Search results for: gravitational search algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5314

Search results for: gravitational search algorithm

4864 Orthogonal Regression for Nonparametric Estimation of Errors-In-Variables Models

Authors: Anastasiia Yu. Timofeeva

Abstract:

Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.

Keywords: grade point average, orthogonal regression, penalized regression spline, locally weighted regression

Procedia PDF Downloads 416
4863 Contributions of Search and Rescue to the World Peace

Authors: Dursun Kalebaşi

Abstract:

When we examine the history of mankind (from the past up to the present), we see that millions of people died because of the wars. Especially, since the beginning of 19th century, the increase of the human death rate is caused mostly by the regional conflicts and natural disasters rather than the wars. From that point of view, the biggest threat humanity face today is temperature increase and climate change that started to emerge in recent years. When we take into account the natural disasters on one hand and refuges that flee from regional conflicts on the other, it stands out as a dramatic situation because of the huge human losses. In this context, most of the countries started to give more importance to Search and Rescue (SAR) operations to stop the loss of lives or decrease the death rate. This article will tell about the SAR activities in Turkey since 2000 and discuss the Turkey’s contributions to Rescue Missions after the natural disasters in different parts of the world. Moreover, there will be some new highlights to a more habitable and more peaceful world through the SAR missions.

Keywords: search and rescue, natural disasters, migration and world peace, Turkish army forces

Procedia PDF Downloads 377
4862 LiDAR Based Real Time Multiple Vehicle Detection and Tracking

Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt

Abstract:

Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.

Keywords: lidar, segmentation, clustering, tracking

Procedia PDF Downloads 426
4861 Vision Based People Tracking System

Authors: Boukerch Haroun, Luo Qing Sheng, Li Hua Shi, Boukraa Sebti

Abstract:

In this paper we present the design and the implementation of a target tracking system where the target is set to be a moving person in a video sequence. The system can be applied easily as a vision system for mobile robot. The system is composed of two major parts the first is the detection of the person in the video frame using the SVM learning machine based on the “HOG” descriptors. The second part is the tracking of a moving person it’s done by using a combination of the Kalman filter and a modified version of the Camshift tracking algorithm by adding the target motion feature to the color feature, the experimental results had shown that the new algorithm had overcame the traditional Camshift algorithm in robustness and in case of occlusion.

Keywords: camshift algorithm, computer vision, Kalman filter, object tracking

Procedia PDF Downloads 448
4860 Sub-Pixel Mapping Based on New Mixed Interpolation

Authors: Zeyu Zhou, Xiaojun Bi

Abstract:

Due to the limited environmental parameters and the limited resolution of the sensor, the universal existence of the mixed pixels in the process of remote sensing images restricts the spatial resolution of the remote sensing images. Sub-pixel mapping technology can effectively improve the spatial resolution. As the bilinear interpolation algorithm inevitably produces the edge blur effect, which leads to the inaccurate sub-pixel mapping results. In order to avoid the edge blur effect that affects the sub-pixel mapping results in the interpolation process, this paper presents a new edge-directed interpolation algorithm which uses the covariance adaptive interpolation algorithm on the edge of the low-resolution image and uses bilinear interpolation algorithm in the low-resolution image smooth area. By using the edge-directed interpolation algorithm, the super-resolution of the image with low resolution is obtained, and we get the percentage of each sub-pixel under a certain type of high-resolution image. Then we rely on the probability value as a soft attribute estimate and carry out sub-pixel scale under the ‘hard classification’. Finally, we get the result of sub-pixel mapping. Through the experiment, we compare the algorithm and the bilinear algorithm given in this paper to the results of the sub-pixel mapping method. It is found that the sub-pixel mapping method based on the edge-directed interpolation algorithm has better edge effect and higher mapping accuracy. The results of the paper meet our original intention of the question. At the same time, the method does not require iterative computation and training of samples, making it easier to implement.

Keywords: remote sensing images, sub-pixel mapping, bilinear interpolation, edge-directed interpolation

Procedia PDF Downloads 230
4859 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production

Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara

Abstract:

Evolutionary algorithms are techniques extensively used in the planning and management of water resources and systems. It is useful in finding optimal solutions to water resources problems considering the complexities involved in the analysis. River basin management is an essential area that involves the management of upstream, river inflow and outflow including downstream aspects of a reservoir. Water as a scarce resource is needed by human and the environment for survival and its management involve a lot of complexities. Management of this scarce resource is necessary for proper distribution to competing users in a river basin. This presents a lot of complexities involving many constraints and conflicting objectives. Evolutionary algorithms are very useful in solving this kind of complex problems with ease. Evolutionary algorithms are easy to use, fast and robust with many other advantages. Many applications of evolutionary algorithms, which are population based search algorithm, are discussed. Different methodologies involved in the modeling and simulation of water management problems in river basins are explained. It was found from this work that different evolutionary algorithms are suitable for different problems. Therefore, appropriate algorithms are suggested for different methodologies and applications based on results of previous studies reviewed. It is concluded that evolutionary algorithms, with wide applications in water resources management, are viable and easy algorithms for most of the applications. The results suggested that evolutionary algorithms, applied in the right application areas, can suggest superior solutions for river basin management especially in reservoir operations, irrigation planning and management, stream flow forecasting and real-time applications. The future directions in this work are suggested. This study will assist decision makers and stakeholders on the best evolutionary algorithm to use in varied optimization issues in water resources management.

Keywords: evolutionary algorithm, multi-objective, reservoir operation, river basin management

Procedia PDF Downloads 491
4858 Merging of Results in Distributed Information Retrieval Systems

Authors: Larbi Guezouli, Imane Azzouz

Abstract:

This work is located in the domain of distributed information retrieval ‘DIR’. A simplified view of the DIR requires a multi-search in a set of collections, which forces the system to analyze results found in these collections, and merge results back before sending them to the user in a single list. Our work is to find a fusion method based on the relevance score of each result received from collections and the relevance of the local search engine of each collection.

Keywords: information retrieval, distributed IR systems, merging results, datamining

Procedia PDF Downloads 338
4857 Design an Algorithm for Software Development in CBSE Envrionment Using Feed Forward Neural Network

Authors: Amit Verma, Pardeep Kaur

Abstract:

In software development organizations, Component based Software engineering (CBSE) is emerging paradigm for software development and gained wide acceptance as it often results in increase quality of software product within development time and budget. In component reusability, main challenges are the right component identification from large repositories at right time. The major objective of this work is to provide efficient algorithm for storage and effective retrieval of components using neural network and parameters based on user choice through clustering. This research paper aims to propose an algorithm that provides error free and automatic process (for retrieval of the components) while reuse of the component. In this algorithm, keywords (or components) are extracted from software document, after by applying k mean clustering algorithm. Then weights assigned to those keywords based on their frequency and after assigning weights, ANN predicts whether correct weight is assigned to keywords (or components) or not, otherwise it back propagates in to initial step (re-assign the weights). In last, store those all keywords into repositories for effective retrieval. Proposed algorithm is very effective in the error correction and detection with user base choice while choice of component for reusability for efficient retrieval is there.

Keywords: component based development, clustering, back propagation algorithm, keyword based retrieval

Procedia PDF Downloads 379
4856 2D Fingerprint Performance for PubChem Chemical Database

Authors: Fatimah Zawani Abdullah, Shereena Mohd Arif, Nurul Malim

Abstract:

The study of molecular similarity search in chemical database is increasingly widespread, especially in the area of drug discovery. Similarity search is an application in the field of Chemoinformatics to measure the similarity between the molecular structure which is known as the query and the structure of chemical compounds in the database. Similarity search is also one of the approaches in virtual screening which involves computational techniques and scoring the probabilities of activity. The main objective of this work is to determine the best fingerprint when compared to the other five fingerprints selected in this study using PubChem chemical dataset. This paper will discuss the similarity searching process conducted using 6 types of descriptors, which are ECFP4, ECFC4, FCFP4, FCFC4, SRECFC4 and SRFCFC4 on 15 activity classes of PubChem dataset using Tanimoto coefficient to calculate the similarity between the query structures and each of the database structure. The results suggest that ECFP4 performs the best to be used with Tanimoto coefficient in the PubChem dataset.

Keywords: 2D fingerprints, Tanimoto, PubChem, similarity searching, chemoinformatics

Procedia PDF Downloads 294
4855 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever

Authors: Sudha T., Naveen C.

Abstract:

Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.

Keywords: deep learning model, dengue fever, prediction, optimization

Procedia PDF Downloads 66
4854 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics

Authors: Fabio Fabris, Alex A. Freitas

Abstract:

Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.

Keywords: algorithm recommendation, meta-learning, bioinformatics, hierarchical classification

Procedia PDF Downloads 314
4853 Chaotic Search Optimal Design and Modeling of Permanent Magnet Synchronous Linear Motor

Authors: Yang Yi-Fei, Luo Min-Zhou, Zhang Fu-Chun, He Nai-Bao, Xing Shao-Bang

Abstract:

This paper presents an electromagnetic finite element model of permanent magnet synchronous linear motor and distortion rate of the air gap flux density waveform is analyzed in detail. By designing the sample space of the parameters, nonlinear regression modeling of the orthogonal experimental design is introduced. We put forward for possible air gap flux density waveform sine electromagnetic scheme. Parameters optimization of the permanent magnet synchronous linear motor is also introduced which is based on chaotic search and adaptation function. Simulation results prove that the pole shifting does not affect the motor back electromotive symmetry based on the structural parameters, it provides a novel way for the optimum design of permanent magnet synchronous linear motor and other engineering.

Keywords: permanent magnet synchronous linear motor, finite element analysis, chaotic search, optimization design

Procedia PDF Downloads 417
4852 On Privacy-Preserving Search in the Encrypted Domain

Authors: Chun-Shien Lu

Abstract:

Privacy-preserving query has recently received considerable attention in the signal processing and multimedia community. It is also a critical step in wireless sensor network for retrieval of sensitive data. The purposes of privacy-preserving query in both the areas of signal processing and sensor network are the same, but the similarity and difference of the adopted technologies are not fully explored. In this paper, we first review the recently developed methods of privacy-preserving query, and then describe in a comprehensive manner what we can learn from the mutual of both areas.

Keywords: encryption, privacy-preserving, search, security

Procedia PDF Downloads 257
4851 An Exact Algorithm for Location–Transportation Problems in Humanitarian Relief

Authors: Chansiri Singhtaun

Abstract:

This paper proposes a mathematical model and examines the performance of an exact algorithm for a location–transportation problems in humanitarian relief. The model determines the number and location of distribution centers in a relief network, the amount of relief supplies to be stocked at each distribution center and the vehicles to take the supplies to meet the needs of disaster victims under capacity restriction, transportation and budgetary constraints. The computational experiments are conducted on the various sizes of problems that are generated. Branch and bound algorithm is applied for these problems. The results show that this algorithm can solve problem sizes of up to three candidate locations with five demand points and one candidate location with up to twenty demand points without premature termination.

Keywords: disaster response, facility location, humanitarian relief, transportation

Procedia PDF Downloads 451
4850 A New Sign Subband Adaptive Filter Based on Dynamic Selection of Subbands

Authors: Mohammad Shams Esfand Abadi, Mehrdad Zalaghi, Reza ebrahimpour

Abstract:

In this paper, we propose a sign adaptive filter algorithm with the ability of dynamic selection of subband filters which leads to low computational complexity compared with conventional sign subband adaptive filter (SSAF) algorithm. Dynamic selection criterion is based on largest reduction of the mean square deviation at each adaption. We demonstrate that this simple proposed algorithm has the same performance of the conventional SSAF and somewhat faster than it. In the presence of impulsive interferences robustness of the simple proposed algorithm as well as the conventional SSAF and outperform the conventional normalized subband adaptive filter (NSAF) algorithm. Therefore, it is preferred for environments under impulsive interferences. Simulation results are presented to verify these above considerations very well have been achieved.

Keywords: acoustic echo cancellation (AEC), normalized subband adaptive filter (NSAF), dynamic selection subband adaptive filter (DS-NSAF), sign subband adaptive filter (SSAF), impulsive noise, robust filtering

Procedia PDF Downloads 601
4849 A Fuzzy Kernel K-Medoids Algorithm for Clustering Uncertain Data Objects

Authors: Behnam Tavakkol

Abstract:

Uncertain data mining algorithms use different ways to consider uncertainty in data such as by representing a data object as a sample of points or a probability distribution. Fuzzy methods have long been used for clustering traditional (certain) data objects. They are used to produce non-crisp cluster labels. For uncertain data, however, besides some uncertain fuzzy k-medoids algorithms, not many other fuzzy clustering methods have been developed. In this work, we develop a fuzzy kernel k-medoids algorithm for clustering uncertain data objects. The developed fuzzy kernel k-medoids algorithm is superior to existing fuzzy k-medoids algorithms in clustering data sets with non-linearly separable clusters.

Keywords: clustering algorithm, fuzzy methods, kernel k-medoids, uncertain data

Procedia PDF Downloads 216
4848 Descent Algorithms for Optimization Algorithms Using q-Derivative

Authors: Geetanjali Panda, Suvrakanti Chakraborty

Abstract:

In this paper, Newton-like descent methods are proposed for unconstrained optimization problems, which use q-derivatives of the gradient of an objective function. First, a local scheme is developed with alternative sufficient optimality condition, and then the method is extended to a global scheme. Moreover, a variant of practical Newton scheme is also developed introducing a real sequence. Global convergence of these schemes is proved under some mild conditions. Numerical experiments and graphical illustrations are provided. Finally, the performance profiles on a test set show that the proposed schemes are competitive to the existing first-order schemes for optimization problems.

Keywords: Descent algorithm, line search method, q calculus, Quasi Newton method

Procedia PDF Downloads 398
4847 UAV’s Enhanced Data Collection for Heterogeneous Wireless Sensor Networks

Authors: Kamel Barka, Lyamine Guezouli, Assem Rezki

Abstract:

In this article, we propose a protocol called DataGA-DRF (a protocol for Data collection using a Genetic Algorithm through Dynamic Reference Points) that collects data from Heterogeneous wireless sensor networks. This protocol is based on DGA (Destination selection according to Genetic Algorithm) to control the movement of the UAV (Unmanned aerial vehicle) between dynamic reference points that virtually represent the sensor node deployment. The dynamics of these points ensure an even distribution of energy consumption among the sensors and also improve network performance. To determine the best points, DataGA-DRF uses a classification algorithm such as K-Means.

Keywords: heterogeneous wireless networks, unmanned aerial vehicles, reference point, collect data, genetic algorithm

Procedia PDF Downloads 84
4846 The Selection of the Nearest Anchor Using Received Signal Strength Indication (RSSI)

Authors: Hichem Sassi, Tawfik Najeh, Noureddine Liouane

Abstract:

The localization information is crucial for the operation of WSN. There are principally two types of localization algorithms. The Range-based localization algorithm has strict requirements on hardware; thus, it is expensive to be implemented in practice. The Range-free localization algorithm reduces the hardware cost. However, it can only achieve high accuracy in ideal scenarios. In this paper, we locate unknown nodes by incorporating the advantages of these two types of methods. The proposed algorithm makes the unknown nodes select the nearest anchor using the Received Signal Strength Indicator (RSSI) and choose two other anchors which are the most accurate to achieve the estimated location. Our algorithm improves the localization accuracy compared with previous algorithms, which has been demonstrated by the simulating results.

Keywords: WSN, localization, DV-Hop, RSSI

Procedia PDF Downloads 363
4845 A Graph Theoretic Algorithm for Bandwidth Improvement in Computer Networks

Authors: Mehmet Karaata

Abstract:

Given two distinct vertices (nodes) source s and target t of a graph G = (V, E), the two node-disjoint paths problem is to identify two node-disjoint paths between s ∈ V and t ∈ V . Two paths are node-disjoint if they have no common intermediate vertices. In this paper, we present an algorithm with O(m)-time complexity for finding two node-disjoint paths between s and t in arbitrary graphs where m is the number of edges. The proposed algorithm has a wide range of applications in ensuring reliability and security of sensor, mobile and fixed communication networks.

Keywords: disjoint paths, distributed systems, fault-tolerance, network routing, security

Procedia PDF Downloads 444
4844 Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems

Authors: Abdulbaset Saad, Adel Younis, Zuomin Dong

Abstract:

For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.

Keywords: differential evolution, engineering design, expensive computations, meta-modeling, radial basis function, optimization

Procedia PDF Downloads 397
4843 Reduction of Impulsive Noise in OFDM System using Adaptive Algorithm

Authors: Alina Mirza, Sumrin M. Kabir, Shahzad A. Sheikh

Abstract:

The Orthogonal Frequency Division Multiplexing (OFDM) with high data rate, high spectral efficiency and its ability to mitigate the effects of multipath makes them most suitable in wireless application. Impulsive noise distorts the OFDM transmission and therefore methods must be investigated to suppress this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based adaptive impulsive noise suppressor for OFDM communication system is proposed. And a comparison with another adaptive algorithm is conducted. The state space model-dependent recursive parameters of proposed scheme enables to achieve steady state mean squared error (MSE), low bit error rate (BER), and faster convergence than that of some of existing algorithm.

Keywords: OFDM, impulsive noise, SSRLS, BER

Procedia PDF Downloads 458
4842 Channel Estimation for Orthogonal Frequency Division Multiplexing Systems over Doubly Selective Channels Base on DCS-DCSOMP Algorithm

Authors: Linyu Wang, Furui Huo, Jianhong Xiang

Abstract:

The Doppler shift generated by high-speed movement and multipath effects in the channel are the main reasons for the generation of a time-frequency doubly-selective (DS) channel. There is severe inter-carrier interference (ICI) in the DS channel. Channel estimation for an orthogonal frequency division multiplexing (OFDM) system over a DS channel is very difficult. The simultaneous orthogonal matching pursuit algorithm under distributed compressive sensing theory (DCS-SOMP) has been used in channel estimation for OFDM systems over DS channels. However, the reconstruction accuracy of the DCS-SOMP algorithm is not high enough in the low SNR stage. To solve this problem, in this paper, we propose an improved DCS-SOMP algorithm based on the inner product difference comparison operation (DCS-DCSOMP). The reconstruction accuracy is improved by increasing the number of candidate indexes and designing the comparison conditions of inner product difference. We combine the DCS-DCSOMP algorithm with the basis expansion model (BEM) to reduce the complexity of channel estimation. Simulation results show the effectiveness of the proposed algorithm and its advantages over other algorithms.

Keywords: OFDM, doubly selective, channel estimation, compressed sensing

Procedia PDF Downloads 98
4841 Robot Operating System-Based SLAM for a Gazebo-Simulated Turtlebot2 in 2d Indoor Environment with Cartographer Algorithm

Authors: Wilayat Ali, Li Sheng, Waleed Ahmed

Abstract:

The ability of the robot to make simultaneously map of the environment and localize itself with respect to that environment is the most important element of mobile robots. To solve SLAM many algorithms could be utilized to build up the SLAM process and SLAM is a developing area in Robotics research. Robot Operating System (ROS) is one of the frameworks which provide multiple algorithm nodes to work with and provide a transmission layer to robots. Manyof these algorithms extensively in use are Hector SLAM, Gmapping and Cartographer SLAM. This paper describes a ROS-based Simultaneous localization and mapping (SLAM) library Google Cartographer mapping, which is open-source algorithm. The algorithm was applied to create a map using laser and pose data from 2d Lidar that was placed on a mobile robot. The model robot uses the gazebo package and simulated in Rviz. Our research work's primary goal is to obtain mapping through Cartographer SLAM algorithm in a static indoor environment. From our research, it is shown that for indoor environments cartographer is an applicable algorithm to generate 2d maps with LIDAR placed on mobile robot because it uses both odometry and poses estimation. The algorithm has been evaluated and maps are constructed against the SLAM algorithms presented by Turtlebot2 in the static indoor environment.

Keywords: SLAM, ROS, navigation, localization and mapping, gazebo, Rviz, Turtlebot2, slam algorithms, 2d indoor environment, cartographer

Procedia PDF Downloads 146
4840 Comparison of Back-Projection with Non-Uniform Fast Fourier Transform for Real-Time Photoacoustic Tomography

Authors: Moung Young Lee, Chul Gyu Song

Abstract:

Photoacoustic imaging is the imaging technology that combines the optical imaging and ultrasound. This provides the high contrast and resolution due to optical imaging and ultrasound imaging, respectively. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer and digital acquisition (DAQ) board. There are two types of algorithm for reconstructing the photoacoustic signal. One is back-projection algorithm, the other is FFT algorithm. Especially, we used the non-uniform FFT algorithm. To evaluate the performance of our system and algorithms, we monitored two wires that stands at interval of 2.89 mm and 0.87 mm. Then, we compared the images reconstructed by algorithms. Finally, we monitored the two hairs crossed and compared between these algorithms.

Keywords: back-projection, image comparison, non-uniform FFT, photoacoustic tomography

Procedia PDF Downloads 434
4839 Symmetric Arabic Language Encryption Technique Based on Modified Playfair Algorithm

Authors: Fairouz Beggas

Abstract:

Due to the large number of exchanges in the networks, the security of communications is essential. Most ways of keeping communication secure rely on encryption. In this work, a symmetric encryption technique is offered to encrypt and decrypt simple Arabic scripts based on a multi-level security. A proposed technique uses an idea of Playfair encryption with a larger table size and an additional layer of encryption to ensure more security. The idea of the proposed algorithm aims to generate a dynamic table that depends on a secret key. The same secret key is also used to create other secret keys to over-encrypt the plaintext in three steps. The obtained results show that the proposed algorithm is faster in terms of encryption/decryption speed and can resist to many types of attacks.

Keywords: arabic data, encryption, playfair, symmetric algorithm

Procedia PDF Downloads 90
4838 Solving Process Planning, Weighted Earliest Due Date Scheduling and Weighted Due Date Assignment Using Simulated Annealing and Evolutionary Strategies

Authors: Halil Ibrahim Demir, Abdullah Hulusi Kokcam, Fuat Simsir, Özer Uygun

Abstract:

Traditionally, three important manufacturing functions which are process planning, scheduling and due-date assignment are performed sequentially and separately. Although there are numerous works on the integration of process planning and scheduling and plenty of works focusing on scheduling with due date assignment, there are only a few works on integrated process planning, scheduling and due-date assignment. Although due-dates are determined without taking into account of weights of the customers in the literature, here weighted due-date assignment is employed to get better performance. Jobs are scheduled according to weighted earliest due date dispatching rule and due dates are determined according to some popular due date assignment methods by taking into account of the weights of each job. Simulated Annealing, Evolutionary Strategies, Random Search, hybrid of Random Search and Simulated Annealing, and hybrid of Random Search and Evolutionary Strategies, are applied as solution techniques. Three important manufacturing functions are integrated step-by-step and higher integration levels are found better. Search meta-heuristics are found to be very useful while improving performance measure.

Keywords: process planning, weighted scheduling, weighted due-date assignment, simulated annealing, evolutionary strategies, hybrid searches

Procedia PDF Downloads 462
4837 A Matheuristic Algorithm for the School Bus Routing Problem

Authors: Cagri Memis, Muzaffer Kapanoglu

Abstract:

The school bus routing problem (SBRP) is a variant of the Vehicle Routing Problem (VRP) classified as a location-allocation-routing problem. In this study, the SBRP is decomposed into two sub-problems: (1) bus route generation and (2) bus stop selection to solve large instances of the SBRP in reasonable computational times. To solve the first sub-problem, we propose a genetic algorithm to generate bus routes. Once the routes have been fixed, a sub-problem remains of allocating students to stops considering the capacity of the buses and the walkability constraints of the students. While the exact method solves small-scale problems, treating large-scale problems with the exact method becomes complex due to computational problems, a deficiency that the genetic algorithm can overcome. Results obtained from the proposed approach on 150 instances up to 250 stops show that the matheuristic algorithm provides better solutions in reasonable computational times with respect to benchmark algorithms.

Keywords: genetic algorithm, matheuristic, school bus routing problem, vehicle routing problem

Procedia PDF Downloads 71
4836 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots

Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar

Abstract:

Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.

Keywords: agricultural mobile robot, image processing, path recognition, hough transform

Procedia PDF Downloads 147
4835 Improving the Security of Internet of Things Using Encryption Algorithms

Authors: Amirhossein Safi

Abstract:

Internet of things (IOT) is a kind of advanced information technology which has drawn societies’ attention. Sensors and stimulators are usually recognized as smart devices of our environment. Simultaneously, IOT security brings up new issues. Internet connection and possibility of interaction with smart devices cause those devices to involve more in human life. Therefore, safety is a fundamental requirement in designing IOT. IOT has three remarkable features: overall perception, reliable transmission, and intelligent processing. Because of IOT span, security of conveying data is an essential factor for system security. Hybrid encryption technique is a new model that can be used in IOT. This type of encryption generates strong security and low computation. In this paper, we have proposed a hybrid encryption algorithm which has been conducted in order to reduce safety risks and enhancing encryption's speed and less computational complexity. The purpose of this hybrid algorithm is information integrity, confidentiality, non-repudiation in data exchange for IOT. Eventually, the suggested encryption algorithm has been simulated by MATLAB software, and its speed and safety efficiency were evaluated in comparison with conventional encryption algorithm.

Keywords: internet of things, security, hybrid algorithm, privacy

Procedia PDF Downloads 469