Search results for: random waves
2361 Nonlinear Analysis of Shear Deformable Deep Beam Resting on Nonlinear Two-Parameter Random Soil
Authors: M. Seguini, D. Nedjar
Abstract:
In this paper, the nonlinear analysis of Timoshenko beam undergoing moderate large deflections and resting on nonlinear two-parameter random foundation is presented, taking into account the effects of shear deformation, beam’s properties variation and the spatial variability of soil characteristics. The finite element probabilistic analysis has been performed by using Timoshenko beam theory with the Von Kàrmàn nonlinear strain-displacement relationships combined to Vanmarcke theory and Monte Carlo simulations, which is implemented in a Matlab program. Numerical examples of the newly developed model is conducted to confirm the efficiency and accuracy of this later and the importance of accounting for the foundation second parameter (Winkler-Pasternak). Thus, the results obtained from the developed model are presented and compared with those available in the literature to examine how the consideration of the shear and spatial variability of soil’s characteristics affects the response of the system.Keywords: nonlinear analysis, soil-structure interaction, large deflection, Timoshenko beam, Euler-Bernoulli beam, Winkler foundation, Pasternak foundation, spatial variability
Procedia PDF Downloads 3232360 KSVD-SVM Approach for Spontaneous Facial Expression Recognition
Authors: Dawood Al Chanti, Alice Caplier
Abstract:
Sparse representations of signals have received a great deal of attention in recent years. In this paper, the interest of using sparse representation as a mean for performing sparse discriminative analysis between spontaneous facial expressions is demonstrated. An automatic facial expressions recognition system is presented. It uses a KSVD-SVM approach which is made of three main stages: A pre-processing and feature extraction stage, which solves the problem of shared subspace distribution based on the random projection theory, to obtain low dimensional discriminative and reconstructive features; A dictionary learning and sparse coding stage, which uses the KSVD model to learn discriminative under or over dictionaries for sparse coding; Finally a classification stage, which uses a SVM classifier for facial expressions recognition. Our main concern is to be able to recognize non-basic affective states and non-acted expressions. Extensive experiments on the JAFFE static acted facial expressions database but also on the DynEmo dynamic spontaneous facial expressions database exhibit very good recognition rates.Keywords: dictionary learning, random projection, pose and spontaneous facial expression, sparse representation
Procedia PDF Downloads 3082359 Reliability Analysis for Cyclic Fatigue Life Prediction in Railroad Bolt Hole
Authors: Hasan Keshavarzian, Tayebeh Nesari
Abstract:
Bolted rail joint is one of the most vulnerable areas in railway track. A comprehensive approach was developed for studying the reliability of fatigue crack initiation of railroad bolt hole under random axle loads and random material properties. The operation condition was also considered as stochastic variables. In order to obtain the comprehensive probability model of fatigue crack initiation life prediction in railroad bolt hole, we used FEM, response surface method (RSM), and reliability analysis. Combined energy-density based and critical plane based fatigue concept is used for the fatigue crack prediction. The dynamic loads were calculated according to the axle load, speed, and track properties. The results show that axle load is most sensitive parameter compared to Poisson’s ratio in fatigue crack initiation life. Also, the reliability index decreases slowly due to high cycle fatigue regime in this area.Keywords: rail-wheel tribology, rolling contact mechanic, finite element modeling, reliability analysis
Procedia PDF Downloads 3812358 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance
Authors: Abdullah Al Farwan, Ya Zhang
Abstract:
In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance
Procedia PDF Downloads 1692357 Testing the Weak Form Efficiency of Islamic Stock Market: Empirical Evidence from Indonesia
Authors: Herjuno Bagus Wicaksono, Emma Almira Fauni, Salma Amelia Dina
Abstract:
The Efficient Market Hypothesis (EMH) states that, in an efficient capital market, price fully reflects the information available in the market. This theory has influenced many investors behavior in trading in the stock market. Advanced researches have been conducted to test the efficiency of the stock market in particular countries. Indonesia, as one of the emerging countries, has performed substantial growth in the past years. Hence, this paper aims to examine the efficiency of Islamic stock market in Indonesia in its weak form. The daily stock price data from Indonesia Sharia Stock Index (ISSI) for the period October 2015 to October 2016 were used to do the statistical tests: Run Test and Serial Correlation Test. The results show that there is no serial correlation between the current price with the past prices and the market follows the random walk. This research concludes that Indonesia Islamic stock market is weak form efficient.Keywords: efficient market hypothesis, Indonesia sharia stock index, random walk, weak form efficiency
Procedia PDF Downloads 4612356 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 402355 Using Analytical Hierarchy Process and TOPSIS Approaches in Designing a Finite Element Analysis Automation Program
Authors: Ming Wen, Nasim Nezamoddini
Abstract:
Sophisticated numerical simulations like finite element analysis (FEA) involve a complicated process from model setup to post-processing tasks that require replication of time-consuming steps. Utilizing FEA automation program simplifies the complexity of the involved steps while minimizing human errors in analysis set up, calculations, and results processing. One of the main challenges in designing FEA automation programs is to identify user requirements and link them to possible design alternatives. This paper presents a decision-making framework to design a Python based FEA automation program for modal analysis, frequency response analysis, and random vibration fatigue (RVF) analysis procedures. Analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) are applied to evaluate design alternatives considering the feedback received from experts and program users.Keywords: finite element analysis, FEA, random vibration fatigue, process automation, analytical hierarchy process, AHP, TOPSIS, multiple-criteria decision-making, MCDM
Procedia PDF Downloads 1132354 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach
Authors: Utkarsh A. Mishra, Ankit Bansal
Abstract:
At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks
Procedia PDF Downloads 2252353 Joint Modeling of Bottle Use, Daily Milk Intake from Bottles, and Daily Energy Intake in Toddlers
Authors: Yungtai Lo
Abstract:
The current study follows an educational intervention on bottle-weaning to simultaneously evaluate the effect of the bottle-weaning intervention on reducing bottle use, daily milk intake from bottles, and daily energy intake in toddlers aged 11 to 13 months. A shared parameter model and a random effects model are used to jointly model bottle use, daily milk intake from bottles, and daily energy intake. We show in the two joint models that the bottle-weaning intervention promotes bottleweaning, and reduces daily milk intake from bottles in toddlers not off bottles and daily energy intake. We also show that the odds of drinking from a bottle were positively associated with the amount of milk intake from bottles and increased daily milk intake from bottles was associated with increased daily energy intake. The effect of bottle use on daily energy intake is through its effect on increasing daily milk intake from bottles that in turn increases daily energy intake.Keywords: two-part model, semi-continuous variable, joint model, gamma regression, shared parameter model, random effects model
Procedia PDF Downloads 2882352 Influence of the Paint Coating Thickness in Digital Image Correlation Experiments
Authors: Jesús A. Pérez, Sam Coppieters, Dimitri Debruyne
Abstract:
In the past decade, the use of digital image correlation (DIC) techniques has increased significantly in the area of experimental mechanics, especially for materials behavior characterization. This non-contact tool enables full field displacement and strain measurements over a complete region of interest. The DIC algorithm requires a random contrast pattern on the surface of the specimen in order to perform properly. To create this pattern, the specimen is usually first coated using a white matt paint. Next, a black random speckle pattern is applied using any suitable method. If the applied paint coating is too thick, its top surface may not be able to exactly follow the deformation of the specimen, and consequently, the strain measurement might be underestimated. In the present article, a study of the influence of the paint thickness on the strain underestimation is performed for different strain levels. The results are then compared to typical paint coating thicknesses applied by experienced DIC users. A slight strain underestimation was observed for paint coatings thicker than about 30μm. On the other hand, this value was found to be uncommonly high compared to coating thicknesses applied by DIC users.Keywords: digital image correlation, paint coating thickness, strain
Procedia PDF Downloads 5152351 Determination of Crustal Structure and Moho Depth within the Jammu and Kashmir Region, Northwest Himalaya through Receiver Function
Authors: Shiv Jyoti Pandey, Shveta Puri, G. M. Bhat, Neha Raina
Abstract:
The Jammu and Kashmir (J&K) region of Northwest Himalaya has a long history of earthquake activity which falls within Seismic Zones IV and V. To know the crustal structure beneath this region, we utilized teleseismic receiver function method. This paper presents the results of the analyses of the teleseismic earthquake waves recorded by 10 seismic observatories installed in the vicinity of major thrusts and faults. The teleseismic waves at epicentral distance between 30o and 90o with moment magnitudes greater than or equal to 5.5 that contains large amount of information about the crust and upper mantle structure directly beneath a receiver has been used. The receiver function (RF) technique has been widely applied to investigate crustal structures using P-to-S converted (Ps) phases from velocity discontinuities. The arrival time of the Ps, PpPs and PpSs+ PsPs converted and reverberated phases from the Moho can be combined to constrain the mean crustal thickness and Vp/Vs ratio. Over 500 receiver functions from 10 broadband stations located in the Jammu & Kashmir region of Northwest Himalaya were analyzed. With the help of H-K stacking method, we determined the crustal thickness (H) and average crustal Vp/Vs ratio (K) in this region. We also used Neighbourhood algorithm technique to verify our results. The receiver function results for these stations show that the crustal thickness under Jammu & Kashmir ranges from 45.0 to 53.6 km with an average value of 50.01 km. The Vp/Vs ratio varies from 1.63 to 1.99 with an average value of 1.784 which corresponds to an average Poisson’s ratio of 0.266 with a range from 0.198 to 0.331. High Poisson’s ratios under some stations may be related to partial melting in the crust near the uppermost mantle. The crustal structure model developed from this study can be used to refine the velocity model used in the precise epicenter location in the region, thereby increasing the knowledge to understand current seismicity in the region.Keywords: H-K stacking, Poisson’s ratios, receiver function, teleseismic
Procedia PDF Downloads 2482350 Stress Recovery and Durability Prediction of a Vehicular Structure with Random Road Dynamic Simulation
Authors: Jia-Shiun Chen, Quoc-Viet Huynh
Abstract:
This work develops a flexible-body dynamic model of an all-terrain vehicle (ATV), capable of recovering dynamic stresses while the ATV travels on random bumpy roads. The fatigue life of components is forecasted as well. While considering the interaction between dynamic forces and structure deformation, the proposed model achieves a highly accurate structure stress prediction and fatigue life prediction. During the simulation, stress time history of the ATV structure is retrieved for life prediction. Finally, the hot sports of the ATV frame are located, and the frame life for combined road conditions is forecasted, i.e. 25833.6 hr. If the usage of vehicle is eight hours daily, the total vehicle frame life is 8.847 years. Moreover, the reaction force and deformation due to the dynamic motion can be described more accurately by using flexible body dynamics than by using rigid-body dynamics. Based on recommendations made in the product design stage before mass production, the proposed model can significantly lower development and testing costs.Keywords: flexible-body dynamics, veicle, dynamics, fatigue, durability
Procedia PDF Downloads 3942349 Streamlining Coastal Defense: Investigating the Impact of Seawall Geometry on Wave Loads
Authors: Ahmadreza Ebadati, Asaad Y. Shamseldin, Amin Ghadirian
Abstract:
Seawall geometry plays a crucial role in mitigating wave impacts, though detailed exploration of its manipulation is limited. This study delves into the effects of varying cross-shore seawall geometry on the dynamics of wave impacts, with a particular focus on vertical seawalls. Inspired by foundational insights linking seawall shape to hydraulic efficiency, this investigation centres on how alterations in seawall geometry can influence wave energy dissipation and subsequent wave impacts. The study investigates the 2D interaction of regular waves with a period of 2.1s with a vertical seawall and berm featuring small-scale cross-shore protrusions and recesses. Utilising OpenFOAM® simulations and a k-ω SST turbulence model, this investigation compares results to a base case simulation, which is partially calibrated with experimental data from a flume study. The analysis evaluates various geometric modifications, specifically interchanged protrusions and recesses at different heights and orientations along the seawall. Findings suggest that specific configurations, such as interchanged protrusions and recesses, can mitigate initial impact forces, while certain arrangements may intensify subsequent impacts. Key insights include the identification of geometry configurations that can effectively reduce the force impulse of slamming waves on coastal structures and potentially decrease the frequency and cost of seawall maintenance. This research contributes to the field by advancing the understanding of how seawall geometry influences wave forces and by providing actionable insights for the design of more resilient seawall structures. Further exploration of seawall geometry variation is recommended, advocating additional case studies to optimise designs tailored to specific coastal environments.Keywords: seawall geometry, wave impact loads, numerical simulation, coastal engineering, wave-structure interaction
Procedia PDF Downloads 502348 Polynomial Chaos Expansion Combined with Exponential Spline for Singularly Perturbed Boundary Value Problems with Random Parameter
Authors: W. K. Zahra, M. A. El-Beltagy, R. R. Elkhadrawy
Abstract:
So many practical problems in science and technology developed over the past decays. For instance, the mathematical boundary layer theory or the approximation of solution for different problems described by differential equations. When such problems consider large or small parameters, they become increasingly complex and therefore require the use of asymptotic methods. In this work, we consider the singularly perturbed boundary value problems which contain very small parameters. Moreover, we will consider these perturbation parameters as random variables. We propose a numerical method to solve this kind of problems. The proposed method is based on an exponential spline, Shishkin mesh discretization, and polynomial chaos expansion. The polynomial chaos expansion is used to handle the randomness exist in the perturbation parameter. Furthermore, the Monte Carlo Simulations (MCS) are used to validate the solution and the accuracy of the proposed method. Numerical results are provided to show the applicability and efficiency of the proposed method, which maintains a very remarkable high accuracy and it is ε-uniform convergence of almost second order.Keywords: singular perturbation problem, polynomial chaos expansion, Shishkin mesh, two small parameters, exponential spline
Procedia PDF Downloads 1612347 Superconductor-Insulator Transition in Disordered Spin-1/2 Systems
Authors: E. Cuevas, M. Feigel'man, L. Ioffe, M. Mezard
Abstract:
The origin of continuous energy spectrum in large disordered interacting quantum systems is one of the key unsolved problems in quantum physics. While small quantum systems with discrete energy levels are noiseless and stay coherent forever in the absence of any coupling to external world, most large-scale quantum systems are able to produce thermal bath, thermal transport and excitation decay. This intrinsic decoherence is manifested by a broadening of energy levels which acquire a finite width. The important question is: What is the driving force and mechanism of transition(s) between two different types of many-body systems - with and without decoherence and thermal transport? Here, we address this question via two complementary approaches applied to the same model of quantum spin-1/2 system with XY-type exchange interaction and random transverse field. Namely, we develop analytical theory for this spin model on a Bethe lattice and implement numerical study of exact level statistics for the same spin model on random graph. This spin model is relevant to the study of pseudogaped superconductivity and S-I transition in some amorphous materials.Keywords: strongly correlated electrons, quantum phase transitions, superconductor, insulator
Procedia PDF Downloads 5842346 Cyber Security Enhancement via Software Defined Pseudo-Random Private IP Address Hopping
Authors: Andre Slonopas, Zona Kostic, Warren Thompson
Abstract:
Obfuscation is one of the most useful tools to prevent network compromise. Previous research focused on the obfuscation of the network communications between external-facing edge devices. This work proposes the use of two edge devices, external and internal facing, which communicate via private IPv4 addresses in a software-defined pseudo-random IP hopping. This methodology does not require additional IP addresses and/or resources to implement. Statistical analyses demonstrate that the hopping surface must be at least 1e3 IP addresses in size with a broad standard deviation to minimize the possibility of coincidence of monitored and communication IPs. The probability of breaking the hopping algorithm requires a collection of at least 1e6 samples, which for large hopping surfaces will take years to collect. The probability of dropped packets is controlled via memory buffers and the frequency of hops and can be reduced to levels acceptable for video streaming. This methodology provides an impenetrable layer of security ideal for information and supervisory control and data acquisition systems.Keywords: moving target defense, cybersecurity, network security, hopping randomization, software defined network, network security theory
Procedia PDF Downloads 1872345 Implementation of Integrated Multi-Channel Analysis of Surface Waves and Waveform Inversion Techniques for Seismic Hazard Estimation with Emphasis on Associated Uncertainty: A Case Study at Zafarana Wind Turbine Towers Farm, Egypt
Authors: Abd El-Aziz Khairy Abd El-Aal, Yuji Yagi, Heba Kamal
Abstract:
In this study, an integrated multi-channel analysis of Surface Waves (MASW) technique is applied to explore the geotechnical parameters of subsurface layers at the Zafarana wind farm. Moreover, a seismic hazard procedure based on the extended deterministic technique is used to estimate the seismic hazard load for the investigated area. The study area includes many active fault systems along the Gulf of Suez that cause many moderate and large earthquakes. Overall, the seismic activity of the area has recently become better understood following the use of new waveform inversion methods and software to develop accurate focal mechanism solutions for recent recorded earthquakes around the studied area. These earthquakes resulted in major stress-drops in the Eastern desert and the Gulf of Suez area. These findings have helped to reshape the understanding of the seismotectonic environment of the Gulf of Suez area, which is a perplexing tectonic domain. Based on the collected new information and data, this study uses an extended deterministic approach to re-examine the seismic hazard for the Gulf of Suez region, particularly the wind turbine towers at Zafarana Wind Farm and its vicinity. Alternate seismic source and magnitude-frequency relationships were combined with various indigenous attenuation relationships, adapted within a logic tree formulation, to quantify and project the regional exposure on a set of hazard maps. We select two desired exceedance probabilities (10 and 20%) that any of the applied scenarios may exceed the largest median ground acceleration. The ground motion was calculated at 50th, 84th percentile levels.Keywords: MASW, seismic hazard, wind turbine towers, Zafarana wind farm
Procedia PDF Downloads 4042344 Unified Assessment of Power System Reserve-based Reliability Levels
Authors: B. M. Alshammari, M. A. El-Kady
Abstract:
This paper presents a unified framework for assessment of reserve-based reliability levels in electric power systems. The unified approach is based on reserve-based analysis and assessment of the relationship between available generation capacities and required demand levels. The developed approach takes into account the load variations as well as contingencies which occur randomly causing some generation and/or transmission capacities to be lost (become unavailable). The calculated reserve based indices, which are important to assess the reserve capabilities of the power system for various operating scenarios are therefore probabilistic in nature. They reflect the fact that neither the load levels nor the generation or transmission capacities are known with absolute certainty. They are rather subjects to random variations and consequently. The calculated reserve-based reliability indices are all subjects to random variations where only expected values of these indices can be evaluated. This paper presents a unified approach to reserve-based reliability assessment of power systems using various reserve assessment criteria. Practical applications are also presented for demonstration purposes to the Saudi electricity power grid.Keywords: assessment, power system, reserve, reliability
Procedia PDF Downloads 6172343 Synchronization of Traveling Waves within a Hollow-Core Vortex
Authors: H. Ait Abderrahmane, M. Fayed, H. D. Ng, G. H. Vatistas
Abstract:
The present paper expands details and confirms the transition mechanism between two subsequent polygonal patterns of the hollow-core vortex. Using power spectral analysis, we confirm in this work that the transition from any N-gon to (N+1)-gon pattern observed within a hollow-core vortex of shallow rotating flows occurs in two steps. The regime was quasi-periodic before the frequencies lock (synchronization). The ratios of locking frequencies were found to be equal to (N-1)/N.Keywords: patterns, swirling, quasi-periodic, synchronization
Procedia PDF Downloads 2452342 Nonstationary Waves Excited by the Rigid Cylinder in Elastic Medium
Authors: Tukeaban Hasanova, Jamila Imamalieva
Abstract:
By the operational method, the problem on two-dimensional wave propagation in elastic medium excited by the round cylinder is solved. An analytical solution responding to instantaneous application of speed to the inclusion at its subsequent change is constructed. The two-dimensional problem on wave propagation in an elastic medium is considered.Keywords: cylinder, inclusion, wave, elastic medium, speed
Procedia PDF Downloads 1632341 Design of Enhanced Adaptive Filter for Integrated Navigation System of FOG-SINS and Star Tracker
Authors: Nassim Bessaad, Qilian Bao, Zhao Jiangkang
Abstract:
The fiber optics gyroscope in the strap-down inertial navigation system (FOG-SINS) suffers from precision degradation due to the influence of random errors. In this work, an enhanced Allan variance (AV) stochastic modeling method combined with discrete wavelet transform (DWT) for signal denoising is implemented to estimate the random process in the FOG signal. Furthermore, we devise a measurement-based iterative adaptive Sage-Husa nonlinear filter with augmented states to integrate a star tracker sensor with SINS. The proposed filter adapts the measurement noise covariance matrix based on the available data. Moreover, the enhanced stochastic modeling scheme is invested in tuning the process noise covariance matrix and the augmented state Gauss-Markov process parameters. Finally, the effectiveness of the proposed filter is investigated by employing the collected data in laboratory conditions. The result shows the filter's improved accuracy in comparison with the conventional Kalman filter (CKF).Keywords: inertial navigation, adaptive filtering, star tracker, FOG
Procedia PDF Downloads 802340 An Innovative Auditory Impulsed EEG and Neural Network Based Biometric Identification System
Authors: Ritesh Kumar, Gitanjali Chhetri, Mandira Bhatia, Mohit Mishra, Abhijith Bailur, Abhinav
Abstract:
The prevalence of the internet and technology in our day to day lives is creating more security issues than ever. The need for protecting and providing a secure access to private and business data has led to the development of many security systems. One of the potential solutions is to employ the bio-metric authentication technique. In this paper we present an innovative biometric authentication method that utilizes a person’s EEG signal, which is acquired in response to an auditory stimulus,and transferred wirelessly to a computer that has the necessary ANN algorithm-Multi layer perceptrol neural network because of is its ability to differentiate between information which is not linearly separable.In order to determine the weights of the hidden layer we use Gaussian random weight initialization. MLP utilizes a supervised learning technique called Back propagation for training the network. The complex algorithm used for EEG classification reduces the chances of intrusion into the protected public or private data.Keywords: EEG signal, auditory evoked potential, biometrics, multilayer perceptron neural network, back propagation rule, Gaussian random weight initialization
Procedia PDF Downloads 4132339 Estimation of Population Mean Using Characteristics of Poisson Distribution: An Application to Earthquake Data
Authors: Prayas Sharma
Abstract:
This paper proposed a generalized class of estimators, an exponential class of estimators based on the adaption of Sharma and Singh (2015) and Solanki and Singh (2013), and a simple difference estimator for estimating unknown population mean in the case of Poisson distributed population in simple random sampling without replacement. The expressions for mean square errors of the proposed classes of estimators are derived from the first order of approximation. It is shown that the adapted version of Solanki and Singh (2013), the exponential class of estimator, is always more efficient than the usual estimator, ratio, product, exponential ratio, and exponential product type estimators and equally efficient to simple difference estimator. Moreover, the adapted version of Sharma and Singh's (2015) estimator is always more efficient than all the estimators available in the literature. In addition, theoretical findings are supported by an empirical study to show the superiority of the constructed estimators over others with an application to earthquake data of Turkey.Keywords: auxiliary attribute, point bi-serial, mean square error, simple random sampling, Poisson distribution
Procedia PDF Downloads 1572338 The Effect of Cognitive Restructuring and Assertive Training on Improvement of Sexual Behavior of Secondary School Adolescents in Nigeria
Authors: Azu Kalu Oko, Ugboaku Nwanpka
Abstract:
The study investigated the effect of cognitive restructuring and assertive training on improvement of sexual behavior of secondary school adolescents in Nigeria. To guide the study, three research questions and four hypothesis were formulated. The study featured a 2X3 factorial design with a sample of 48 male and female students selected by random sampling using a table of random sample numbers. The three groups are assertive training, cognitive restructuring and control group. The study identified adolescents with deviant sexual behavior using Students Sexual Behavior Inventory (S.S.B.I.) as the research instrument. Ancova and T- Test statistic were used to analyze the data. The findings revealed that: I. Assertive Training and Cognitive Restructuring significantly improved sexual behavior of subjects at post test when compared with the control group. II. The treatment gains made by the two techniques were sustained at one month follow-up interval. III. Cognitive restructuring was more effective than assertiveness training in the improvement of the sexual behavior of students. Implication for education, psychotherapy and counseling were highlighted.Keywords: cognitive restructuring, assertiveness training, adolescents, sexual behavior
Procedia PDF Downloads 5882337 The Staff Performance Efficiency of the Faculty of Management Science, Suan Sunandha Rajabhat University
Authors: Nipawan Tharasak, Ladda Hirunyava
Abstract:
The objective of the research was to study factors affecting working efficiency and the relationship between working environment, satisfaction to human resources management and operation employees’ working efficiency of Faculty of Management Science, Suan Sunandha Rajabhat University. The sample size of the research was based on 33 employees of Faculty of Management Science. The researcher had classified the support employees into 4 divisions by using Stratified Random Sampling. Individual sample was randomized by using Simple Random Sampling. Data was collected through the instrument. The Statistical Package for the Windows was utilized for data processing. Percentage, mean, standard deviation, the t-test, One-way ANOVA, and Pearson product moment correlation coefficient were applied. The result found the support employees’ satisfaction in human resources management of Faculty of Management Science in following areas: remuneration; employee recruitment & selection; manpower planning; performance evaluation; staff training & developing; and spirit & fairness were overall in good level.Keywords: faculty of management science, operational factors, practice performance, staff working
Procedia PDF Downloads 2352336 The Effect of Penalizing Wrong Answers in the Computerized Modified Multiple Choice Testing System
Authors: Min Hae Song, Jooyong Park
Abstract:
Even though assessment using information and communication technology will most likely lead the future of educational assessment, there is little research on this topic. Computerized assessment will not only cut costs but also measure students' performance in ways not possible before. In this context, this study introduces a tool which can overcome the problems of multiple choice tests. Multiple-choice tests (MC) are efficient in automatic grading, however structural problems of multiple-choice tests allow students to find the correct answer from options even though they do not know the answer. A computerized modified multiple-choice testing system (CMMT) was developed using the interactivity of computers, that presents questions first, and options later for a short time when the student requests for them. This study was conducted to find out whether penalizing for wrong answers in CMMT could lower random guessing. In this study, we checked whether students knew the answers by having them respond to the short-answer tests before choosing the given options in CMMT or MC format. Ninety-four students were tested with the directions that they will be penalized for wrong answers, but not for no response. There were 4 experimental conditions: two conditions of high or low percentage of penalizing, each in traditional multiple-choice or CMMT format. In the low penalty condition, the penalty rate was the probability of getting the correct answer by random guessing. In the high penalty condition, students were penalized at twice the percentage of the low penalty condition. The results showed that the number of no response was significantly higher for the CMMT format and the number of random guesses was significantly lower for the CMMT format. There were no significant between the two penalty conditions. This result may be due to the fact that the actual score difference between the two conditions was too small. In the discussion, the possibility of applying CMMT format tests while penalizing wrong answers in actual testing settings was addressed.Keywords: computerized modified multiple choice test format, multiple-choice test format, penalizing, test format
Procedia PDF Downloads 1682335 Infrastructural Investment and Economic Growth in Indian States: A Panel Data Analysis
Authors: Jonardan Koner, Basabi Bhattacharya, Avinash Purandare
Abstract:
The study is focused to find out the impact of infrastructural investment on economic development in Indian states. The study uses panel data analysis to measure the impact of infrastructural investment on Real Gross Domestic Product in Indian States. Panel data analysis incorporates Unit Root Test, Cointegration Teat, Pooled Ordinary Least Squares, Fixed Effect Approach, Random Effect Approach, Hausman Test. The study analyzes panel data (annual in frequency) ranging from 1991 to 2012 and concludes that infrastructural investment has a desirable impact on economic development in Indian. Finally, the study reveals that the infrastructural investment significantly explains the variation of economic indicator.Keywords: infrastructural investment, real GDP, unit root test, cointegration teat, pooled ordinary least squares, fixed effect approach, random effect approach, Hausman test
Procedia PDF Downloads 4042334 Acoustic Induced Vibration Response Analysis of Honeycomb Panel
Authors: Po-Yuan Tung, Jen-Chueh Kuo, Chia-Ray Chen, Chien-Hsing Li, Kuo-Liang Pan
Abstract:
The main-body structure of satellite is mainly constructed by lightweight material, it should be able to withstand certain vibration load during launches. Since various kinds of change possibility in the space, it is an extremely important work to study the random vibration response of satellite structure. This paper based on the reciprocity relationship between sound and structure response and it will try to evaluate the dynamic response of satellite main body under random acoustic load excitation. This paper will study the technical process and verify the feasibility of sonic-borne vibration analysis. One simple plate exposed to the uniform acoustic field is utilized to take some important parameters and to validate the acoustics field model of the reverberation chamber. Then import both structure and acoustic field chamber models into the vibro-acoustic coupling analysis software to predict the structure response. During the modeling process, experiment verification is performed to make sure the quality of numerical models. Finally, the surface vibration level can be calculated through the modal participation factor, and the analysis results are presented in PSD spectrum.Keywords: vibration, acoustic, modal, honeycomb panel
Procedia PDF Downloads 5562333 A Multigrid Approach for Three-Dimensional Inverse Heat Conduction Problems
Authors: Jianhua Zhou, Yuwen Zhang
Abstract:
A two-step multigrid approach is proposed to solve the inverse heat conduction problem in a 3-D object under laser irradiation. In the first step, the location of the laser center is estimated using a coarse and uniform grid system. In the second step, the front-surface temperature is recovered in good accuracy using a multiple grid system in which fine mesh is used at laser spot center to capture the drastic temperature rise in this region but coarse mesh is employed in the peripheral region to reduce the total number of sensors required. The effectiveness of the two-step approach and the multiple grid system are demonstrated by the illustrative inverse solutions. If the measurement data for the temperature and heat flux on the back surface do not contain random error, the proposed multigrid approach can yield more accurate inverse solutions. When the back-surface measurement data contain random noise, accurate inverse solutions cannot be obtained if both temperature and heat flux are measured on the back surface.Keywords: conduction, inverse problems, conjugated gradient method, laser
Procedia PDF Downloads 3702332 The Effect of Institutions on Economic Growth: An Analysis Based on Bayesian Panel Data Estimation
Authors: Mohammad Anwar, Shah Waliullah
Abstract:
This study investigated panel data regression models. This paper used Bayesian and classical methods to study the impact of institutions on economic growth from data (1990-2014), especially in developing countries. Under the classical and Bayesian methodology, the two-panel data models were estimated, which are common effects and fixed effects. For the Bayesian approach, the prior information is used in this paper, and normal gamma prior is used for the panel data models. The analysis was done through WinBUGS14 software. The estimated results of the study showed that panel data models are valid models in Bayesian methodology. In the Bayesian approach, the effects of all independent variables were positively and significantly affected by the dependent variables. Based on the standard errors of all models, we must say that the fixed effect model is the best model in the Bayesian estimation of panel data models. Also, it was proved that the fixed effect model has the lowest value of standard error, as compared to other models.Keywords: Bayesian approach, common effect, fixed effect, random effect, Dynamic Random Effect Model
Procedia PDF Downloads 68