Search results for: vibration compensation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1080

Search results for: vibration compensation

630 Inverse Mode Shape Problem of Hand-Arm Vibration (Humerus Bone) for Bio-Dynamic Response Using Varying Boundary Conditions

Authors: Ajay R, Rammohan B, Sridhar K S S, Gurusharan N

Abstract:

The objective of the work is to develop a numerical method to solve the inverse mode shape problem by determining the cross-sectional area of a structure for the desired mode shape via the vibration response study of the humerus bone, which is in the form of a cantilever beam with anisotropic material properties. The humerus bone is the long bone in the arm that connects the shoulder to the elbow. The mode shape is assumed to be a higher-order polynomial satisfying a prescribed set of boundary conditions to converge the numerical algorithm. The natural frequency and the mode shapes are calculated for different boundary conditions to find the cross-sectional area of humerus bone from Eigenmode shape with the aid of the inverse mode shape algorithm. The cross-sectional area of humerus bone validates the mode shapes of specific boundary conditions. The numerical method to solve the inverse mode shape problem is validated in the biomedical application by finding the cross-sectional area of a humerus bone in the human arm.

Keywords: Cross-sectional area, Humerus bone, Inverse mode shape problem, Mode shape

Procedia PDF Downloads 120
629 Vibration-Based Data-Driven Model for Road Health Monitoring

Authors: Guru Prakash, Revanth Dugalam

Abstract:

A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.

Keywords: SVM, data-driven, road health monitoring, pot-hole

Procedia PDF Downloads 82
628 Modeling Dynamics and Control of Transversal Vibration of an Underactuated Flexible Plate Using Controlled Lagrangian Method

Authors: Mahmood Khalghollah, Mohammad Tavallaeinejad, Mohammad Eghtesad

Abstract:

The method of Controlled Lagrangian is an energy shaping control technique for under actuated Lagrangian systems. Energy shaping control design methods are appealing as they retain the underlying nonlinear dynamics and can provide stability results that hold over larger domain than can be obtained using linear design and analysis. In the present study, controlled lagrangian is employed for designing a controller in an under actuated rotating flexible plate system. In the system of rotating flexible plate, due to its nonlinear characteristics and coupled dynamics of rigid and flexible components, controller design is a known challenge. In this paper, controller objectives are considered to be vibration reduction of flexible component and position control of the tip of the plate. To achieve the goals, a method based on both kinetic and potential energy shaping is introduced. The stability of the closed-loop system is investigated and proved around its equilibrium points. Moreover, the proposed controller is shown to be robust against disturbance and plant uncertainties.

Keywords: controlled lagrangian, underactuated system, flexible rotating plate, disturbance

Procedia PDF Downloads 441
627 Molecular Dynamics Simulation of Free Vibration of Graphene Sheets

Authors: Seyyed Feisal Asbaghian Namin, Reza Pilafkan, Mahmood Kaffash Irzarahimi

Abstract:

TThis paper considers vibration of single-layered graphene sheets using molecular dynamics (MD) and nonlocal elasticity theory. Based on the MD simulations, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), an open source software, is used to obtain fundamental frequencies. On the other hand, governing equations are derived using nonlocal elasticity and first order shear deformation theory (FSDT) and solved using generalized differential quadrature method (GDQ). The small-scale effect is applied in governing equations of motion by nonlocal parameter. The effect of different side lengths, boundary conditions and nonlocal parameter are inspected for aforementioned methods. Results are obtained from MD simulations is compared with those of the nonlocal elasticity theory to calculate appropriate values for the nonlocal parameter. The nonlocal parameter value is suggested for graphene sheets with various boundary conditions. Furthermore, it is shown that the nonlocal elasticity approach using classical plate theory (CLPT) assumptions overestimates the natural frequencies.

Keywords: graphene sheets, molecular dynamics simulations, fundamental frequencies, nonlocal elasticity theory, nonlocal parameter

Procedia PDF Downloads 518
626 Vibration of Nanobeam Subjected to Constant Magnetic Field and Ramp-Type Thermal Loading under Non-Fourier Heat Conduction Law of Lord-Shulman

Authors: Hamdy M. Youssef

Abstract:

In this work, the usual Euler–Bernoulli nanobeam has been modeled in the context of Lord-Shulman thermoelastic theorem, which contains non-Fourier heat conduction law. The nanobeam has been subjected to a constant magnetic field and ramp-type thermal loading. The Laplace transform definition has been applied to the governing equations, and the solutions have been obtained by using a direct approach. The inversions of the Laplace transform have been calculated numerically by using Tzou approximation method. The solutions have been applied to a nanobeam made of silicon nitride. The distributions of the temperature increment, lateral deflection, strain, stress, and strain-energy density have been represented in figures with different values of the magnetic field intensity and ramp-time heat parameter. The value of the magnetic field intensity and ramp-time heat parameter have significant effects on all the studied functions, and they could be used as tuners to control the energy which has been generated through the nanobeam.

Keywords: nanobeam, vibration, constant magnetic field, ramp-type thermal loading, non-Fourier heat conduction law

Procedia PDF Downloads 134
625 The Effect of Brand Recovery Communications on Embarrassed Consumers’ Cognitive Appraisal and Post-purchase Behavior

Authors: Kin Yan Ho

Abstract:

Negative brand news (such as Volkswagen’s faulty carbon emission reports, China’s Luckin Coffee scandal, and bribery in reputable US universities) influence how people perceive a company. Germany’s citizens claimed Volkswagen’s scandal as a national embarrassment and cannot recover their psychological damages through monetary and non-monetary compensation. The main research question is to examine how consumers evaluate and respond to embarrassing brand publicity. The cognitive appraisal theory is used as a theoretical foundation. This study describes the use of scenario-based experiment. The findings suggest that consumers with different levels of embarrassment evaluate brand remedial offers from emotion-focused and task-focused restorative justice perspectives (newly derived from the well-established scales of perceived justice). When consumers face both negative and positive brand information (i.e., negative publicity news and a remedial offer), they change their appraisal criterion. The social situation in the cognitive reappraisal process influences the quality of the customer-brand relationship and the customer’s recovery from brand embarrassment. The results also depict that the components of recovery compensation cause differences in emotion recovery, relationship quality, and repurchase intentions. This study extends embarrassment literature in an embarrassing brand publicity context. The emotional components of brand remedial tactics provide insights to brand managers on how to handle different consumers’ emotions, consumer satisfaction, and foster positive future behavior.

Keywords: brand relationship quality, cognitive appraisal, crisis communications, emotion, justice, social presence

Procedia PDF Downloads 128
624 Human-Induced Vibration and Degree of Human Comfortability Analysis of Intersection Pedestrian Bridge

Authors: Yaowen Sheng, Jiuxian Liu

Abstract:

In order to analyze the pedestrian bridge dynamic characteristics and degree of comfortability, the finite element method and live load time history method is used to calculate the dynamic response of the bridge. The example bridge’s dynamic characteristics and degree of human comfortability need to be analyzed. The project background is a three-way intersection. The intersection has three side blocks. An intersection bridge is designed to help people cross the streets. The finite element model of the bridge is established by the Midas/Civil software, and the analysis of the model is done. The strength, stiffness, and stability checks are also completed. Apart from the static analysis of the bridge, the dynamic analysis of the bridge is also completed to avoid the problems resulted from vibrations. The results show that the pedestrian bridge has different dynamic characteristics compared to other normal bridges. The degree of human comfortability satisfies the requirements of Chinese and British specifications. The live load time history method can be used to calculate the dynamic response of the bridge.

Keywords: pedestrian bridge, steel box girder, human-induced vibration, finite element analysis, degree of human comfortability

Procedia PDF Downloads 152
623 Using the Nonlocal Theory of Free Vibrations Nanobeam

Authors: Ali Oveysi Sarabi

Abstract:

The dimensions of nanostructures are in the range of inter-atomic spacing of the structures which makes them impossible to be modeled as a continuum. Nanoscale size-effects on vibration analysis of nanobeams embedded in an elastic medium is investigated using different types of beam theory. To this end, Eringen’s nonlocal elasticity is incorporated to various beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT). The surrounding elastic medium is simulated with both Winkler and Pasternak foundation models and the difference between them is studies. Explicit formulas are presented to obtain the natural frequencies of nanobeam corresponding to each nonlocal beam theory. Selected numerical results are given for different values of the non-local parameter, Winkler modulus parameter, Pasternak modulus parameter and aspect ratio of the beam that imply the effects of them, separately. It is observed that the values of natural frequency are strongly dependent on the stiffness of elastic medium and the value of the non-local parameter and these dependencies varies with the value of aspect ratio and mode number.

Keywords: nanobeams, free vibration, nonlocal elasticity, winkler foundation model, Pasternak foundation model, beam theories

Procedia PDF Downloads 533
622 A Step Magnitude Haptic Feedback Device and Platform for Better Way to Review Kinesthetic Vibrotactile 3D Design in Professional Training

Authors: Biki Sarmah, Priyanko Raj Mudiar

Abstract:

In the modern world of remotely interactive virtual reality-based learning and teaching, including professional skill-building training and acquisition practices, as well as data acquisition and robotic systems, the revolutionary application or implementation of field-programmable neurostimulator aids and first-hand interactive sensitisation techniques into 3D holographic audio-visual platforms have been a coveted dream of many scholars, professionals, scientists, and students. Integration of 'kinaesthetic vibrotactile haptic perception' along with an actuated step magnitude contact profiloscopy in augmented reality-based learning platforms and professional training can be implemented by using an extremely calculated and well-coordinated image telemetry including remote data mining and control technique. A real-time, computer-aided (PLC-SCADA) field calibration based algorithm must be designed for the purpose. But most importantly, in order to actually realise, as well as to 'interact' with some 3D holographic models displayed over a remote screen using remote laser image telemetry and control, all spatio-physical parameters like cardinal alignment, gyroscopic compensation, as well as surface profile and thermal compositions, must be implemented using zero-order type 1 actuators (or transducers) because they provide zero hystereses, zero backlashes, low deadtime as well as providing a linear, absolutely controllable, intrinsically observable and smooth performance with the least amount of error compensation while ensuring the best ergonomic comfort ever possible for the users.

Keywords: haptic feedback, kinaesthetic vibrotactile 3D design, medical simulation training, piezo diaphragm based actuator

Procedia PDF Downloads 161
621 Design and Development of an Innovative MR Damper Based on Intelligent Active Suspension Control of a Malaysia's Model Vehicle

Authors: L. Wei Sheng, M. T. Noor Syazwanee, C. J. Carolyna, M. Amiruddin, M. Pauziah

Abstract:

This paper exhibits the alternatives towards active suspension systems revised based on the classical passive suspension system to improve comfort and handling performance. An active Magneto rheological (MR) suspension system is proposed as to explore the active based suspension system to enhance performance given its freedom to independently specify the characteristics of load carrying, handling, and ride quality. Malaysian quarter car with two degrees of freedom (2DOF) system is designed and constructed to simulate the actions of an active vehicle suspension system. The structure of a conventional twin-tube shock absorber is modified both internally and externally to comprehend with the active suspension system. The shock absorber peripheral structure is altered to enable the assembling and disassembling of the damper through a non-permanent joint whereby the stress analysis of the designed joint is simulated using Finite Element Analysis. Simulation on the internal part where an electrified copper coil of 24AWG is winded is done using Finite Element Method Magnetics to measure the magnetic flux density inside the MR damper. The primary purpose of this approach is to reduce the vibration transmitted from the effects of road surface irregularities while maintaining solid manoeuvrability. The aim of this research is to develop an intelligent control system of a consecutive damping automotive suspension system. The ride quality is improved by means of the reduction of the vertical body acceleration caused by the car body when it experiences disturbances from speed bump and random road roughness. Findings from this research are expected to enhance the quality of ride which in return can prevent the deteriorating effect of vibration on the vehicle condition as well as the passengers’ well-being.

Keywords: active suspension, FEA, magneto rheological damper, Malaysian quarter car model, vibration control

Procedia PDF Downloads 207
620 Development Project, Land Acquisition and Rehabilitation: A Study of Navi Mumbai International Airport Project, India

Authors: Rahul Rajak, Archana Kumari Roy

Abstract:

Purpose: Development brings about structural change in the society. It is essential for socio-economic progress of the society, but it also causes pain to the people who are forced to displace from their motherland. Most of the people who are displaced due to development are poor and tribes. Development and displacement are interlinked with each other in the sense development sometimes leads to displacement of people. These studies mainly focus on socio-economic profile of villages and villagers likely to be affected by the Airport Project and they examine the issues of compensation and people’s level of satisfaction. Methodology: The study is based on Descriptive design; it is basically observational and correlation study. Primary data is used in this study. Considering the time and resource constrains, 100 people were interviewed covering socio-economic and demographic diversities from 6 out of 10 affected villages. Due to Navi Mumbai International Airport Project ten villages have to be displaced. Out of ten villages, this study is based on only six villages. These are Ulwe, Ganeshpuri, Targhar Komberbuje, Chincpada and Kopar. All six villages situated in Raigarh district under the Taluka Panvel in Maharashtra. Findings: It is revealed from the survey that there are three main castes of affected villages that are Agri, Koli, and Kradi. Entire village population of migrated person is very negligible. All three caste have main occupation are agricultural and fishing activities. People’s perception revealed that due to the establishment of the airport project, they may have more opportunities and scope of development rather than the adverse effect, but vigorously leave a motherland is psychological effect of the villagers. Research Limitation: This study is based on only six villages, the scenario of the entire ten affected villages is not explained by this research. Practical implication: The scenario of displacement and resettlement signifies more than a mere physical relocation. Compensation is not only hope for villagers, is it only give short time relief. There is a need to evolve institutions to protect and strengthen the right of Individuals. The development induced displacement exposed them to a new reality, the reality of their legality and illegality of stay on the land which belongs to the state. Originality: Mumbai has large population and high industrialized city have put land at the center of any policy implication. This paper demonstrates through the actual picture gathered from the field that how seriously the affected people suffered and are still suffering because of the land acquisition for the Navi Mumbai International Airport Project. The whole picture arise the question which is how long the government can deny the rights to farmers and agricultural laborers and remain unwilling to establish the balance between democracy and development.

Keywords: compensation, displacement, land acquisition, project affected person (PAPs), rehabilitation

Procedia PDF Downloads 312
619 Damping Optimal Design of Sandwich Beams Partially Covered with Damping Patches

Authors: Guerich Mohamed, Assaf Samir

Abstract:

The application of viscoelastic materials in the form of constrained layers in mechanical structures is an efficient and cost-effective technique for solving noise and vibration problems. This technique requires a design tool to select the best location, type, and thickness of the damping treatment. This paper presents a finite element model for the vibration of beams partially or fully covered with a constrained viscoelastic damping material. The model is based on Bernoulli-Euler theory for the faces and Timoshenko beam theory for the core. It uses four variables: the through-thickness constant deflection, the axial displacements of the faces, and the bending rotation of the beam. The sandwich beam finite element is compatible with the conventional C1 finite element for homogenous beams. To validate the proposed model, several free vibration analyses of fully or partially covered beams, with different locations of the damping patches and different percent coverage, are studied. The results show that the proposed approach can be used as an effective tool to study the influence of the location and treatment size on the natural frequencies and the associated modal loss factors. Then, a parametric study regarding the variation in the damping characteristics of partially covered beams has been conducted. In these studies, the effect of core shear modulus value, the effect of patch size variation, the thickness of constraining layer, and the core and the locations of the patches are considered. In partial coverage, the spatial distribution of additive damping by using viscoelastic material is as important as the thickness and material properties of the viscoelastic layer and the constraining layer. Indeed, to limit added mass and to attain maximum damping, the damping patches should be placed at optimum locations. These locations are often selected using the modal strain energy indicator. Following this approach, the damping patches are applied over regions of the base structure with the highest modal strain energy to target specific modes of vibration. In the present study, a more efficient indicator is proposed, which consists of placing the damping patches over regions of high energy dissipation through the viscoelastic layer of the fully covered sandwich beam. The presented approach is used in an optimization method to select the best location for the damping patches as well as the material thicknesses and material properties of the layers that will yield optimal damping with the minimum area of coverage.

Keywords: finite element model, damping treatment, viscoelastic materials, sandwich beam

Procedia PDF Downloads 145
618 The Rayleigh Quotient for Structural Element Vibration Analysis with Finite Element Method

Authors: Falek Kamel

Abstract:

Various approaches are usually used in the dynamic analysis of beams vibrating transversally. For this, numerical methods allowing the solving of the general eigenvalue problem are utilized. The equilibrium equations describe the movement resulting from the solution of a fourth-order differential equation. Our investigation is based on the finite element method. The findings of these investigations are the vibration frequencies obtained by the Jacobi method. Two types of the elementary mass matrix are considered, representing a uniform distribution of the mass along with the element and concentrated ones located at fixed points whose number is increased progressively separated by equal distances at each evaluation stage. The studied beams have different boundary constraints representing several classical situations. Comparisons are made for beams where the distributed mass is replaced by n concentrated masses. As expected, the first calculus stage is to obtain the lowest number of beam parts that gives a frequency comparable to that issued from the Rayleigh formula. The obtained values are then compared to theoretical results based on the assumptions of the Bernoulli-Euler theory. These steps are used for the second type of mass representation in the same manner.

Keywords: structural elements, beams vibrating, dynamic analysis, finite element method, Jacobi method

Procedia PDF Downloads 160
617 A 2D Numerical Model of Viscous Flow-Cylinder Interaction

Authors: Bang-Fuh Chen, Chih-Chun Chu

Abstract:

The flow induced cylinder vibration or earthquake-induced cylinder motion are moving in an arbitrary direction with time. The phenomenon of flow across cylinder is highly nonlinear and a linear-superposition of flow pattern across separated oscillating direction of cylinder motion is not valid to obtain the flow pattern across a cylinder oscillating in multiple directions. A novel finite difference scheme is developed to simulate the viscous flow across an arbitrary moving circular cylinder and we call this a complete 2D (two-dimensional) flow-cylinder interaction. That is, the cylinder is simultaneously oscillating in x- and y- directions. The time-dependent domain and meshes associated with the moving cylinder are mapped to a fixed computational domain and meshes, which are time independent. The numerical results are validated by several bench mark studies. Several examples are introduced including flow across steam-wise, transverse oscillating cylinder and flow across rotating cylinder and flow across arbitrary moving cylinder. The Morison’s formula can not describe the complex interaction phenomenon between cross flow and oscillating circular cylinder. And the completed 2D computational fluid dynamic analysis should be made to obtain the correct hydrodynamic force acting on the cylinder.

Keywords: 2D cylinder, finite-difference method, flow-cylinder interaction, flow induced vibration

Procedia PDF Downloads 508
616 Depolymerization of Lignin in Sugarcane Bagasse by Hydrothermal Liquefaction to Optimize Catechol Formation

Authors: Nirmala Deenadayalu, Kwanele B. Mazibuko, Lethiwe D. Mthembu

Abstract:

Sugarcane bagasse is the residue obtained after the extraction of sugar from the sugarcane. The main aim of this work was to produce catechol from sugarcane bagasse. The optimization of catechol production was investigated using a Box-Behnken design of experiments. The sugarcane bagasse was heated in a Parr reactor at a set temperature. The reactions were carried out at different temperatures (100-250) °C, catalyst loading (1% -10% KOH (m/v)) and reaction times (60 – 240 min) at 17 bar pressure. The solid and liquid fractions were then separated by vacuum filtration. The liquid fraction was analyzed for catechol using high-pressure liquid chromatography (HPLC) and characterized for the functional groups using Fourier transform infrared spectroscopy (FTIR). The optimized condition for catechol production was 175 oC, 240 min, and 10 % KOH with a catechol yield of 79.11 ppm. Since the maximum time was 240 min and 10 % KOH, a further series of experiments were conducted at 175 oC, 260 min, and 20 % KOH and yielded 2.46 ppm catechol, which was a large reduction in catechol produced. The HPLC peak for catechol was obtained at 2.5 min for the standards and the samples. The FTIR peak at 1750 cm⁻¹ was due to the C=C vibration band of the aromatic ring in the catechol present for both the standard and the samples. The peak at 3325 cm⁻¹ was due to the hydrogen-bonded phenolic OH vibration bands for the catechol. The ANOVA analysis was also performed on the set of experimental data to obtain the factors that most affected the amount of catechol produced.

Keywords: catechol, sugarcane bagasse, lignin, hydrothermal liquefaction

Procedia PDF Downloads 94
615 Exploring the Relationships between Job Satisfaction, Work Engagement, and Loyalty of Academic Staff

Authors: Iveta Ludviga, Agita Kalvina

Abstract:

This paper aims to link together the concepts of job satisfaction, work engagement, trust, job meaningfulness and loyalty to the organisation focusing on specific type of employment–academic jobs. The research investigates the relationships between job satisfaction, work engagement and loyalty as well as the impact of trust and job meaningfulness on the work engagement and loyalty. The survey was conducted in one of the largest Latvian higher education institutions and the sample was drawn from academic staff (n=326). Structured questionnaire with 44 reflective type questions was developed to measure toe constructs. Data was analysed using SPSS and Smart-PLS software. Variance based structural equation modelling (PLS-SEM) technique was used to test the model and to predict the most important factors relevant to employee engagement and loyalty. The first order model included two endogenous constructs (loyalty and intention to stay and recommend, and employee engagement), as well as six exogenous constructs (feeling of fair treatment and trust in management; career growth opportunities; compensation, pay and benefits; management; colleagues; teamwork; and finally job meaningfulness). Job satisfaction was developed as second order construct and both: first and second order models were designed for data analysis. It was found that academics are more engaged than satisfied with their work and main reason for that was found to be job meaningfulness, which is significant predictor for work engagement, but not for job satisfaction. Compensation is not significantly related to work engagement, but only to job satisfaction. Trust was not significantly related neither to engagement, nor to satisfaction, however, it appeared to be significant predictor of loyalty and intentions to stay with the University. This paper revealed academic jobs as specific kind of employment where employees can be more engaged than satisfied and highlighted the specific role of job meaningfulness in the University settings.

Keywords: job satisfaction, job meaningfulness, higher education, work engagement

Procedia PDF Downloads 247
614 Effects of Whole Body Vibration on Movement Variability Performing a Resistance Exercise with Different Ballasts and Rhythms

Authors: Sílvia tuyà Viñas, Bruno Fernández-Valdés, Carla Pérez-Chirinos, Monica Morral-Yepes, Lucas del Campo Montoliu, Gerard Moras Feliu

Abstract:

Some researchers stated that whole body vibration (WBV) generates postural destabilization, although there is no extensive research. Therefore, the aim of this study was to analyze movement variability when performing a half-squat with a different type of ballasts and rhythms with (V) and without (NV) WBV in male athletes using entropy. Twelve experienced in strength training males (age: 21.24  2.35 years, height: 176.83  5.80 cm, body mass: 70.63  8.58 kg) performed a half-squat with weighted vest (WV), dumbbells (D), and a bar with the weights suspended with elastic bands (B), in V and NV at 40 bpm and 60 bpm. Subjects performed one set of twelve repetitions of each situation, composed by the combination of the three factors. The movement variability was analyzed by calculating the Sample Entropy (SampEn) of the total acceleration signal recorded at the waist. In V, significant differences were found between D and WV (p<0.001; ES: 2.87 at 40 bpm; p<0.001; ES: 3.17 at 60 bpm) and between the B and WV at both rhythms (p<0.001; ES: 3.12 at 40 bpm; p<0.001; ES: 2.93 at 60 bpm) and a higher SampEn was obtained at 40 bpm with all ballasts (p<0.001; ES of WV: 1.22; ES of D: 4.49; ES of B: 4.03). No significant differences were found in NV. WBV is a disturbing and destabilizing stimulus. Strength and conditioning coaches should choose the combination of ballast and rhythm of execution according to the level and objectives of each athlete.

Keywords: accelerometry, destabilization, entropy, movement variability, resistance training

Procedia PDF Downloads 175
613 Analysis of Vocal Fold Vibrations from High-Speed Digital Images Based on Dynamic Time Warping

Authors: A. I. A. Rahman, Sh-Hussain Salleh, K. Ahmad, K. Anuar

Abstract:

Analysis of vocal fold vibration is essential for understanding the mechanism of voice production and for improving clinical assessment of voice disorders. This paper presents a Dynamic Time Warping (DTW) based approach to analyze and objectively classify vocal fold vibration patterns. The proposed technique was designed and implemented on a Glottal Area Waveform (GAW) extracted from high-speed laryngeal images by delineating the glottal edges for each image frame. Feature extraction from the GAW was performed using Linear Predictive Coding (LPC). Several types of voice reference templates from simulations of clear, breathy, fry, pressed and hyperfunctional voice productions were used. The patterns of the reference templates were first verified using the analytical signal generated through Hilbert transformation of the GAW. Samples from normal speakers’ voice recordings were then used to evaluate and test the effectiveness of this approach. The classification of the voice patterns using the technique of LPC and DTW gave the accuracy of 81%.

Keywords: dynamic time warping, glottal area waveform, linear predictive coding, high-speed laryngeal images, Hilbert transform

Procedia PDF Downloads 237
612 Analysis of Vibratory Signals Based on Local Mean Decomposition (LMD) for Rolling Bearing Fault Diagnosis

Authors: Toufik Bensana, Medkour Mihoub, Slimane Mekhilef

Abstract:

The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally nonstationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA), and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. The results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, rolling element bearing, local mean decomposition, condition monitoring

Procedia PDF Downloads 383
611 Deconstructing the Niger-Delta Crises: In Esiaba Irobi's Cemetery Road and Hangmen Also Die

Authors: Chukwukelue Uzodinma Umenyilorah

Abstract:

The history of the crises in Niger-Delta is readily traceable to the post-colonial oil boom of the early 70s. Prior to this time, it was widely believed that the people of Niger-Delta; especially those in the present day Rivers, Delta and Bayelsa States enjoyed a peaceful coexistence pretty much as the rest of Nigerians. In the early 70s however, crude oil was discovered in commercial quantities in these areas and tranquility has become a far cry over the years ever since then. First, a number of multi-national oil explorers moved into the Niger-Delta for business, and then certain conditions resulted in sundry instances of oil spillage, which caused a lot of environmental damage, destroying nearly all of the people’s sources of livelihood. The result was a multiple chain reaction ranging from incessant agitations from the natives to institutionalized dialogue between the oil business owners, the natives and the government, and then to a proposition of compensation packages for the affected communities. The said compensation, which was meant to bring peace seem to have brought even more crises instead. Corruption and greed crept in, money changed hands, suffering increased and so was the agitation from the people. The whole turn of events gradually snowballed into the formation of various militant groups who are now fingered as responsible for the sundry cases of violence in the Niger-Delta. The oil boom can, therefore, be said to be the immediate cause of the Niger-Delta crises, but there are other remote causes as well; including poverty, neglect and illiteracy to mention but a few. This study is therefore aimed at examining the various reasons behind the seemingly unending crises in the Niger-Delta. It will also take a critical look at the roles played by the various parties in the Niger-Delta crises from the 70s to date; as well as the various human and environmental devastations done in the area with a view to making informed suggestions on how to stop further damage and start fixing that, which is already done. Esiaba Irobi’s Cemetery Road and Hangmen Also Die seem to vividly capture the realities of the Niger-Delta situation, and shall, therefore, be reviewed in this study.

Keywords: corruption, Niger-delta, oil boom, post-colonial

Procedia PDF Downloads 304
610 An Intelligent Controller Augmented with Variable Zero Lag Compensation for Antilock Braking System

Authors: Benjamin Chijioke Agwah, Paulinus Chinaenye Eze

Abstract:

Antilock braking system (ABS) is one of the important contributions by the automobile industry, designed to ensure road safety in such way that vehicles are kept steerable and stable when during emergency braking. This paper presents a wheel slip-based intelligent controller with variable zero lag compensation for ABS. It is required to achieve a very fast perfect wheel slip tracking during hard braking condition and eliminate chattering with improved transient and steady state performance, while shortening the stopping distance using effective braking torque less than maximum allowable torque to bring a braking vehicle to a stop. The dynamic of a vehicle braking with a braking velocity of 30 ms⁻¹ on a straight line was determined and modelled in MATLAB/Simulink environment to represent a conventional ABS system without a controller. Simulation results indicated that system without a controller was not able to track desired wheel slip and the stopping distance was 135.2 m. Hence, an intelligent control based on fuzzy logic controller (FLC) was designed with a variable zero lag compensator (VZLC) added to enhance the performance of FLC control variable by eliminating steady state error, provide improve bandwidth to eliminate the effect of high frequency noise such as chattering during braking. The simulation results showed that FLC- VZLC provided fast tracking of desired wheel slip, eliminate chattering, and reduced stopping distance by 70.5% (39.92 m), 63.3% (49.59 m), 57.6% (57.35 m) and 50% (69.13 m) on dry, wet, cobblestone and snow road surface conditions respectively. Generally, the proposed system used effective braking torque that is less than the maximum allowable braking torque to achieve efficient wheel slip tracking and overall robust control performance on different road surfaces.

Keywords: ABS, fuzzy logic controller, variable zero lag compensator, wheel slip tracking

Procedia PDF Downloads 145
609 Reclaimed Tire and Carbon Black Mixture Effect on Mechanical Properties of Rubber Blends SBR/NR/BRcis Uses as Damping Materials

Authors: Samir Hassan AL-Nesrawy, Mohammed Al-Maamori, A. S. Hassani

Abstract:

Rebound resilience for various elastomeric composites has been measured by Tripsometer devise, in order to investigate the effect of mix of C.B & Reclaim loading on elastomeric materials to absorb or damping vibration or shocks by fenders uses in the Iraqi berths. After having been certain about attaining the physical and mechanical properties of the new samples which are similar to the levels of their standard ones, damping properties for the new samples have been measured and compared with those of the standard fenders. The new samples included four rubber blends from (SBR/NR/BR-cis) and four loading levels of mix carbon black (type N-375) and reclaim to become sixteen compound contain SBR(100,60,60,60), NR(0,10,20,30), BRcis(30,20,10,0) and loading level for C.B, Reclaim (10,20,30,40). Damping measurements have been carried out by the method Free Vibration Resilience Pendulum method (by using Wallace R2-Dunlop Tripsometer) and from this Resilience Pendulum method, both the resilience percentage value (R%) and time decay (t0) have been measured at 50oC. We found that the results of this method proved that the increment of C.B, Reclaim level in these robber composite lead to decreasing the resiliency (R%) and damping time.

Keywords: damping materials, carbon black mixture effect, mechanical properties, rubber blends SBR/NR/BRcis

Procedia PDF Downloads 448
608 Vibration Control of Building Using Multiple Tuned Mass Dampers Considering Real Earthquake Time History

Authors: Rama Debbarma, Debanjan Das

Abstract:

The performance of multiple tuned mass dampers to mitigate the seismic vibration of structures considering real time history data is investigated in this paper. Three different real earthquake time history data like Kobe, Imperial Valley and Mammoth Lake are taken in the present study. The multiple tuned mass dampers (MTMD) are distributed at each storey. For comparative study, single tuned mass damper (STMD) is installed at top of the similar structure. This study is conducted for a fixed mass ratio (5%) and fixed damping ratio (5%) of structures. Numerical study is performed to evaluate the effectiveness of MTMDs and overall system performance. The displacement, acceleration, base shear and storey drift are obtained for both combined system (structure with MTMD and structure with STMD) for all earthquakes. The same responses are also obtained for structure without damper system. From obtained results, it is investigated that the MTMD configuration is more effective for controlling the seismic response of the primary system with compare to STMD configuration.

Keywords: Earthquake, multiple tuned mass dampers, single tuned mass damper, Time history.

Procedia PDF Downloads 266
607 Influence of the 3D Printing Parameters on the Dynamic Characteristics of Composite Structures

Authors: Ali Raza, Rūta Rimašauskienė

Abstract:

In the current work, the fused deposition modelling (FDM) technique is used to manufacture PLA reinforced with carbon fibre composite structures with two unique layer patterns, 0°\0° and 0°\90°. The purpose of the study is to investigate the dynamic characteristics of each fabricated composite structure. The Macro Fiber Composite (MFC) is embedded with 0°/0° and 0°/90° structures to investigate the effect of an MFC (M8507-P2 type) patch on vibration amplitude suppression under dynamic loading circumstances. First, modal analysis testing was performed using a Polytec 3D laser vibrometer to identify bending mode shapes, natural frequencies, and vibration amplitudes at the corresponding natural frequencies. To determine the stiffness of each structure, several loads were applied at the free end of the structure, and the deformation was recorded using a laser displacement sensor. The findings confirm that a structure with 0°\0° layers pattern was found to have more stiffness compared to a 0°\90° structure. The maximum amplitude suppression in each structure was measured using a laser displacement sensor at the first resonant frequency when the control voltage signal with optimal phase was applied to the MFC. The results confirm that the 0°/0° pattern's structure exhibits a higher displacement reduction than the 0°/90° pattern. Moreover, stiffer structures have been found to perform amplitude suppression more effectively.

Keywords: carbon fibre composite, MFC, modal analysis stiffness, stiffness

Procedia PDF Downloads 61
606 Experimental Modal Analysis of Kursuncular Minaret

Authors: Yunus Dere

Abstract:

Minarets are tower like structures where the call to prayer of Muslims is performed. They have a symbolic meaning and sacred place among Muslims. Being tall and slender, they are prone to damage under earthquakes and strong winds. Kursuncular stone minaret was built around thirty years ago in Konya/TURKEY. Its core and helical stairs are made of reinforced concrete. Its stone spire was damaged during a light earthquake. Its spire is later replaced with a light material covered with lead sheets. In this study, the natural frequencies and mode shapes of Kursuncular minaret is obtained experimentally and analytically. First an ambient vibration test is carried out using a data acquisition system with accelerometers located at four locations along the height of the minaret. The collected vibration data is evaluated by operational modal analysis techniques. For the analytical part of the study, the dimensions of the minaret are accurately measured and a detailed 3D solid finite element model of the minaret is generated. The moduli of elasticity of the stone and concrete are approximated using the compressive strengths obtained by Windsor Pin tests. Finite element modal analysis of the minaret is carried out to get the modal parameters. Experimental and analytical results are then compared and found in good agreement.

Keywords: experimental modal analysis, stone minaret, finite element modal analysis, minarets

Procedia PDF Downloads 321
605 Development of Al Foam by a Low-Cost Salt Replication Method for Industrial Applications

Authors: B. Soni, S. Biswas

Abstract:

Metal foams of Al find diverse applications in several industrial sectors such as in automotive and sports equipment industry as impact, acoustic and vibration absorbers, the aerospace industry as structural components in turbines and spatial cones, in the naval industry as low frequency vibration absorbers, and in construction industry as sound barriers inside tunnels, as fire proof materials and structure protection systems against explosions and even in heat exchangers, orthopedic components, and decorative items. Here, we report on the development of Al foams by a low cost and convenient technique of salt replication method with efficient control over size, geometry and distribution of the pores. Sodium bicarbonate was used as the foaming agent to form the porous refractory salt pattern. The mixed refractory salt slurry was microwave dried followed by sintering for selected time periods. Molten Al was infiltrated into the salt pattern in an inert atmosphere at a pressure of 2 bars. The final products were obtained by leaching out the refractory salt pattern. Mechanical properties of the derived samples were studied with a universal testing machine. The results were analyzed in correlation with their microstructural features evaluated with a scanning electron microscope (SEM).

Keywords: metal foam, Al, salt replication method, mechanical properties, SEM

Procedia PDF Downloads 347
604 Numerical Simulation and Experimental Verification of Mechanical Displacements in Piezoelectric Transformer

Authors: F. Boukazouha, G. Poulin-Vittrant, M. Rguiti, M. Lethiecq

Abstract:

Since its invention, by virtue of its remarkable features, the piezoelectric transformer (PT) has drawn the attention of the scientific community. In past years, it has been extensively studied and its performances have been continuously improved. Nowadays, such devices are designed in more and more sophisticated architectures with associated models describing their behavior quite accurately. However, the different studies usually carried out on such devices mainly focus on their electrical characteristics induced by direct piezoelectric effects such as voltage gain, efficiency or supplied power. In this work, we are particularly interested in the characterization of mechanical displacements induced by the inverse piezoelectric effect in a PT in vibration. For this purpose, a detailed three-dimensional finite element analysis is proposed to examine the mechanical behavior of a Rosen-type transformer made of a single bar of soft PZT (P191) and with dimensions 22mm×2.35mm×2.5mm. At the first three modes of vibration, output voltage and mechanical displacements ux, uy and uz along the length, the width and the thickness, respectively, are calculated. The amplitude of displacements varies in a range from a few nanometers to a few hundred nanometers. The validity of the simulations was successfully confirmed by experiments carried out on a prototype using a laser interferometer. A good match was observed between simulation and experimental results, especially for us at the second mode. Such 3D simulations thus appear as a helpful tool for a better understanding of mechanical phenomena in Rosen-type PT.

Keywords: piezoelectricity, gain, dispalcement, simulations

Procedia PDF Downloads 21
603 Influence of Processing Parameters on the Reliability of Sieving as a Particle Size Distribution Measurements

Authors: Eseldin Keleb

Abstract:

In the pharmaceutical industry particle size distribution is an important parameter for the characterization of pharmaceutical powders. The powder flowability, reactivity and compatibility, which have a decisive impact on the final product, are determined by particle size and size distribution. Therefore, the aim of this study was to evaluate the influence of processing parameters on the particle size distribution measurements. Different Size fractions of α-lactose monohydrate and 5% polyvinylpyrrolidone were prepared by wet granulation and were used for the preparation of samples. The influence of sieve load (50, 100, 150, 200, 250, 300, and 350 g), processing time (5, 10, and 15 min), sample size ratios (high percentage of small and large particles), type of disturbances (vibration and shaking) and process reproducibility have been investigated. Results obtained showed that a sieve load of 50 g produce the best separation, a further increase in sample weight resulted in incomplete separation even after the extension of the processing time for 15 min. Performing sieving using vibration was rapider and more efficient than shaking. Meanwhile between day reproducibility showed that particle size distribution measurements are reproducible. However, for samples containing 70% fines or 70% large particles, which processed at optimized parameters, the incomplete separation was always observed. These results indicated that sieving reliability is highly influenced by the particle size distribution of the sample and care must be taken for samples with particle size distribution skewness.

Keywords: sieving, reliability, particle size distribution, processing parameters

Procedia PDF Downloads 607
602 Dynamics Characterizations of Dielectric Electro- Active Polymer Pull Actuator for Vibration Control

Authors: A. M. Wahab, E. Rustighi

Abstract:

Elastomeric dielectric material has recently become a new alternative for actuator technology. The characteristics of dielectric elastomers placed between two electrodes to withstand large strain when electrodes are charged has attracted the attention of many researcher to study this material for actuator technology. Thus, in the past few years Danfoss Ventures A/S has established their own dielectric electro-active polymer (DEAP), which was called PolyPower. The main objective of this work was to investigate the dynamic characteristics for vibration control of a PolyPower actuator folded in ‘pull’ configuration. A range of experiments was carried out on the folded actuator including passive (without electrical load) and active (with electrical load) testing. For both categories static and dynamic testing have been done to determine the behavior of folded DEAP actuator. Voltage-Strain experiments show that the DEAP folded actuator is a non-linear system. It is also shown that the voltage supplied has no effect on the natural frequency. Finally, varying AC voltage with different amplitude and frequency shows the parameters that influence the performance of DEAP folded actuator. As a result, the actuator performance dominated by the frequency dependence of the elastic response and was less influenced by dielectric properties.

Keywords: dielectric electro-active polymer, pull actuator, static, dynamic, electromechanical

Procedia PDF Downloads 248
601 Investigating the Dynamic Response of the Ballast

Authors: Osama Brinji, Wing Kong Chiu, Graham Tew

Abstract:

Understanding the stability of rail ballast is one of the most important aspects in the railways. An unstable track may cause some issues such as unnecessary vibration and ultimately loss of track quality. The track foundation plays an important role in the stabilization of the railway. The dynamic response of rail ballast in the vicinity of the rail sleeper can affect the stability of the rail track and this has not been studied in detail. A review of literature showed that most of the works focused on the area under the concrete sleeper. Although there are some theories about the shear (longitudinal) effect of the rail ballast, these have not properly been studied and hence are not well understood. The stability of a rail track will depend on the compactness of the ballast in its vicinity. This paper will try to determine the dynamic response of the ballast to identify its resonant behaviour. This preliminary research is one of several studies that examine the vibration response of the granular materials. The main aim is to use this information for future design of sleepers to ensure that any dynamic response of the sleeper will not compromise the state of compactness of the ballast. This paper will report on the dependence of damping and the natural frequency of the ballast as a function of depth and distance from the point of excitation introduced through a concrete block. The concrete block is used to simulate a sleeper and the ballast is simulated with gravel. In spite of these approximations, the results presented in the paper will show an agreement with theories and the assumptions that are used in study the mechanical behaviour of the rail ballast.

Keywords: ballast, dynamic response, sleeper, stability

Procedia PDF Downloads 498