoposide (ETP), crossing the blood–brain barrier (BBB), and inhibiting the growth of glioblastoma multiforme (GBM). Microemulsified ETP-CASLNs were modified with WGA and Lf for permeating a cultured monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes and for treating malignant U87MG cells. Experimental evidence revealed that an increase in the concentration of catanionic surfactant from 5 μM to 7.5 μM reduced the particle size. When the concentration of catanionic surfactant increased from 7.5 μM to 12.5 μM, the particle size increased, yielding a minimal diameter of WGA-Lf-ETP-CASLNs at 7.5 μM of catanionic surfactant. An increase in the weight percentage of BW from 25% to 75% enlarged WGA-Lf-ETP-CASLNs. In addition, an increase in the concentration of catanionic surfactant from 5 to 15 μM increased the absolute value of zeta potential of WGA-Lf-ETP-CASLNs. It was intriguing that the increment of the charge as a function of the concentration of catanionic surfactant was approximately linear. WGA-Lf-ETP-CASLNs revealed an integral structure with smooth particle contour, displayed a lighter exterior layer of catanionic surfactant, WGA, and Lf and showed a rigid interior region of solid lipids. A variation in the concentration of catanionic surfactant between 5 μM and 15 μM yielded a maximal encapsulation efficiency of ETP ata 7.5 μM of catanionic surfactant. An increase in the concentration of Lf/WGA decreased the grafting efficiency of Lf/WGA. Also, an increase in the weight percentage of ETP decreased its encapsulation efficiency. Moreover, the release rate of ETP from WGA-Lf-ETP-CASLNs reduced with increasing concentration of catanionic surfactant, and WGA-Lf-ETP-CASLNs at 12.5 μM of catanionic surfactant exhibited a feature of sustained release. The order in the viability of HBMECs was ETP-CASLNs ≅ Lf-ETP-CASLNs ≅ WGA-Lf-ETP-CASLNs > ETP. The variation in the transendothelial electrical resistance (TEER) and permeability of propidium iodide (PI) was negligible when the concentration of Lf increased. Furthermore, an increase in the concentration of WGA from 0.2 to 0.6 mg/mL insignificantly altered the TEER and permeability of PI. When the concentration of Lf increased from 2.5 to 7.5 μg/mL and the concentration of WGA increased from 2.5 to 5 μg/mL, the enhancement in the permeability of ETP was minor. However, 10 μg/mL of Lf promoted the permeability of ETP using Lf-ETP-CASLNs, and 5 and 10 μg/mL of WGA could considerably improve the permeability of ETP using WGA-Lf-ETP-CASLNs. The order in the efficacy of inhibiting U87MG cells was WGA-Lf-ETP-CASLNs > Lf-ETP-CASLNs > ETP-CASLNs > ETP. As a result, WGA-Lf-ETP-CASLNs reduced the TEER, enhanced the permeability of PI, induced a minor cytotoxicity to HBMECs, increased the permeability of ETP across the BBB, and improved the antiproliferative efficacy of U87MG cells. The grafting of WGA and Lf is crucial to control the medicinal property of ETP-CASLNs and WGA-Lf-ETP-CASLNs can be promising colloidal carriers in GBM management.

Keywords: catanionic solid lipid nanoparticle, etoposide, glioblastoma multiforme, lactoferrin, wheat germ agglutinin

Procedia PDF Downloads 223
297 Safety of Mesenchymal Stem Cells Therapy: Potential Risk of Spontaneous Transformations

Authors: Katarzyna Drela, Miroslaw Wielgos, Mikolaj Wrobel, Barbara Lukomska

Abstract:

Mesenchymal stem cells (MSCs) have a great potential in regenerative medicine. Since the initial number of isolated MSCs is limited, in vitro propagation is often required to reach sufficient numbers of cells for therapeutic applications. During long-term culture MSCs may undergo genetic or epigenetic alterations that subsequently increase the probability of spontaneous malignant transformation. Thus, factors that influence genomic stability of MSCs following long-term expansions need to be clarified before cultured MSCs are employed for clinical application. The aim of our study was to investigate the potential for spontaneous transformation of human neonatal cord blood (HUCB-MSCs) and adult bone marrow (BM-MSCs) derived MSCs. Materials and Methods: HUCB-MSCs and BM-MSCs were isolated by standard Ficoll gradient centrifugations method. Isolated cells were initially plated in high density 106 cells per cm2. After 48 h medium were changed and non-adherent cells were removed. The malignant transformation of MSCs in vitro was evaluated by morphological changes, proliferation rate, ability to enter cell senescence, the telomerase expression and chromosomal abnormality. Proliferation of MSCs was analyzed with WST-1 reduction method and population doubling time (PDT) was calculated at different culture stages. Then the expression pattern of genes characteristic for mesenchymal or epithelial cells, as well as transcriptions factors were examined by RT-PCR. Concomitantly, immunocytochemical analysis of gene-related proteins was employed. Results: Our studies showed that MSCs from all bone marrow isolations ultimately entered senescence and did not undergo spontaneous malignant transformation. However, HUCB-MSCs from one of the 15 donors displayed an increased proliferation rate, failed to enter senescence, and exhibited an altered cell morphology. In this sample we observed two different cell phenotypes: one mesenchymal-like exhibited spindle shaped morphology and express specific mesenchymal surface markers (CD73, CD90, CD105, CD166) with low proliferation rate, and the second one with round, densely package epithelial-like cells with significantly increased proliferation rate. The PDT of epithelial-like populations was around 1day and 100% of cells were positive for proliferation marker Ki-67. Moreover, HUCB-MSCs showed a positive expression of human telomerase reverse transcriptase (hTERT), cMYC and exhibit increased number of CFU during the long-term culture in vitro. Furthermore, karyotype analysis revealed chromosomal abnormalities including duplications. Conclusions: Our studies demonstrate that HUCB-MSCs are susceptible to spontaneous malignant transformation during long-term culture. Spontaneous malignant transformation process following in vitro culture has enormous effect on the biosafety issues of future cell-based therapies and regenerative medicine regimens.

Keywords: mesenchymal stem cells, spontaneous, transformation, long-term culture

Procedia PDF Downloads 244
296 Application of Neutron Stimulated Gamma Spectroscopy for Soil Elemental Analysis and Mapping

Authors: Aleksandr Kavetskiy, Galina Yakubova, Nikolay Sargsyan, Stephen A. Prior, H. Allen Torbert

Abstract:

Determining soil elemental content and distribution (mapping) within a field are key features of modern agricultural practice. While traditional chemical analysis is a time consuming and labor-intensive multi-step process (e.g., sample collections, transport to laboratory, physical preparations, and chemical analysis), neutron-gamma soil analysis can be performed in-situ. This analysis is based on the registration of gamma rays issued from nuclei upon interaction with neutrons. Soil elements such as Si, C, Fe, O, Al, K, and H (moisture) can be assessed with this method. Data received from analysis can be directly used for creating soil elemental distribution maps (based on ArcGIS software) suitable for agricultural purposes. The neutron-gamma analysis system developed for field application consisted of an MP320 Neutron Generator (Thermo Fisher Scientific, Inc.), 3 sodium iodide gamma detectors (SCIONIX, Inc.) with a total volume of 7 liters, 'split electronics' (XIA, LLC), a power system, and an operational computer. Paired with GPS, this system can be used in the scanning mode to acquire gamma spectra while traversing a field. Using acquired spectra, soil elemental content can be calculated. These data can be combined with geographical coordinates in a geographical information system (i.e., ArcGIS) to produce elemental distribution maps suitable for agricultural purposes. Special software has been developed that will acquire gamma spectra, process and sort data, calculate soil elemental content, and combine these data with measured geographic coordinates to create soil elemental distribution maps. For example, 5.5 hours was needed to acquire necessary data for creating a carbon distribution map of an 8.5 ha field. This paper will briefly describe the physics behind the neutron gamma analysis method, physical construction the measurement system, and main characteristics and modes of work when conducting field surveys. Soil elemental distribution maps resulting from field surveys will be presented. and discussed. Comparison of these maps with maps created on the bases of chemical analysis and soil moisture measurements determined by soil electrical conductivity was similar. The maps created by neutron-gamma analysis were reproducible, as well. Based on these facts, it can be asserted that neutron stimulated soil gamma spectroscopy paired with GPS system is fully applicable for soil elemental agricultural field mapping.

Keywords: ArcGIS mapping, neutron gamma analysis, soil elemental content, soil gamma spectroscopy

Procedia PDF Downloads 120
295 Offshore Facilities Load Out: Case Study of Jacket Superstructure Loadout by Strand Jacking Skidding Method

Authors: A. Rahim Baharudin, Nor Arinee binti Mat Saaud, Muhammad Afiq Azman, Farah Adiba A. Sani

Abstract:

Objectives: This paper shares the case study on the engineering analysis, data analysis, and real-time data comparison for qualifying the stand wires' minimum breaking load and safe working load upon loadout operation for a new project and, at the same time, eliminate the risk due to discrepancies and unalignment of COMPANY Technical Standards to Industry Standards and Practices. This paper demonstrates “Lean Construction” for COMPANY’s Project by sustaining fit-for-purpose Technical Requirements of Loadout Strand Wire Factor of Safety (F.S). The case study utilizes historical engineering data from a few loadout operations by skidding methods from different projects. It is also demonstrating and qualifying the skidding wires' minimum breaking load and safe working load used for loadout operation for substructure and other facilities for the future. Methods: Engineering analysis and comparison of data were taken as referred to the international standard and internal COMPANY standard requirements. Data was taken from nine (9) previous projects for both topsides and jacket facilities executed at the several local fabrication yards where load out was conducted by three (3) different service providers with emphasis on four (4) basic elements: i) Industry Standards for Loadout Engineering and Operation Reference: COMPANY internal standard was referred to superseded documents of DNV-OS-H201 and DNV/GL 0013/ND. DNV/GL 0013/ND and DNVGL-ST-N001 do not mention any requirements of Strand Wire F.S of 4.0 for Skidding / Pulling Operations. ii) Reference to past Loadout Engineering and Execution Package: Reference was made to projects delivered by three (3) major offshore facilities operators. Strand Wire F.S observed ranges from 2.0 MBL (Min) to 2.5 MBL (Max). No Loadout Operation using the requirements of 4.0 MBL was sighted from the reference. iii) Strand Jack Equipment Manufacturer Datasheet Reference: Referring to Strand Jack Equipment Manufactured Datasheet by different loadout service providers, it is shown that the Designed F.S for the equipment is also ranging between 2.0 ~ 2.5. Eight (8) Strand Jack Datasheet Model was referred to, ranging from 15 Mt to 850 Mt Capacity; however, there are NO observations of designed F.S 4.0 sighted. iv) Site Monitoring on Actual Loadout Data and Parameter: Max Load on Strand Wire was captured during 2nd Breakout, which is during Static Condition of 12.9 MT / Strand Wire (67.9% Utilization). Max Load on Strand Wire for Dynamic Conditions during Step 8 and Step 12 is 9.4 Mt / Strand Wire (49.5% Utilization). Conclusion: This analysis and study demonstrated the adequacy of strand wires supplied by the service provider were technically sufficient in terms of strength, and via engineering analysis conducted, the minimum breaking load and safe working load utilized and calculated for the projects were satisfied and operated safely for the projects. It is recommended from this study that COMPANY’s technical requirements are to be revised for future projects’ utilization.

Keywords: construction, load out, minimum breaking load, safe working load, strand jacking, skidding

Procedia PDF Downloads 87
294 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method

Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola

Abstract:

The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.

Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization

Procedia PDF Downloads 358
293 A Comprehensive Study on Freshwater Aquatic Life Health Quality Assessment Using Physicochemical Parameters and Planktons as Bio Indicator in a Selected Region of Mahaweli River in Kandy District, Sri Lanka

Authors: S. M. D. Y. S. A. Wijayarathna, A. C. A. Jayasundera

Abstract:

Mahaweli River is the longest and largest river in Sri Lanka and it is the major drinking water source for a large portion of 2.5 million inhabitants in the Central Province. The aim of this study was to the determination of water quality and aquatic life health quality in a selected region of Mahaweli River. Six sampling locations (Site 1: 7° 16' 50" N, 80° 40' 00" E; Site 2: 7° 16' 34" N, 80° 40' 27" E; Site 3: 7° 16' 15" N, 80° 41' 28" E; Site 4: 7° 14' 06" N, 80° 44' 36" E; Site 5: 7° 14' 18" N, 80° 44' 39" E; Site 6: 7° 13' 32" N, 80° 46' 11" E) with various anthropogenic activities at bank of the river were selected for a period of three months from Tennekumbura Bridge to Victoria Reservoir. Temperature, pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Dissolved Oxygen (DO), 5-day Biological Oxygen Demand (BOD5), Total Suspended Solids (TSS), hardness, the concentration of anions, and metal concentration were measured according to the standard methods, as physicochemical parameters. Planktons were considered as biological parameters. Using a plankton net (20 µm mesh size), surface water samples were collected into acid washed dried vials and were stored in an ice box during transportation. Diversity and abundance of planktons were identified within 4 days of sample collection using standard manuals of plankton identification under the light microscope. Almost all the measured physicochemical parameters were within the CEA standards limits for aquatic life, Sri Lanka Standards (SLS) or World Health Organization’s Guideline for drinking water. Concentration of orthophosphate ranged between 0.232 to 0.708 mg L-1, and it has exceeded the standard limit of aquatic life according to CEA guidelines (0.400 mg L-1) at Site 1 and Site 2, where there is high disturbance by cultivations and close households. According to the Pearson correlation (significant correlation at p < 0.05), it is obvious that some physicochemical parameters (temperature, DO, TDS, TSS, phosphate, sulphate, chloride fluoride, and sodium) were significantly correlated to the distribution of some plankton species such as Aulocoseira, Navicula, Synedra, Pediastrum, Fragilaria, Selenastrum, Oscillataria, Tribonema and Microcystis. Furthermore, species that appear in blooms (Aulocoseira), organic pollutants (Navicula), and phosphate high eutrophic water (Microcystis) were found, indicating deteriorated water quality in Mahaweli River due to agricultural activities, solid waste disposal, and release of domestic effluents. Therefore, it is necessary to improve environmental monitoring and management to control the further deterioration of water quality of the river.

Keywords: bio indicator, environmental variables, planktons, physicochemical parameters, water quality

Procedia PDF Downloads 90
292 Investigation of Polypropylene Composite Films With Carbon Nanotubes and the Role of β Nucleating Agents for the Improvement of Their Water Vapor Permeability

Authors: Glykeria A. Visvini, George N. Mathioudakis, Amaia Soto Beobide, Aris E. Giannakas, George A. Voyiatzis

Abstract:

Polymeric nanocomposites have generated considerable interest in both academic research and industry because their properties can be tailored by adjusting the type & concentration of nano-inclusions, resulting in complementary and adaptable characteristics. The exceptional and/or unique properties of the nanocomposites, including the high mechanical strength and stiffness, the ease of processing, and their lightweight nature, are attributed to the high surface area, the electrical and/or thermal conductivity of the nano-fillers, which make them appealing materials for a wide range of engineering applications. Polymeric «breathable» membranes enabling water vapor permeability (WVP) can be designed either by using micro/nano-fillers with the ability to interrupt the continuity of the polymer phase generating micro/nano-porous structures or/and by creating micro/nano-pores into the composite material by uniaxial/biaxial stretching. Among the nanofillers, carbon nanotubes (CNTs) exhibit particular high WVP and for this reason, they have already been proposed for gas separation membranes. In a similar context, they could prove to be promising alternative/complementary filler nano-materials, for the development of "breathable" products. Polypropylene (PP) is a commonly utilized thermoplastic polymer matrix in the development of composite films, due to its easy processability and low price, combined with its good chemical & physical properties. PP is known to present several crystalline phases (α, β and γ), depending on the applied treatment process, which have a significant impact on its final properties, particularly in terms of WVP. Specifically, the development of the β-phase in PP in combination with stretching is anticipated to modify the crystalline behavior and extend the microporosity of the polymer matrix exhibiting enhanced WVP. The primary objective of this study is to develop breathable nano-carbon based (functionalized MWCNTs) PP composite membranes, potentially also avoiding the stretching process. This proposed alternative is expected to have a better performance/cost ratio over current stretched PP/CaCO3 composite benchmark membranes. The focus is to investigate the impact of both β-nucleator(s) and nano-carbon fillers on water vapor transmission rate properties of relevant PP nanocomposites.

Keywords: carbon nanotubes, nanocomposites, nucleating agents, polypropylene, water vapor permeability

Procedia PDF Downloads 56
291 Radiation Stability of Structural Steel in the Presence of Hydrogen

Authors: E. A. Krasikov

Abstract:

As the service life of an operating nuclear power plant (NPP) increases, the potential misunderstanding of the degradation of aging components must receive more attention. Integrity assurance analysis contributes to the effective maintenance of adequate plant safety margins. In essence, the reactor pressure vessel (RPV) is the key structural component determining the NPP lifetime. Environmentally induced cracking in the stainless steel corrosion-preventing cladding of RPV’s has been recognized to be one of the technical problems in the maintenance and development of light-water reactors. Extensive cracking leading to failure of the cladding was found after 13000 net hours of operation in JPDR (Japan Power Demonstration Reactor). Some of the cracks have reached the base metal and further penetrated into the RPV in the form of localized corrosion. Failures of reactor internal components in both boiling water reactors and pressurized water reactors have increased after the accumulation of relatively high neutron fluences (5´1020 cm–2, E>0,5MeV). Therefore, in the case of cladding failure, the problem arises of hydrogen (as a corrosion product) embrittlement of irradiated RPV steel because of exposure to the coolant. At present when notable progress in plasma physics has been obtained practical energy utilization from fusion reactors (FR) is determined by the state of material science problems. The last includes not only the routine problems of nuclear engineering but also a number of entirely new problems connected with extreme conditions of materials operation – irradiation environment, hydrogenation, thermocycling, etc. Limiting data suggest that the combined effect of these factors is more severe than any one of them alone. To clarify the possible influence of the in-service synergistic phenomena on the FR structural materials properties we have studied hydrogen-irradiated steel interaction including alternating hydrogenation and heat treatment (annealing). Available information indicates that the life of the first wall could be expanded by means of periodic in-place annealing. The effects of neutron fluence and irradiation temperature on steel/hydrogen interactions (adsorption, desorption, diffusion, mechanical properties at different loading velocities, post-irradiation annealing) were studied. Experiments clearly reveal that the higher the neutron fluence and the lower the irradiation temperature, the more hydrogen-radiation defects occur, with corresponding effects on the steel mechanical properties. Hydrogen accumulation analyses and thermal desorption investigations were performed to prove the evidence of hydrogen trapping at irradiation defects. Extremely high susceptibility to hydrogen embrittlement was observed with specimens which had been irradiated at relatively low temperature. However, the susceptibility decreases with increasing irradiation temperature. To evaluate methods for the RPV’s residual lifetime evaluation and prediction, more work should be done on the irradiated metal–hydrogen interaction in order to monitor more reliably the status of irradiated materials.

Keywords: hydrogen, radiation, stability, structural steel

Procedia PDF Downloads 251
290 Construction Port Requirements for Floating Wind Turbines

Authors: Alan Crowle, Philpp Thies

Abstract:

As the floating offshore wind turbine industry continues to develop and grow, the capabilities of established port facilities need to be assessed as to their ability to support the expanding construction and installation requirements. This paper assesses current infrastructure requirements and projected changes to port facilities that may be required to support the floating offshore wind industry. Understanding the infrastructure needs of the floating offshore renewable industry will help to identify the port-related requirements. Floating Offshore Wind Turbines can be installed further out to sea and in deeper waters than traditional fixed offshore wind arrays, meaning that it can take advantage of stronger winds. Separate ports are required for substructure construction, fit-out of the turbines, moorings, subsea cables and maintenance. Large areas are required for the laydown of mooring equipment; inter-array cables, turbine blades and nacelles. The capabilities of established port facilities to support floating wind farms are assessed by evaluation of the size of substructures, the height of wind turbine with regards to the cranes for fitting of blades, distance to offshore site and offshore installation vessel characteristics. The paper will discuss the advantages and disadvantages of using large land-based cranes, inshore floating crane vessels or offshore crane vessels at the fit-out port for the installation of the turbine. Water depths requirements for import of materials and export of the completed structures will be considered. There are additional costs associated with any emerging technology. However part of the popularity of Floating Offshore Wind Turbines stems from the cost savings against permanent structures like fixed wind turbines. Floating Offshore Wind Turbine developers can benefit from lighter, more cost-effective equipment which can be assembled in port and towed to the site rather than relying on large, expensive installation vessels to transport and erect fixed bottom turbines. The ability to assemble Floating Offshore Wind Turbines equipment onshore means minimizing highly weather-dependent operations like offshore heavy lifts and assembly, saving time and costs and reducing safety risks for offshore workers. Maintenance might take place in safer onshore conditions for barges and semi-submersibles. Offshore renewables, such as floating wind, can take advantage of this wealth of experience, while oil and gas operators can deploy this experience at the same time as entering the renewables space The floating offshore wind industry is in the early stages of development and port facilities are required for substructure fabrication, turbine manufacture, turbine construction and maintenance support. The paper discusses the potential floating wind substructures as this provides a snapshot of the requirements at the present time, and potential technological developments required for commercial development. Scaling effects of demonstration-scale projects will be addressed, however, the primary focus will be on commercial-scale (30+ units) device floating wind energy farms.

Keywords: floating wind, port, marine construction, offshore renewables

Procedia PDF Downloads 267
289 Improving School Design through Diverse Stakeholder Participation in the Programming Phase

Authors: Doris C. C. K. Kowaltowski, Marcella S. Deliberador

Abstract:

The architectural design process, in general, is becoming more complex, as new technical, social, environmental, and economical requirements are imposed. For school buildings, this scenario is also valid. The quality of a school building depends on known design criteria and professional knowledge, as well as feedback from building performance assessments. To attain high-performance school buildings, a design process should add a multidisciplinary team, through an integrated process, to ensure that the various specialists contribute at an early stage to design solutions. The participation of stakeholders is of special importance at the programming phase when the search for the most appropriate design solutions is underway. The composition of a multidisciplinary team should comprise specialists in education, design professionals, and consultants in various fields such as environmental comfort and psychology, sustainability, safety and security, as well as administrators, public officials and neighbourhood representatives. Users, or potential users (teachers, parents, students, school officials, and staff), should be involved. User expectations must be guided, however, toward a proper understanding of a response of design to needs to avoid disappointment. In this context, appropriate tools should be introduced to organize such diverse participants and ensure a rich and focused response to needs and a productive outcome of programming sessions. In this paper, different stakeholder in a school design process are discussed in relation to their specific contributions and a tool in the form of a card game is described to structure the design debates and ensure a comprehensive decision-making process. The game is based on design patterns for school architecture as found in the literature and is adapted to a specific reality: State-run public schools in São Paulo, Brazil. In this State, school buildings are managed by a foundation called Fundação para o Desenvolvimento da Educação (FDE). FDE supervises new designs and is responsible for the maintenance of ~ 5000 schools. The design process of this context was characterised with a recommendation to improve the programming phase. Card games can create a common environment, to which all participants can relate and, therefore, can contribute to briefing debates on an equal footing. The cards of the game described here represent essential school design themes as found in the literature. The tool was tested with stakeholder groups and with architecture students. In both situations, the game proved to be an efficient tool to stimulate school design discussions and to aid in the elaboration of a rich, focused and thoughtful architectural program for a given demand. The game organizes the debates and all participants are shown to spontaneously contribute each in his own field of expertise to the decision-making process. Although the game was specifically based on a local school design process it shows potential for other contexts because the content is based on known facts, needs and concepts of school design, which are global. A structured briefing phase with diverse stakeholder participation can enrich the design process and consequently improve the quality of school buildings.

Keywords: architectural program, design process, school building design, stakeholder

Procedia PDF Downloads 390
288 Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle

Authors: S. Sabatino, V. Calderaro, V. Galdi, G. Graber, L. Ippolito

Abstract:

Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature.

Keywords: electric vehicle, Li-Ion battery, BMS, state-of-charge, state-of-health, state-of-power, artificial neural networks

Procedia PDF Downloads 48