Search results for: advanced monitoring and metering infrastructure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7112

Search results for: advanced monitoring and metering infrastructure

2642 An Assessment of Adverse Events Following Immunization Reporting Pattern of Selected Vaccines in VigiAccess

Authors: Peter Yamoah, Frasia Oosthuizen

Abstract:

Introduction: Reporting of Adverse Events Following Immunization continues to be a challenge. Pharmacovigilance centers throughout the world are mandated by the WHO to submit AEFI reports from various countries to a large pool of adverse drug reaction electronic database called Vigibase. Despite the relevant information of AEFI in Vigibase, it is unavailable to the general public. However, the WHO has an alternative website called VigiAccess which is an open access website serving as a repository of reported adverse drug reactions and AEFIs. The aim of the study was to ascertain the reporting pattern of a number of commonly used vaccines in VigiAccess. Methods: VigiAccess was thoroughly searched on the 5th of February 2018 for AEFI reports of measles vaccine, oral polio vaccine (OPV), yellow fever vaccine, pneumococcal vaccine, rotavirus vaccine, meningococcal vaccine, tetanus vaccine and tuberculosis (BCG) vaccine. These were reports from all pharmacovigilance centers in the world from the time they joined the WHO drug monitoring program. Results: After a thorough search in VigiAccess, there were 9,062 measles vaccine AEFIs, 185,829 OPV AEFIs, 24,577 yellow fever vaccine AEFIs, 317,208 pneumococcal vaccine AEFIs, 73,513 rotavirus vaccine AEFIs, 145,447 meningococcal vaccine AEFIs, 22,781 tetanus vaccine AEFIs and 35,556 BCG vaccine AEFIs. Conclusion: The study revealed that out of the eight vaccines studied, pneumococcal vaccines are associated with the highest number of AEFIs whilst measles vaccines were associated with the least AEFIs.

Keywords: vaccines, adverse reactions, VigiAccess, adverse event reporting

Procedia PDF Downloads 155
2641 Efficacy Study of Post-Tensioned I Girder Made of Ultra-High Performance Fiber Reinforced Concrete and Ordinary Concrete for IRC Loading

Authors: Ayush Satija, Ritu Raj

Abstract:

Escalating demand for elevated structures as a remedy for traffic congestion has led to a surge in the construction of viaducts and bridges predominantly employing prestressed beams. However, post-tensioned I-girder superstructures are gaining traction for their attributes like structural efficiency, cost-effectiveness, and easy construction. Recently, Ultra-high-performance fiber-reinforced concrete (UHPFRC) has emerged as a revolutionary material in reshaping conventional infrastructure engineering. UHPFRC offers exceptional properties including high compressive and tensile strength, alongside enhanced durability. Its adoption in bridges yields benefits, notably a remarkable strength-to-weight ratio enabling the design of lighter and slender structural elements, enhancing functionality and sustainability. Despite its myriad advantages, integration of UHPFRC in construction is still evolving, hindered by factors like cost, material availability, and design standardization. Consequently, there's a need to assess the feasibility of substituting ordinary concrete (OC) with UHPFRC in bridges, focusing on economic considerations. This research undertakes an efficacy study between post-tensioned I-girders fabricated from UHPFRC and OC, evaluating cost parameters associated with concrete production, reinforcement, and erection. The study reveals that UHPFRC becomes economically viable for spans exceeding 40.0m. This shift in cost-effectiveness is attributed to factors like reduced girder depth, elimination of un-tensioned steel, diminished need for shear reinforcement and decreased erection costs.

Keywords: post tensioned I girder, superstructure, ultra-high-performance fiber reinforced concrete, ordinary concrete

Procedia PDF Downloads 40
2640 Interpretation and Prediction of Geotechnical Soil Parameters Using Ensemble Machine Learning

Authors: Goudjil kamel, Boukhatem Ghania, Jlailia Djihene

Abstract:

This paper delves into the development of a sophisticated desktop application designed to calculate soil bearing capacity and predict limit pressure. Drawing from an extensive review of existing methodologies, the study meticulously examines various approaches employed in soil bearing capacity calculations, elucidating their theoretical foundations and practical applications. Furthermore, the study explores the burgeoning intersection of artificial intelligence (AI) and geotechnical engineering, underscoring the transformative potential of AI- driven solutions in enhancing predictive accuracy and efficiency.Central to the research is the utilization of cutting-edge machine learning techniques, including Artificial Neural Networks (ANN), XGBoost, and Random Forest, for predictive modeling. Through comprehensive experimentation and rigorous analysis, the efficacy and performance of each method are rigorously evaluated, with XGBoost emerging as the preeminent algorithm, showcasing superior predictive capabilities compared to its counterparts. The study culminates in a nuanced understanding of the intricate dynamics at play in geotechnical analysis, offering valuable insights into optimizing soil bearing capacity calculations and limit pressure predictions. By harnessing the power of advanced computational techniques and AI-driven algorithms, the paper presents a paradigm shift in the realm of geotechnical engineering, promising enhanced precision and reliability in civil engineering projects.

Keywords: limit pressure of soil, xgboost, random forest, bearing capacity

Procedia PDF Downloads 22
2639 Investigating the Potential of Spectral Bands in the Detection of Heavy Metals in Soil

Authors: Golayeh Yousefi, Mehdi Homaee, Ali Akbar Norouzi

Abstract:

Ongoing monitoring of soil contamination by heavy metals is critical for ecosystem stability and environmental protection, and food security. The conventional methods of determining these soil contaminants are time-consuming and costly. Spectroscopy in the visible near-infrared (VNIR) - short wave infrared (SWIR) region is a rapid, non-destructive, noninvasive, and cost-effective method for assessment of soil heavy metals concentration by studying the spectral properties of soil constituents. The aim of this study is to derive spectral bands and important ranges that are sensitive to heavy metals and can be used to estimate the concentration of these soil contaminants. In other words, the change in the spectral properties of spectrally active constituents of soil can lead to the accurate identification and estimation of the concentration of these compounds in soil. For this purpose, 325 soil samples were collected, and their spectral reflectance curves were evaluated at a range of 350-2500 nm. After spectral preprocessing operations, the partial least-squares regression (PLSR) model was fitted on spectral data to predict the concentration of Cu and Ni. Based on the results, the spectral range of Cu- sensitive spectra were 480, 580-610, 1370, 1425, 1850, 1920, 2145, and 2200 nm, and Ni-sensitive ranges were 543, 655, 761, 1003, 1271, 1415, 1903, 2199 nm. Finally, the results of this study indicated that the spectral data contains a lot of information that can be applied to identify the soil properties, such as the concentration of heavy metals, with more detail.

Keywords: heavy metals, spectroscopy, spectral bands, PLS regression

Procedia PDF Downloads 84
2638 TimeTune: Personalized Study Plans Generation with Google Calendar Integration

Authors: Chevon Fernando, Banuka Athuraliya

Abstract:

The purpose of this research is to provide a solution to the students’ time management, which usually becomes an issue because students must study and manage their personal commitments. "TimeTune," an AI-based study planner that provides an opportunity to maneuver study timeframes by incorporating modern machine learning algorithms with calendar applications, is unveiled as the ideal solution. The research is focused on the development of LSTM models that connect to the Google Calendar API in the process of developing learning paths that would be fit for a unique student's daily life experience and study history. A key finding of this research is the success in building the LSTM model to predict optimal study times, which, integrating with the real-time data of Google Calendar, will generate the timetables automatically in a personalized and customized manner. The methodology encompasses Agile development practices and Object-Oriented Analysis and Design (OOAD) principles, focusing on user-centric design and iterative development. By adopting this method, students can significantly reduce the tension associated with poor study habits and time management. In conclusion, "TimeTune" displays an advanced step in personalized education technology. The fact that its application of ML algorithms and calendar integration is quite innovative is slowly and steadily revolutionizing the lives of students. The excellence of maintaining a balanced academic and personal life is stress reduction, which the applications promise to provide for students when it comes to managing their studies.

Keywords: personalized learning, study planner, time management, calendar integration

Procedia PDF Downloads 49
2637 UV-Vis Spectroscopy as a Tool for Online Tar Measurements in Wood Gasification Processes

Authors: Philip Edinger, Christian Ludwig

Abstract:

The formation and control of tars remain one of the major challenges in the implementation of biomass gasification technologies. Robust, on-line analytical methods are needed to investigate the fate of tar compounds when different measures for their reduction are applied. This work establishes an on-line UV-Vis method, based on a liquid quench sampling system, to monitor tar compounds in biomass gasification processes. Recorded spectra from the liquid phase were analyzed for their tar composition by means of a classical least squares (CLS) and partial least squares (PLS) approach. This allowed for the detection of UV-Vis active tar compounds with detection limits in the low part per million by volume (ppmV) region. The developed method was then applied to two case studies. The first involved a lab-scale reactor, intended to investigate the decomposition of a limited number of tar compounds across a catalyst. The second study involved a gas scrubber as part of a pilot scale wood gasification plant. Tar compound quantification results showed good agreement with off-line based reference methods (GC-FID) when the complexity of tar composition was limited. The two case studies show that the developed method can provide rapid, qualitative information on the tar composition for the purpose of process monitoring. In cases with a limited number of tar species, quantitative information about the individual tar compound concentrations provides an additional benefit of the analytical method.

Keywords: biomass gasification, on-line, tar, UV-Vis

Procedia PDF Downloads 259
2636 Fluorescent Analysis of Gold Nanoclusters-Wool Keratin Addition to Copper Ions

Authors: Yao Xing, Hong Ling Liu, Wei Dong Yu

Abstract:

With the increase of global population, it is of importance for the safe water supply, while, the water-monitoring method with the capability of rapidness, low-cost, green and robustness remains unsolved. In this paper, gold nanoclusters-wool keratin is added into copper ions measured by fluorescent method in order to probe copper ions in aqueous solution. The fluorescent results show that gold nanoclusters-wool keratin exhibits high stability of pHs, while it is sensitive to temperature and time. Based on Gauss fitting method, the results exhibit that the slope of gold nanoclusters-wool keratin with pH resolution under acidic condition is higher compared to it under alkaline solutions. Besides, gold nanoclusters-wool keratin added into copper ions shows a fluorescence turn-off response transferring from red to blue under UV light, leading to the dramatically decreased fluorescent intensity of gold nanoclusters-wool keratin solution located at 690 nm. Moreover, the limited concentration of copper ions tested by gold nanoclusters-wool keratin system is around 1 µmol/L, which meets the need of detection standards. The fitting slope of Stern-Volmer plot at low concentration of copper ions is larger than it at high concentrations, which indicates that aggregated gold nanoclusters are from small amounts to large numbers with the increasing concentration of copper ions. It is expected to provide novel method and materials for copper ions testing with low cost, high efficiency, and easy operability.

Keywords: gold nanoclusters, copper ions, wool keratin, fluorescence

Procedia PDF Downloads 252
2635 Photocatalytic Degradation of Nd₂O₃@SiO₂ Core-Shell Nanocomposites Under UV Irradiation Against Methylene Blue and Rhodamine B Dyes

Authors: S. Divya, M. Jose

Abstract:

Over the past years, industrial dyes have emerged as a significant threat to aquatic life, extensively detected in drinking water and groundwater, thus contributing to water pollution due to their improper and excessive use. To address this issue, the utilization of core-shell structures has been prioritized as it demonstrates remarkable efficiency in utilizing light energy for catalytic reactions and exhibiting excellent photocatalytic activity despite the availability of various photocatalysts. This work focuses on the photocatalytic degradation of Nd₂O₃@SiO₂ CSNs under UV light irradiation against MB and RhB dyes. Different characterization techniques, including XRD, FTIR, and TEM analyses, were employed to reveal the material's structure, functional groups, and morphological features. VSM and XPS analyses confirmed the soft, paramagnetic nature and chemical states with respective atomic percentages, respectively. Optical band gaps, determined using the Tauc plot model, indicated 4.24 eV and 4.13 eV for Nd₂O₃ NPs and Nd₂O₃@SiO₂ CSNs, respectively. The reduced bandgap energy of Nd₂O₃@SiO₂ CSNs enhances light absorption in the UV range, potentially leading to improved photocatalytic efficiency. The Nd₂O₃@SiO₂ CSNs exhibited greater degradation efficiency, reaching 95% and 96% against MB and RhB dyes, while Nd₂O₃ NPs showed 90% and 92%, respectively. The enhanced efficiency of Nd₂O₃@SiO₂ CSNs can be attributed to the larger specific surface area provided by the SiO₂ shell, as confirmed by surface area analysis using the BET surface area analyzer through N₂ adsorption-desorption.

Keywords: core shell nanocomposites, rare earth oxides, photocatalysis, advanced oxidation process

Procedia PDF Downloads 70
2634 Rural Development as a Strategy to Deter Migration in India - Re-Examining the Ideology of Cluster Development

Authors: Nandini Mohan, Thiruvengadam R. B.

Abstract:

Mahatma Gandhi advocated that the true indicator of modern India lay in the development of its villages. This has been proven with the recent outbreak of the Coronavirus pandemic and the surfacing predicament of our urban centers. Developed on the Industrialization model, the current state of the metropolis is of rampant overcrowding, high rates of unemployment, inadequate infrastructure, and resources to cater to the growing population. A majority of each city’s strength composes of the migrant population, demonstrated through the migrant crisis, a direct repercussion of COVID-19. This paper explores the ideology of how rural development can act as a tactic to counter the high rates of rural-urban migration. It establishes the need for a rural push, as India is predominantly an agrarian economy, with a vast disparity between the urban and rural centers due to its urban bias. It seeks to define development in holistic terms. It studies the models of ‘cluster’ as conceptualized by V.K.R.V. Rao, and detailed by Architect Charles Correa in his book, The New Landscape. The paper reexamines the theory of cluster development through existing models proposed by the government of India. Namely, PURA (Provision of Urban Amenities in Rural Areas), DRI (Deendayal Research Institute), and Rurban under Shyama Prasad Mukharjee Rurban Mission. It analyses the models, their strengths, weaknesses, and reasons for their failure and success to derive parameters for the ideation of an archetype model. A model of rural development that talks of the simultaneous development of existing adjacent villages, by the introduction of set unique functions, that may turn into self-sustaining clusters or agglomerations in the future, which could serve as the next step for Indian village development based on the cluster ideology.

Keywords: counter migration, models of rural development, cluster development theory, India

Procedia PDF Downloads 89
2633 The Pricing-Out Phenomenon in the U.S. Housing Market

Authors: Francesco Berald, Yunhui Zhao

Abstract:

The COVID-19 pandemic further extended the multi-year housing boom in advanced economies and emerging markets alike against massive monetary easing during the pandemic. In this paper, we analyze the pricing-out phenomenon in the U.S. residential housing market due to higher house prices associated with monetary easing. We first set up a stylized general equilibrium model and show that although monetary easing decreases the mortgage payment burden, it would raise house prices and lower housing affordability for first-time homebuyers (through the initial housing wealth channel and the liquidity constraint channel that increases repeat buyers’ housing demand), and increase housing wealth inequality between first-time and repeat homebuyers. We then use the U.S. household-level data to quantify the effect of the house price change on housing affordability relative to that of the interest rate change. We find evidence of the pricing-out effect for all homebuyers; moreover, we find that the pricing-out effect is stronger for first-time homebuyers than for repeat homebuyers. The paper highlights the importance of accounting for general equilibrium effects and distributional implications of monetary policy while assessing housing affordability. It also calls for complementing monetary easing with well-targeted policy measures that can boost housing affordability, particularly for first-time and lower-income households. Such measures are also needed during aggressive monetary tightening, given that the fall in house prices may be insufficient or too slow to fully offset the immediate adverse impact of higher rates on housing affordability.

Keywords: pricing-out, U.S. housing market, housing affordability, distributional effects, monetary policy

Procedia PDF Downloads 34
2632 Evaluation of Real Time PCR Methods for Food Safety

Authors: Ergun Sakalar, Kubra Bilgic

Abstract:

In the last decades, real-time PCR has become a reliable tool preferred to use in many laboratories for pathogen detection. This technique allows for monitoring target amplification via fluorescent molecules besides admit of quantitative analysis by enabling of convert outcomes of thermal cycling to digital data. Sensitivity and traceability of real-time PCR are based on measuring of fluorescence that appears only when fluorescent reporter dye bound to specific target DNA.The fluorescent reporter systems developed for this purpose are divided into two groups. The first group consists of intercalator fluorescence dyes such as SYBR Green, EvaGreen which binds to double-stranded DNA. On the other hand, the second group includes fluorophore-labeled oligonucleotide probes that are separated into three subgroups due to differences in mechanism of action; initial primer-probes such as Cyclicons, Angler®, Amplifluor®, LUX™, Scorpions, and the second one hydrolysis probes like TaqMan, Snake assay, finally hybridization probes, for instance, Molecular Beacons, Hybprobe/FRET, HyBeacon™, MGB-Eclipse, ResonSense®, Yin-Yang, MGB-Pleiades. In addition nucleic acid analogues, an increase of probe affinity to target site is also employed with fluorescence-labeled probes. Consequently, abundant real-time PCR detection chemistries are chosen by researcher according to the field of application, mechanism of action, advantages, and proper structures of primer/probes.

Keywords: fluorescent dye, food safety, molecular probes, nucleic acid analogues

Procedia PDF Downloads 256
2631 Assessment of the Knowledge and Practices of Healthcare Workers and Patients Regarding Prevention of Tuberculosis at a Tertiary Care Hospital of Southern Punjab

Authors: Muhammad Shahbaz Akhtar

Abstract:

Background; Tuberculosis remains a significant public health challenge in Pakistan, with high incidence and prevalence rates, particularly among vulnerable populations. Addressing the TB burden requires comprehensive efforts to improve healthcare infrastructure, increase access to quality diagnosis and treatment services, raise public awareness, and address socioeconomic determinants of health. Objective; To assess the knowledge and practices of healthcare workers and patients regarding prevention of tuberculosis at a tertiary care hospital of Southern Punjab.Material and methods; Data will be collected from 135 healthcare workers and 135 TB patients visiting Nishtar Hospital, Multan in this descriptive cross – sectional study using non – probability consecutive sampling technique. Proper approval will be taken from Hospital authorities to conduct this study. Study participants will be recruited after taking informed written consent, describing them objectives of this study. The study participants will be ensured of their confidentiality of the data and interviewed to assess their knowledge and practices regarding prevention of tuberculosis. Data Analysis Procedure; Data will be entered and analyzed by using SPSS version 25 to calculated mean and standard deviation for the numerical data such as age, duration of disease and duration of experience. Frequencies and percentages will be calculated for gender, age groups, level of knowledge, qualification, designation and practices. Impact of confounders like gender, age groups, duration of experience, disease duration, years of experience and designation will be assessed by stratification. Post stratification chi – square test will be applied at 0.05 level of significance at 95 % CI.

Keywords: tuberculosis, data analysis, HIV/AIDS, preventable

Procedia PDF Downloads 21
2630 Cost Overrun in Delivery of Public Projects in the Saudi Construction Industry: A Review

Authors: A. Aljohani, D. Moore, D. D. Ahiaga-Dagbui

Abstract:

Cost overruns are endemic in the delivery of construction projects. The problem is global. It occurs irrespective of type and size of the project, its location, procurement method or client. The size of overruns can be as high as 200% in some cases. Projects thus unfortunately often make the news headlines, not for their immense socio-economic contribution to society, but for being poorly procured. In Saudi Arabia, two-thirds of construction projects are publicly procured by the Saudi government, which has been invested Billions of dollars in infrastructure projects each year as part of an ambitious strategic development agenda to shift from mainly oil dependency to multi-source dependency. However, reports show that about 3,000 public projects face diverse issues related to time and cost overrun. As part of an on-going study to develop a framework for effective public procurement for the Saudi Arabian construction industry, this paper reports the initial findings of the causes of cost overruns in the context of the Gulf State. It also evaluates the interface between some of the front-end loading issues in public procurement in Saudi and their effects on project performance. A systematic review of the existing literature on construction cost overruns, with focus on the Saudi Arabian construction industry has been used. One of the initial findings is that a fixed-price contract is usually used by the client in an attempt to transfer all financial risks to the contractors. This has the unintended consequence of creating a turbulent environment for the delivery of the project which leads to project abandonment by contractors, poor quality of work and substantial rework. Further work is being undertaken to empirically verify the initial findings reported in this paper and their generalizability for the construction industry as a whole.

Keywords: cost overrun, public procurement, Saudi Arabia, construction projects

Procedia PDF Downloads 270
2629 Predictive Analytics Algorithms: Mitigating Elementary School Drop Out Rates

Authors: Bongs Lainjo

Abstract:

Educational institutions and authorities that are mandated to run education systems in various countries need to implement a curriculum that considers the possibility and existence of elementary school dropouts. This research focuses on elementary school dropout rates and the ability to replicate various predictive models carried out globally on selected Elementary Schools. The study was carried out by comparing the classical case studies in Africa, North America, South America, Asia and Europe. Some of the reasons put forward for children dropping out include the notion of being successful in life without necessarily going through the education process. Such mentality is coupled with a tough curriculum that does not take care of all students. The system has completely led to poor school attendance - truancy which continuously leads to dropouts. In this study, the focus is on developing a model that can systematically be implemented by school administrations to prevent possible dropout scenarios. At the elementary level, especially the lower grades, a child's perception of education can be easily changed so that they focus on the better future that their parents desire. To deal effectively with the elementary school dropout problem, strategies that are put in place need to be studied and predictive models are installed in every educational system with a view to helping prevent an imminent school dropout just before it happens. In a competency-based curriculum that most advanced nations are trying to implement, the education systems have wholesome ideas of learning that reduce the rate of dropout.

Keywords: elementary school, predictive models, machine learning, risk factors, data mining, classifiers, dropout rates, education system, competency-based curriculum

Procedia PDF Downloads 175
2628 Human Immune Response to Surgery: The Surrogate Prediction of Postoperative Outcomes

Authors: Husham Bayazed

Abstract:

Immune responses following surgical trauma play a pivotal role in predicting postoperative outcomes from healing and recovery to postoperative complications. Postoperative complications, including infections and protracted recovery, occur in a significant number of about 300 million surgeries performed annually worldwide. Complications cause personal suffering along with a significant economic burden on the healthcare system in any community. The accurate prediction of postoperative complications and patient-targeted interventions for their prevention remain major clinical provocations. Recent Findings: Recent studies are focusing on immune dysregulation mechanisms that occur in response to surgical trauma as a key determinant of postoperative complications. Antecedent studies mainly were plunging into the detection of inflammatory plasma markers, which facilitate in providing important clues regarding their pathogenesis. However, recent Single-cell technologies, such as mass cytometry or single-cell RNA sequencing, have markedly enhanced our ability to understand the immunological basis of postoperative immunological trauma complications and to identify their prognostic biological signatures. Summary: The advent of proteomic technologies has significantly advanced our ability to predict the risk of postoperative complications. Multiomic modeling of patients' immune states holds promise for the discovery of preoperative predictive biomarkers and providing patients and surgeons with information to improve surgical outcomes. However, more studies are required to accurately predict the risk of postoperative complications in individual patients.

Keywords: immune dysregulation, postoperative complications, surgical trauma, flow cytometry

Procedia PDF Downloads 86
2627 Influences of Separation of the Boundary Layer in the Reservoir Pressure in the Shock Tube

Authors: Bruno Coelho Lima, Joao F.A. Martos, Paulo G. P. Toro, Israel S. Rego

Abstract:

The shock tube is a ground-facility widely used in aerospace and aeronautics science and technology for studies on gas dynamic and chemical-physical processes in gases at high-temperature, explosions and dynamic calibration of pressure sensors. A shock tube in its simplest form is comprised of two separate tubes of equal cross-section by a diaphragm. The diaphragm function is to separate the two reservoirs at different pressures. The reservoir containing high pressure is called the Driver, the low pressure reservoir is called Driven. When the diaphragm is broken by pressure difference, a normal shock wave and non-stationary (named Incident Shock Wave) will be formed in the same place of diaphragm and will get around toward the closed end of Driven. When this shock wave reaches the closer end of the Driven section will be completely reflected. Now, the shock wave will interact with the boundary layer that was created by the induced flow by incident shock wave passage. The interaction between boundary layer and shock wave force the separation of the boundary layer. The aim of this paper is to make an analysis of influences of separation of the boundary layer in the reservoir pressure in the shock tube. A comparison among CDF (Computational Fluids Dynamics), experiments test and analytical analysis were performed. For the analytical analysis, some routines in Python was created, in the numerical simulations (Computational Fluids Dynamics) was used the Ansys Fluent, and the experimental tests were used T1 shock tube located in IEAv (Institute of Advanced Studies).

Keywords: boundary layer separation, moving shock wave, shock tube, transient simulation

Procedia PDF Downloads 315
2626 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring

Authors: A. Degale Desta, Cheng Jian

Abstract:

Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.

Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning

Procedia PDF Downloads 161
2625 An Exploration of Renewal Utilization of Under-bridge Space Based on Spatial Potential Evaluation - Taking Chongqing Municipality as an Example

Authors: Xuelian Qin

Abstract:

Urban "organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability. To provide feasible theoretical basis and scientific decision support for the use of under bridge space in the future.

Keywords: high density urban area, potential evaluation, space under bridge, updated using

Procedia PDF Downloads 95
2624 Disparities Versus Similarities; WHO Good Practices for Pharmaceutical Quality Control Laboratories and ISO/IEC 17025:2017: International Standards for Quality Management Systems in Pharmaceutical Laboratories

Authors: Mercy Okezue, Kari Clase, Stephen Byrn, Paddy Shivanand

Abstract:

Medicines regulatory authorities expect pharmaceutical companies and contract research organizations to seek ways to certify that their laboratory control measurements are reliable. Establishing and maintaining laboratory quality standards are essential in ensuring the accuracy of test results. ‘ISO/IEC 17025:2017’ and ‘WHO Good Practices for Pharmaceutical Quality Control Laboratories (GPPQCL)’ are two quality standards commonly employed in developing laboratory quality systems. A review was conducted on the two standards to elaborate on areas on convergence and divergence. The goal was to understand how differences in each standard's requirements may influence laboratories' choices as to which document is easier to adopt for quality systems. A qualitative review method compared similar items in the two standards while mapping out areas where there were specific differences in the requirements of the two documents. The review also provided a detailed description of the clauses and parts covering management and technical requirements in these laboratory standards. The review showed that both documents share requirements for over ten critical areas covering objectives, infrastructure, management systems, and laboratory processes. There were, however, differences in standard expectations where GPPQCL emphasizes system procedures for planning and future budgets that will ensure continuity. Conversely, ISO 17025 was more focused on the risk management approach to establish laboratory quality systems. Elements in the two documents form common standard requirements to assure the validity of laboratory test results that promote mutual recognition. The ISO standard currently has more global patronage than GPPQCL.

Keywords: ISO/IEC 17025:2017, laboratory standards, quality control, WHO GPPQCL

Procedia PDF Downloads 197
2623 Defining a Reference Architecture for Predictive Maintenance Systems: A Case Study Using the Microsoft Azure IoT-Cloud Components

Authors: Walter Bernhofer, Peter Haber, Tobias Mayer, Manfred Mayr, Markus Ziegler

Abstract:

Current preventive maintenance measures are cost intensive and not efficient. With the available sensor data of state of the art internet of things devices new possibilities of automated data processing emerge. Current advances in data science and in machine learning enable new, so called predictive maintenance technologies, which empower data scientists to forecast possible system failures. The goal of this approach is to cut expenses in preventive maintenance by automating the detection of possible failures and to improve efficiency and quality of maintenance measures. Additionally, a centralization of the sensor data monitoring can be achieved by using this approach. This paper describes the approach of three students to define a reference architecture for a predictive maintenance solution in the internet of things domain with a connected smartphone app for service technicians. The reference architecture is validated by a case study. The case study is implemented with current Microsoft Azure cloud technologies. The results of the case study show that the reference architecture is valid and can be used to achieve a system for predictive maintenance execution with the cloud components of Microsoft Azure. The used concepts are technology platform agnostic and can be reused in many different cloud platforms. The reference architecture is valid and can be used in many use cases, like gas station maintenance, elevator maintenance and many more.

Keywords: case study, internet of things, predictive maintenance, reference architecture

Procedia PDF Downloads 252
2622 Quantifying Meaning in Biological Systems

Authors: Richard L. Summers

Abstract:

The advanced computational analysis of biological systems is becoming increasingly dependent upon an understanding of the information-theoretic structure of the materials, energy and interactive processes that comprise those systems. The stability and survival of these living systems are fundamentally contingent upon their ability to acquire and process the meaning of information concerning the physical state of its biological continuum (biocontinuum). The drive for adaptive system reconciliation of a divergence from steady-state within this biocontinuum can be described by an information metric-based formulation of the process for actionable knowledge acquisition that incorporates the axiomatic inference of Kullback-Leibler information minimization driven by survival replicator dynamics. If the mathematical expression of this process is the Lagrangian integrand for any change within the biocontinuum then it can also be considered as an action functional for the living system. In the direct method of Lyapunov, such a summarizing mathematical formulation of global system behavior based on the driving forces of energy currents and constraints within the system can serve as a platform for the analysis of stability. As the system evolves in time in response to biocontinuum perturbations, the summarizing function then conveys information about its overall stability. This stability information portends survival and therefore has absolute existential meaning for the living system. The first derivative of the Lyapunov energy information function will have a negative trajectory toward a system's steady state if the driving force is dissipating. By contrast, system instability leading to system dissolution will have a positive trajectory. The direction and magnitude of the vector for the trajectory then serves as a quantifiable signature of the meaning associated with the living system’s stability information, homeostasis and survival potential.

Keywords: meaning, information, Lyapunov, living systems

Procedia PDF Downloads 131
2621 Transforming Healthcare with Immersive Visualization: An Analysis of Virtual and Holographic Health Information Platforms

Authors: Hossein Miri, Zhou YongQi, Chan Bormei-Suy

Abstract:

The development of advanced technologies and innovative solutions has opened up exciting new possibilities for revolutionizing healthcare systems. One such emerging concept is the use of virtual and holographic health information platforms that aim to provide interactive and personalized medical information to users. This paper provides a review of notable virtual and holographic health information platforms. It begins by highlighting the need for information visualization and 3D representation in healthcare. It then proceeds to provide background knowledge on information visualization and historical developments in 3D visualization technology. Additional domain knowledge concerning holography, holographic computing, and mixed reality is then introduced, followed by highlighting some of their common applications and use cases. After setting the scene and defining the context, the need and importance of virtual and holographic visualization in medicine are discussed. Subsequently, some of the current research areas and applications of digital holography and holographic technology are explored, alongside the importance and role of virtual and holographic visualization in genetics and genomics. An analysis of the key principles and concepts underlying virtual and holographic health information systems is presented, as well as their potential implications for healthcare are pointed out. The paper concludes by examining the most notable existing mixed-reality applications and systems that help doctors visualize diagnostic and genetic data and assist in patient education and communication. This paper is intended to be a valuable resource for researchers, developers, and healthcare professionals who are interested in the use of virtual and holographic technologies to improve healthcare.

Keywords: virtual, holographic, health information platform, personalized interactive medical information

Procedia PDF Downloads 89
2620 Efficiency-Based Model for Solar Urban Planning

Authors: M. F. Amado, A. Amado, F. Poggi, J. Correia de Freitas

Abstract:

Today it is widely understood that global energy consumption patterns are directly related to the ongoing urban expansion and development process. This expansion is based on the natural growth of human activities and has left most urban areas totally dependent on fossil fuel derived external energy inputs. This status-quo of production, transportation, storage and consumption of energy has become inefficient and is set to become even more so when the continuous increases in energy demand are factored in. The territorial management of land use and related activities is a central component in the search for more efficient models of energy use, models that can meet current and future regional, national and European goals. In this paper, a methodology is developed and discussed with the aim of improving energy efficiency at the municipal level. The development of this methodology is based on the monitoring of energy consumption and its use patterns resulting from the natural dynamism of human activities in the territory and can be utilized to assess sustainability at the local scale. A set of parameters and indicators are defined with the objective of constructing a systemic model based on the optimization, adaptation and innovation of the current energy framework and the associated energy consumption patterns. The use of the model will enable local governments to strike the necessary balance between human activities, economic development, and the local and global environment while safeguarding fairness in the energy sector.

Keywords: solar urban planning, solar smart city, urban development, energy efficiency

Procedia PDF Downloads 328
2619 Numerical Investigation of a Spiral Bladed Tidal Turbine

Authors: Mohammad Fereidoonnezhad, Seán Leen, Stephen Nash, Patrick McGarry

Abstract:

From the perspective of research innovation, the tidal energy industry is still in its early stages. While a very small number of turbines have progressed to utility-scale deployment, blade breakage is commonly reported due to the enormous hydrodynamic loading applied to devices. The aim of this study is the development of computer simulation technologies for the design of next-generation fibre-reinforced composite tidal turbines. This will require significant technical advances in the areas of tidal turbine testing and multi-scale computational modelling. The complex turbine blade profiles are designed to incorporate non-linear distributions of airfoil sections to optimize power output and self-starting capability while reducing power fluctuations. A number of candidate blade geometries are investigated, ranging from spiral geometries to parabolic geometries, with blades arranged in both cylindrical and spherical configurations on a vertical axis turbine. A combined blade element theory (BET-start-up model) is developed in MATLAB to perform computationally efficient parametric design optimisation for a range of turbine blade geometries. Finite element models are developed to identify optimal fibre-reinforced composite designs to increase blade strength and fatigue life. Advanced fluid-structure-interaction models are also carried out to compute blade deflections following design optimisation.

Keywords: tidal turbine, composite materials, fluid-structure-interaction, start-up capability

Procedia PDF Downloads 122
2618 Designing of Tooling Solution for Material Handling in Highly Automated Manufacturing System

Authors: Muhammad Umair, Yuri Nikolaev, Denis Artemov, Ighor Uzhinsky

Abstract:

A flexible manufacturing system is an integral part of a smart factory of industry 4.0 in which every machine is interconnected and works autonomously. Robots are in the process of replacing humans in every industrial sector. As the cyber-physical-system (CPS) and artificial intelligence (AI) are advancing, the manufacturing industry is getting more dependent on computers than human brains. This modernization has boosted the production with high quality and accuracy and shifted from classic production to smart manufacturing systems. However, material handling for such automated productions is a challenge and needs to be addressed with the best possible solution. Conventional clamping systems are designed for manual work and not suitable for highly automated production systems. Researchers and engineers are trying to find the most economical solution for loading/unloading and transportation workpieces from a warehouse to a machine shop for machining operations and back to the warehouse without human involvement. This work aims to propose an advanced multi-shape tooling solution for highly automated manufacturing systems. The currently obtained result shows that it could function well with automated guided vehicles (AGVs) and modern conveyor belts. The proposed solution is following requirements to be automation-friendly, universal for different part geometry and production operations. We used a bottom-up approach in this work, starting with studying different case scenarios and their limitations and finishing with the general solution.

Keywords: artificial intelligence, cyber physics system, Industry 4.0, material handling, smart factory, flexible manufacturing system

Procedia PDF Downloads 132
2617 Efficient Fuzzy Classified Cryptographic Model for Intelligent Encryption Technique towards E-Banking XML Transactions

Authors: Maher Aburrous, Adel Khelifi, Manar Abu Talib

Abstract:

Transactions performed by financial institutions on daily basis require XML encryption on large scale. Encrypting large volume of message fully will result both performance and resource issues. In this paper a novel approach is presented for securing financial XML transactions using classification data mining (DM) algorithms. Our strategy defines the complete process of classifying XML transactions by using set of classification algorithms, classified XML documents processed at later stage using element-wise encryption. Classification algorithms were used to identify the XML transaction rules and factors in order to classify the message content fetching important elements within. We have implemented four classification algorithms to fetch the importance level value within each XML document. Classified content is processed using element-wise encryption for selected parts with "High", "Medium" or “Low” importance level values. Element-wise encryption is performed using AES symmetric encryption algorithm and proposed modified algorithm for AES to overcome the problem of computational overhead, in which substitute byte, shift row will remain as in the original AES while mix column operation is replaced by 128 permutation operation followed by add round key operation. An implementation has been conducted using data set fetched from e-banking service to present system functionality and efficiency. Results from our implementation showed a clear improvement in processing time encrypting XML documents.

Keywords: XML transaction, encryption, Advanced Encryption Standard (AES), XML classification, e-banking security, fuzzy classification, cryptography, intelligent encryption

Procedia PDF Downloads 411
2616 Distributed Cost-Based Scheduling in Cloud Computing Environment

Authors: Rupali, Anil Kumar Jaiswal

Abstract:

Cloud computing can be defined as one of the prominent technologies that lets a user change, configure and access the services online. it can be said that this is a prototype of computing that helps in saving cost and time of a user practically the use of cloud computing can be found in various fields like education, health, banking etc.  Cloud computing is an internet dependent technology thus it is the major responsibility of Cloud Service Providers(CSPs) to care of data stored by user at data centers. Scheduling in cloud computing environment plays a vital role as to achieve maximum utilization and user satisfaction cloud providers need to schedule resources effectively.  Job scheduling for cloud computing is analyzed in the following work. To complete, recreate the task calculation, and conveyed scheduling methods CloudSim3.0.3 is utilized. This research work discusses the job scheduling for circulated processing condition also by exploring on this issue we find it works with minimum time and less cost. In this work two load balancing techniques have been employed: ‘Throttled stack adjustment policy’ and ‘Active VM load balancing policy’ with two brokerage services ‘Advanced Response Time’ and ‘Reconfigure Dynamically’ to evaluate the VM_Cost, DC_Cost, Response Time, and Data Processing Time. The proposed techniques are compared with Round Robin scheduling policy.

Keywords: physical machines, virtual machines, support for repetition, self-healing, highly scalable programming model

Procedia PDF Downloads 168
2615 Communication Tools Used in Teaching and Their Effects: An Empirical Study on the T. C. Selcuk University Samples

Authors: Sedat Simsek, Tugay Arat

Abstract:

Today's communication concept, which has a great revolution with the printing press which has been found by Gutenberg, has no boundary thanks to advanced communication devices and the internet. It is possible to take advantage in many areas, such as from medicine to social sciences or from mathematics to education, from the computers that was first produced for the purpose of military services. The use of these developing technologies in the field of education has created a great vision changes in both training and having education. Materials, which can be considered as basic communication resources and used in traditional education has begun to lose its significance, and some technologies have begun to replace them such as internet, computers, smart boards, projection devices and mobile phone. On the other hand, the programs and applications used in these technologies have also been developed. University students use virtual books instead of the traditional printed book, use cell phones instead of note books, use the internet and virtual databases instead of the library to research. They even submit their homework with interactive methods rather than printed materials. The traditional education system, these technologies, which increase productivity, have brought a new dimension to education. The aim of this study is to determine the influence of technologies in the learning process of students and to find whether is there any similarities and differences that arise from the their faculty that they have been educated and and their learning process. In addition to this, it is aimed to determine the level of ICT usage of students studying at the university level. In this context, the advantages and conveniences of the technology used by students are also scrutinized. In this study, we used surveys to collect data. The data were analyzed by using SPSS 16 statistical program with the appropriate testing.

Keywords: education, communication technologies, role of technology, teaching

Procedia PDF Downloads 303
2614 Electronic Government around the World: Key Information and Communication Technology Indicators

Authors: Isaac Kofi Mensah

Abstract:

Governments around the world are adopting Information and Communication Technologies (ICTs) because of the important opportunities it provides through E-government (EG) to modernize government public administration processes and delivery of quality and efficient public services. Almost every country in the world is adopting ICT in its public sector administration (EG) to modernize and change the traditional process of government, increase citizen engagement and participation in governance, as well as the provision of timely information to citizens. This paper, therefore, seeks to present the adoption, development and implementation of EG in regions globally, as well as the ICT indicators around the world, which are making EG initiatives successful. Europe leads the world in its EG adoption and development index, followed by the Americas, Asia, Oceania and Africa. There is a gradual growth in ICT indicators in terms of the increase in Internet access and usage, increase in broadband penetration, an increase of individuals using the Internet at home and a decline in fixed telephone use, while the mobile cellular phone has been on the increase year-on-year. Though the lack of ICT infrastructure is a major challenge to EG adoption and implementation around the world, in Africa it is very pervasive, hampering the expansion of Internet access and provision of broadband, and hence is a barrier to the successful adoption, development, and implementation of EG initiatives in countries on the continent. But with the general improvement and increase in ICT indicators around the world, it provides countries in Europe, Americas, Asia, Arab States, Oceania and Africa with the huge opportunity to enhance public service delivery through the adoption of EG. Countries within these regions cannot fail their citizens who desire to enjoy an enhanced and efficient public service delivery from government and its many state institutions.

Keywords: e-government development index, e-government, indicators, information and communication technologies (ICTs)

Procedia PDF Downloads 302
2613 R-Killer: An Email-Based Ransomware Protection Tool

Authors: B. Lokuketagoda, M. Weerakoon, U. Madushan, A. N. Senaratne, K. Y. Abeywardena

Abstract:

Ransomware has become a common threat in past few years and the recent threat reports show an increase of growth in Ransomware infections. Researchers have identified different variants of Ransomware families since 2015. Lack of knowledge of the user about the threat is a major concern. Ransomware detection methodologies are still growing through the industry. Email is the easiest method to send Ransomware to its victims. Uninformed users tend to click on links and attachments without much consideration assuming the emails are genuine. As a solution to this in this paper R-Killer Ransomware detection tool is introduced. Tool can be integrated with existing email services. The core detection Engine (CDE) discussed in the paper focuses on separating suspicious samples from emails and handling them until a decision is made regarding the suspicious mail. It has the capability of preventing execution of identified ransomware processes. On the other hand, Sandboxing and URL analyzing system has the capability of communication with public threat intelligence services to gather known threat intelligence. The R-Killer has its own mechanism developed in its Proactive Monitoring System (PMS) which can monitor the processes created by downloaded email attachments and identify potential Ransomware activities. R-killer is capable of gathering threat intelligence without exposing the user’s data to public threat intelligence services, hence protecting the confidentiality of user data.

Keywords: ransomware, deep learning, recurrent neural networks, email, core detection engine

Procedia PDF Downloads 215