Search results for: user modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5864

Search results for: user modeling

1604 A Study on the Effect of Socioeconomic Status on Adolescents' Health Promoting Behaviors: Mediating Effect of Family-Based Activity

Authors: Sue Lynn Kim, Sang-Gyun Lee, Joan P. Yoo

Abstract:

Although adolescents in low socioeconomic status (SES) have been reported to less engage in health promoting behaviors (HPB), the specific mechanism between their SES and HPB has not been extensively studied. Considering the Korean education system which focuses only on college entrance exams while lacking of interest in students’ health, and unique traits of adolescents, such as ego-centric thinking, family members can significantly contribute to develop and enhance adolescents’ HPB. Based on the review of related literature and previous researches, this study examined the mediating effect of family-based activities on the relationship between SES and adolescents' HPB. 636 adolescents (4th graders in elementary and 1st graders in middle school) and their parents from the 1st year survey of Seoul Education & Health Welfare Panel were analyzed by AMOS 19.0 utilizing structural equation modeling. Analytic results show that adolescents in low SES were less likely to engage in family-based activities as well as HPB. This association between SES and HPB was partially mediated by family-based activities. Based on the findings, we suggest that special education programs to enhance HPB should be required in schools and community organizations especially for adolescents in low SES who may have difficulties in doing family-based activities due to parents’ low income and insufficient leisure time. In addition, family-based activities should be encouraged to enhance HPB by raising parents' awareness about the importance of family-based activities on their children's HPB.

Keywords: family-based activity, health promoting behaviors, socioeconomic status, HPB

Procedia PDF Downloads 367
1603 Roller Pump-Induced Tubing Rupture during Cardiopulmonary Bypass

Authors: W. G. Kim, C. H. Jo

Abstract:

We analyzed the effects of variations in the diameter of silicone rubber and polyvinyl chloride (PVC) tubings on the likelihood of tubing rupture during modeling of accidental arterial line clamping in cardiopulmonary bypass with a roller pump. A closed CPB circuit constructed with a roller pump was tested with both PVC and silicone rubber tubings of 1/2, 3/8, and 1/4 inch internal diameter. Arterial line pressure was monitored, and an occlusive clamp was placed across the tubing distal to the pressure monitor site to model an accidental arterial line occlusion. A CCD camera with 512(H) x 492(V) pixels was installed above the roller pump to measure tubing diameters at pump outlet, where the maximum deformations (distension) of the tubings occurred. Quantitative measurement of the changes of tubing diameters with the change of arterial line pressure was performed using computerized image processing techniques. A visible change of tubing diameter was generally noticeable by around 250 psi of arterial line pressure, which was already very high. By 1500 psi, the PVC tubings showed an increase of diameter of between 5-10 %, while the silicone rubber tubings showed an increase between 20-25 %. Silicone rubber tubings of all sizes showed greater distensibility than PVC tubings of equivalent size. In conclusion, although roller-pump induced tubing rupture remains a theoretical problem during cardiopulmonary bypass in terms of the inherent mechanism of the pump, in reality such an occurrence is impossible in real clinical conditions.

Keywords: roller pump, tubing rupture, cardiopulmonary bypass, arterial line

Procedia PDF Downloads 280
1602 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay System for Point-of-Care Biomarker Quantification

Authors: Zahrasadat Hosseini, Jie Yuan

Abstract:

Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade, POC diagnostic devices.

Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping

Procedia PDF Downloads 66
1601 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay Platform for Point-of-Care Biomarker Quantification

Authors: Zahrasadat Hosseini, Jie Yuan

Abstract:

Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade POC diagnostic devices.

Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping

Procedia PDF Downloads 68
1600 Performance Evaluation of a Spouted Bed Bioreactor (SBBR) for the Biodegradation of 2, 4 Dichlorophenol

Authors: Taghreed Al-Khalid, Muftah El-Naas

Abstract:

As an economical and environmentally friendly technology, biological treatment has been shown to be one of the most promising approaches for the removal of numerous types of organic water pollutants such as Chlorophenols, which are hazardous pollutants commonly encountered in wastewater generated by the petroleum and petrochemical industries. This study aimed at evaluating the performance of a spouted bed bioreactor (SBBR) for aerobic biodegradation of 2, 4 dichlorophenol (DCP) by a commercial strain of Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel particles. The SBBR is characterized by systematic intense mixing, resulting in improvement of the biodegradation rates through reducing the mass transfer limitations. The reactor was evaluated in both batch and continuous mode in order to evaluate its hydrodynamics in terms of stability and response to shock loads. The SBBR was able to maintain a stable operation and recovered quickly to its normal operating mode once the shock load had been removed. In comparison to a packed bed reactor bioreactor, the SBBR proved to be more efficient and more stable, achieving a removal percentage and throughput of 80% and 1414 g/m3day, respectively. In addition, the biodegradation of chlorophenols was mathematically modeled using a dynamic modeling approach in order to assess reaction and mass transfer limitations. The results confirmed the effectiveness of the use of the PVA immobilization technique for the biodegradation of phenols.

Keywords: biodegradation, 2, 4 dichlorophenol, immobilization, polyvinyl alcohol (PVA) gel

Procedia PDF Downloads 165
1599 Emerging Social Media Presence of International Organisations - Challenges and Opportunities

Authors: Laura Hervai

Abstract:

One of the most significant phenomena of the 2000s was the emergence of social media sites and web 2.0 that revolutionized communication processes. Social networking platforms have fundamentally changed social and political participation of the public, which require organisations in the public and non-profit sector not only to adapt to these new trends but also to actively engage their audiences. Opportunity for interaction, freer expression of opinion and the proliferation of user generated content are major changes brought by web 2.0 technologies. Furthermore, due to the wide penetration of mobile technologies, social media sites are capable of connecting underdeveloped regions to the global flow of information. Taking advantage of these characteristics, organisations have the opportunity to engage much wider audiences, exploit new ways to raise awareness or reach out to regions that are difficult to access. The early adopters of these new communication tools soon recognized the need of developing social media guidelines for their organisations as well as the increased workload that they require. While ten years ago communication officers could handle their organisation’s social media presence, today it is a separate profession. International organisations face several challenges related to their social media presence. Early adopters have contributed to the development of best practices among which the ethics of social media usage still remained problematic. Another challenge for international organisations is to adapt to country-specific social media trends while they have to comply with the requirements of their parent organisation as well. However in the 21st century social media presence can be crucial to the successful operation of international organisations, their importance is still not taken seriously enough. The measurement of the effects and influence of social networking on the organisations’ productivity is an unsolved problem thus further research should focus on this matter. Research methods included primary research of major IGOs’ and NGOs’ social media presence and guidelines along with secondary research of social media statistics and scientific articles in the topic.

Keywords: international organisations, non-profit sector, NGO, social media, social network

Procedia PDF Downloads 287
1598 CFD Analysis of an Aft Sweep Wing in Subsonic Flow and Making Analogy with Roskam Methods

Authors: Ehsan Sakhaei, Ali Taherabadi

Abstract:

In this study, an aft sweep wing with specific characteristic feature was analysis with CFD method in Fluent software. In this analysis wings aerodynamic coefficient was calculated in different rake angle and wing lift curve slope to rake angle was achieved. Wing section was selected among NACA airfoils version 6. The sweep angle of wing is 15 degree, aspect ratio 8 and taper ratios 0.4. Designing and modeling this wing was done in CATIA software. This model was meshed in Gambit software and its three dimensional analysis was done in Fluent software. CFD methods used here were based on pressure base algorithm. SIMPLE technique was used for solving Navier-Stokes equation and Spalart-Allmaras model was utilized to simulate three dimensional wing in air. Roskam method is one of the common and most used methods for determining aerodynamics parameters in the field of airplane designing. In this study besides CFD analysis, an advanced aircraft analysis was used for calculating aerodynamic coefficient using Roskam method. The results of CFD were compared with measured data acquired from Roskam method and authenticity of relation was evaluated. The results and comparison showed that in linear region of lift curve there is a minor difference between aerodynamics parameter acquired from CFD to relation present by Roskam.

Keywords: aft sweep wing, CFD method, fluent, Roskam, Spalart-Allmaras model

Procedia PDF Downloads 491
1597 Vegetables and Fruits Solar Tunnel Dryer for Small-Scale Farmers in Kassala

Authors: Sami Mohamed Sharif

Abstract:

The current study focuses on the design and construction of a solar tunnel dryer intended for small-scale farmers in Kassala, Sudan. To determine the appropriate dimensions of the dryer, the heat and mass balance equations are used, taking into account factors such as the target agricultural product, climate conditions, solar irradiance, and desired drying time. In Kassala, a dryer with a width of 88 cm, length of 600 cm, and height of 25 cm has been built, capable of drying up to 40 kg of vegetables or fruits. The dryer is divided into two chambers of different lengths. The air passing through is heated to the desired drying temperature in a separate heating chamber that is 200 cm long. From there, the heated air enters the drying chamber, which is 400 cm long. In this section, the agricultural product is placed on a slightly elevated net. The tunnel dryer was constructed using materials from the local market. The paper also examines the solar irradiance in Kassala, finding an average of 23.6 MJ/m2/day, with a maximum of 26.6 MJ/m2/day in April and a minimum of 20.2 MJ/m2/day in December. A DC fan powered by a 160Wp solar panel is utilized to circulate air within the tunnel. By connecting the fan and three 12V, 60W bulbs in series, four different speeds can be achieved using a speed controller. Temperature and relative humidity measurements were taken hourly over three days, from 10:00 a.m. to 3:00 p.m. The results demonstrate the promising technology and sizing techniques of solar tunnel dryers, which can significantly increase the temperature within the tunnel by more than 90%.

Keywords: tunnel dryer, solar drying, moisture content, fruits drying modeling, open sun drying

Procedia PDF Downloads 43
1596 Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Neem (Azadirachta Indica) Leaf Extract and Investigation of Its Antibacterial Activities

Authors: Emineh Tsegahun Gedif

Abstract:

Zinc oxide nanoparticles (ZnO NPs) have garnered significant attention due to their diverse applications encompassing catalytic, optical, photonic, and antibacterial properties. In this study, we successfully synthesized zinc oxide nanoparticles using a rapid, environmentally benign, and cost-effective method. Neem (Azadirachta indica) leaf extract served as the reducing agent for Zn (NO₃)₂.6H2O solution under optimized conditions (pH = 9). Qualitative screening techniques and FT-IR Spectroscopy confirmed the presence of active biomolecules such as flavonoids, phenolic groups, alkaloids, terpenoids, and tannins within the Neem leaf extract, both before and after reduction. The formation of ZnO NPs was visually evident through a distinct color change from colorless to light yellow. The biosynthesized nanoparticles underwent comprehensive characterization through UV-visible, FT-IR, and XRD spectroscopies. The reduction process proved to be straightforward and user-friendly, with UV-visible spectroscopy demonstrating a surface plasmon resonance (SPR) at 321 nm, unequivocally confirming the ZnO NP formation. X-ray diffraction analysis elucidated the crystal structure, revealing an average particle size of approximately 20 nm using Scherrer's equation based on the line width of the plane. Furthermore, the synthesized zinc oxide nanoparticles were evaluated for their antimicrobial properties against both Gram-positive and Gram-negative bacteria. The results showcased significant inhibitory activity, with the highest zone of inhibition observed against Escherichia coli (15 mm) and comparatively lower activity against Staphylococcus aureus. This research underscores the potential of Neem leaf extract-mediated synthesis of ZnO NPs as an eco-friendly and effective approach for various applications, including antibacterial agents.

Keywords: zinc oxide nanoparticles (ZnO NPs), bioreducing agent, green synthesis, antibacterial activity

Procedia PDF Downloads 51
1595 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection

Authors: YingWei Tan, XueFeng Ding

Abstract:

Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.

Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding

Procedia PDF Downloads 51
1594 A Kernel-Based Method for MicroRNA Precursor Identification

Authors: Bin Liu

Abstract:

MicroRNAs (miRNAs) are small non-coding RNA molecules, functioning in transcriptional and post-transcriptional regulation of gene expression. The discrimination of the real pre-miRNAs from the false ones (such as hairpin sequences with similar stem-loops) is necessary for the understanding of miRNAs’ role in the control of cell life and death. Since both their small size and sequence specificity, it cannot be based on sequence information alone but requires structure information about the miRNA precursor to get satisfactory performance. Kmers are convenient and widely used features for modeling the properties of miRNAs and other biological sequences. However, Kmers suffer from the inherent limitation that if the parameter K is increased to incorporate long range effects, some certain Kmer will appear rarely or even not appear, as a consequence, most Kmers absent and a few present once. Thus, the statistical learning approaches using Kmers as features become susceptible to noisy data once K becomes large. In this study, we proposed a Gapped k-mer approach to overcome the disadvantages of Kmers, and applied this method to the field of miRNA prediction. Combined with the structure status composition, a classifier called imiRNA-GSSC was proposed. We show that compared to the original imiRNA-kmer and alternative approaches. Trained on human miRNA precursors, this predictor can achieve an accuracy of 82.34 for predicting 4022 pre-miRNA precursors from eleven species.

Keywords: gapped k-mer, imiRNA-GSSC, microRNA precursor, support vector machine

Procedia PDF Downloads 144
1593 Giving Right-of-Way to Emergency Ambulances: Attitude and Behavior of Road Users in Developing Countries

Authors: Mahmoud T. Alwidyan, Ahmad Alrawashdeh, Alaa O. Oteir

Abstract:

Background: Emergency medical service (EMS) providers, oftentimes, use the lights and sirens (L&S) of their ambulances to warn road users, navigate through traffic, and expedite transport to save lives of ill and injured patients. Despite the contribution of road users in the effectiveness of reducing transport time of EMS ambulances using L&S, there is a lack of empirical assessments exploring the road user’s attitude and behavior in such situations. This study, therefore, aimed to assess the attitude and behavior of road users in response to EMS ambulances with warning L&S in use. Methods: This was a cross-sectional survey developed and distributed to adult road users in Northern Jordan. The questionnaire included 20 items addressing demographics, attitudes, and behavior toward emergency ambulances. We described the participants’ responses and assessed the association between demographics and attitude statements using logistic regression. Results: A total of 1302 questionnaires were complete and appropriate for analysis. The mean age was 34.2 (SD± 11.4) years, and the majority were males (72.6%). About half of road users (47.9%) in our sample would perform inappropriate action in response to EMS ambulances with L&S in use. The multivariate logistic regression model show that being female (OR, 0.63; 95% CI = 0.48-0.81), more educated (OR, 0.68; 95% CI = 0.53-0.86), or public transport driver (OR, 0.55; 95% CI = 0.34-0.90) is significantly associated with inappropriate response to EMS ambulances. Additionally, a significant proportion of road users may perform inappropriate and lawless driving practices such as crossing red traffic lights or following the passing by EMS ambulances, which would, in turn, increase the risk on ambulances and other road users. Conclusions: A large proportion of road users in Jordan may respond inappropriately to the EMS ambulances, and many engage in risky driving behaviors due perhaps to the lack of procedural knowledge. Policy-related interventions and educational programs are crucially needed to increase public awareness of the traffic law concerning EMS ambulances and to enhance appropriate driving behavior, which, in turn, improves the efficiency of ambulance services.

Keywords: EMS ambulances, lights and sirens, road users, attitude and behavior

Procedia PDF Downloads 69
1592 A Reading Light That Can Adjust Indoor Light Intensity According to the Activity and Person for Improve Indoor Visual Comfort of Occupants and Tested using Post-occupancy Evaluation Techniques for Sri Lankan Population

Authors: R.T.P. De Silva, T. K. Wijayasiriwardhane, B. Jayawardena

Abstract:

Most people nowadays spend their time indoor environment. Because of that, a quality indoor environment needs for them. This study was conducted to identify how to improve indoor visual comfort using a personalized light system. Light intensity, light color, glare, and contrast are the main facts that affect visual comfort. The light intensity which needs to perform a task is changed according to the task. Using necessary light intensity and we can improve the visual comfort of occupants. The hue can affect the emotions of occupants. The preferred light colors and intensity change according to the occupant's age and gender. The research was conducted to identify is there any relationship between personalization and visual comfort. To validate this designed an Internet of Things-based reading light. This light can work according to the standard light levels and personalized light levels. It also can measure the current light intensity of the environment and maintain continuous light levels according to the task. The test was conducted by using 25 undergraduates, and 5school students, and 5 adults. The feedbacks are gathered using Post-occupancy evaluation (POE) techniques. Feedbacks are gathered in three steps, It was done without any light control, with standard light level, and with personalized light level Users had to spend 10 minutes under each condition. After finishing each step, collected their feedbacks. According to the result gathered, 94% of participants rated a personalized light system as comfort for them. The feedbacks show stay under continuous light level help to keep their concentrate. Future research can be conducted on how the color of indoor light can affect for indoor visual comfort of occupants using a personalized light system. Further proposed IoT based can improve to change the light colors according to the user's preference.

Keywords: indoor environment quality, internet of things based light system, post occupancy evaluation, visual comfort

Procedia PDF Downloads 146
1591 Regular or Irregular: An Investigation of Medicine Consumption Pattern with Poisson Mixture Model

Authors: Lichung Jen, Yi Chun Liu, Kuan-Wei Lee

Abstract:

Fruitful data has been accumulated in database nowadays and is commonly used as support for decision-making. In the healthcare industry, hospital, for instance, ordering pharmacy inventory is one of the key decision. With large drug inventory, the current cost increases and its expiration dates might lead to future issue, such as drug disposal and recycle. In contrast, underestimating demand of the pharmacy inventory, particularly standing drugs, affects the medical treatment and possibly hospital reputation. Prescription behaviour of hospital physicians is one of the critical factor influencing this decision, particularly irregular prescription behaviour. If a drug’s usage amount in the month is irregular and less than the regular usage, it may cause the trend of subsequent stockpiling. On the contrary, if a drug has been prescribed often than expected, it may result in insufficient inventory. We proposed a hierarchical Bayesian mixture model with two components to identify physicians’ regular/irregular prescription patterns with probabilities. Heterogeneity of hospital is considered in our proposed hierarchical Bayes model. The result suggested that modeling the prescription patterns of physician is beneficial for estimating the order quantity of medication and pharmacy inventory management of the hospital. Managerial implication and future research are discussed.

Keywords: hierarchical Bayesian model, poission mixture model, medicines prescription behavior, irregular behavior

Procedia PDF Downloads 116
1590 Acoustic Analysis of Ball Bearings to Identify Localised Race Defect

Authors: M. Solairaju, Nithin J. Thomas, S. Ganesan

Abstract:

Each and every rotating part of a machine element consists of bearings within its structure. In particular, the rolling element bearings such as cylindrical roller bearing and deep groove ball bearings are frequently used. Improper handling, excessive loading, improper lubrication and sealing cause bearing damage. Hence health monitoring of bearings is an important aspect for radiation pattern of bearing vibration is computed using the dipole model. Sound pressure level for defect-free and race defect the prolonged life of machinery and auto motives. This paper presents modeling and analysis of Acoustic response of deep groove ball bearing with localized race defects. Most of the ball bearings, especially in machine tool spindles and high-speed applications are pre-loaded along an axial direction. The present study is carried out with axial preload. Based on the vibration response, the orbit motion of the inner race is studied, and it was found that the oscillation takes place predominantly in the axial direction. Simplified acoustic is estimated. Acoustic response shows a better indication in identifying the defective bearing. The computed sound signal is visualized in diagrammatic representation using Symmetrised Dot Pattern (SDP). SDP gives better visual distinction between the defective and defect-free bearing

Keywords: bearing, dipole, noise, sound

Procedia PDF Downloads 280
1589 A Comparative Study of Global Power Grids and Global Fossil Energy Pipelines Using GIS Technology

Authors: Wenhao Wang, Xinzhi Xu, Limin Feng, Wei Cong

Abstract:

This paper comprehensively investigates current development status of global power grids and fossil energy pipelines (oil and natural gas), proposes a standard visual platform of global power and fossil energy based on Geographic Information System (GIS) technology. In this visual platform, a series of systematic visual models is proposed with global spatial data, systematic energy and power parameters. Under this visual platform, the current Global Power Grids Map and Global Fossil Energy Pipelines Map are plotted within more than 140 countries and regions across the world. Using the multi-scale fusion data processing and modeling methods, the world’s global fossil energy pipelines and power grids information system basic database is established, which provides important data supporting global fossil energy and electricity research. Finally, through the systematic and comparative study of global fossil energy pipelines and global power grids, the general status of global fossil energy and electricity development are reviewed, and energy transition in key areas are evaluated and analyzed. Through the comparison analysis of fossil energy and clean energy, the direction of relevant research is pointed out for clean development and energy transition.

Keywords: energy transition, geographic information system, fossil energy, power systems

Procedia PDF Downloads 133
1588 The Design and Modeling of Intelligent Learners Assistance System (ILASS)

Authors: Jelili Kunle Adedeji, Toeb Akorede Akinbola

Abstract:

The problem of vehicle mishap as a result of miscalculation, recklessness, or malfunction of some part in a vehicle is acknowledged to be a global issue. In most of the cases, it results into death or life injuries, all over the world; the issue becomes a nightmare to the stakeholders on how to curb mishaps on our roads due to these endemic factors. Hence this research typically examined the design of a device, specifically for learners that can lead to a society of intelligent vehicles (traffic) without withdrawing the driving authority from them, unlike pre-existing systems. Though ILASS shears a lot of principle with existing advance drivers assistance systems, yet there are two fundamental differences between ILASS system and existing systems. Firstly ILASS is meant to accept continuous input from the throttle at all time such that the devices will not constraint the driving process unnecessarily and ensure a change of speed at any point in time. Secondly, it made use of a variable threshold distance between the host vehicle and front vehicle which can be set by the host driver under the constraint of road maintenance agency, who communicates the minimum possible threshold for a different lane to the host vehicle. The results obtained from the simulation of the ILASS system concluded that ILASS is a good solution to road accidents, particularly road accident which occurs as a result of driving at high speed.

Keywords: front-vehicle, host-speed, threshold-distance, ILASS

Procedia PDF Downloads 162
1587 Locating the Best Place for Earthquake Refugee Camps by OpenSource Software: A Case Study for Tehran, Iran

Authors: Reyhaneh Saeedi

Abstract:

Iran is one of the regions which are most prone for earthquakes annually having a large number of financial and mortality and financial losses. Every year around the world, a large number of people lose their home and life due to natural disasters such as earthquakes. It is necessary to provide and specify some suitable places for settling the homeless people before the occurrence of the earthquake, one of the most important factors in crisis planning and management. Some of the natural disasters can be Modeling and shown by Geospatial Information System (GIS). By using GIS, it would be possible to manage the spatial data and reach several goals by making use of the analyses existing in it. GIS has a determining role in disaster management because it can determine the best places for temporary resettling after such a disaster. In this research QuantumGIS software is used that It is an OpenSource software so that easy to access codes and It is also free. In this system, AHP method is used as decision model and to locate the best places for temporary resettling, is done based on the related organizations criteria with their weights and buffers. Also in this research are made the buffer layers of criteria and change them to the raster layers. Later on, the raster layers are multiplied on desired weights then, the results are added together. Eventually, there are suitable places for resettling of victims by desired criteria by different colors with their optimum rate in QuantumGIS platform.

Keywords: disaster management, temporary resettlement, earthquake, QuantumGIS

Procedia PDF Downloads 385
1586 Understanding Walkability in the Libyan Urban Space: Policies, Perceptions and Smart Design for Sustainable Tripoli

Authors: A. Abdulla Khairi Mohamed, Mohamed Gamal Abdelmonem, Gehan Selim

Abstract:

Walkability in civic and public spaces in Libyan cities is challenging due to the lack of accessibility design, informal merging into car traffic, and the general absence of adequate urban and space planning. The lack of accessible and pedestrian-friendly public spaces in Libyan cities has emerged as a major concern for the government if it is to develop smart and sustainable spaces for the 21st century. A walkable urban space has become a driver for urban development and redistribution of land use to ensure pedestrian and walkable routes between sites of living and workplaces. The characteristics of urban open space in the city centre play a main role in attracting people to walk when attending their daily needs, recreation and daily sports. There is significant gap in the understanding of perceptions, feasibility and capabilities of Libyan urban space to accommodate enhance or support the smart design of a walkable pedestrian-friendly environment that is safe and accessible to everyone. The paper aims to undertake observations of walkability and walkable space in the city of Tripoli as a benchmark for Libyan cities; assess the validity and consistency of the seven principal aspects of smart design, safety, accessibility and 51 factors that affect the walkability in open urban space in Tripoli, through the analysis of 10 local urban spaces experts (town planner, architect, transport engineer and urban designer); and explore user groups’ perceptions of accessibility in walkable spaces in Libyan cities through questionnaires. The study sampled 200 respondents in 2015-16. The results of this study are useful for urban planning, to classify the walkable urban space elements which affect to improve the level of walkability in the Libyan cities and create sustainable and liveable urban spaces.

Keywords: walkability, sustainability, liveability, accessibility

Procedia PDF Downloads 420
1585 Numerical Modeling of hybrid Photovoltaic-Thermoelectric Solar Unit by Applying Various Cross-Sections of Cooling Ducts

Authors: Ziba Khalili, Mohsen Sheikholeslami, Ladan Momayez

Abstract:

Combining the photovoltaic/thermal (PVT) systems with a thermoelectric (TE) module can raise energy yields since the TE module boosts the system's energy conversion efficiency. In the current study, a PVT system integrated with a TE module was designed and simulated in ANSYS Fluent 19.2. A copper heat transfer tube (HTT) was employed for cooling the photovoltaic (PV) cells. Four different shapes of HTT cross-section, i.e., circular, square, elliptical, and triangular, with equal cross-section areas were investigated. Also, the influence of Cu-Al2O3/water hybrid nanofluid (0.024% volume concentration), fluid inlet velocity (uᵢ ), and amount of solar radiation (G), on the PV temperature (Tₚᵥ) and system performance were investigated. The ambient temperature (Tₐ), wind speed (u𝓌), and fluid inlet temperature (Tᵢ), were considered to be 25°C, 1 m/s, and 27°C, respectively. According to the obtained data, the triangular case had the greatest impact on reducing the compared to other cases. In the triangular case, examination of the effect of hybrid nanofluid showed that the use of hybrid nanofluid at 800 W/m2 led to a reduction of the TPV by 0.6% compared to water, at 0.19 m/s. Moreover, the thermal efficiency ( ) and the overall electrical efficiency (nₜ) of the system improved by 0.93% and 0.22%, respectively, at 0.19 m/s. In a triangular case where G and were 800 W/m2 and 19 m/s, respectively, the highest amount of, thermal power (Eₜ), and, were obtained as 72.76%, 130.84 W and 12.03%, respectively.

Keywords: electrical performance, photovoltaic/thermal, thermoelectric, hybrid nanofluid, thermal efficiency

Procedia PDF Downloads 62
1584 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles

Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang

Abstract:

With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.

Keywords: curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering

Procedia PDF Downloads 116
1583 Analysis of Residual Stresses and Angular Distortion in Stiffened Cylindrical Shell Fillet Welds Using Finite Element Method

Authors: M. R. Daneshgar, S. E. Habibi, E. Daneshgar, A. Daneshgar

Abstract:

In this paper, a two-dimensional method is developed to simulate the fillet welds in a stiffened cylindrical shell, using finite element method. The stiffener material is aluminum 2519. The thermo-elasto-plastic analysis is used to analyze the thermo-mechanical behavior. Due to the high heat flux rate of the welding process, two uncouple thermal and mechanical analysis are carried out instead of performing a single couple thermo-mechanical simulation. In order to investigate the effects of the welding procedures, two different welding techniques are examined. The resulted residual stresses and distortions due to different welding procedures are obtained. Furthermore, this study employed the technique of element birth and death to simulate the weld filler variation with time in fillet welds. The obtained results are in good agreement with the published experimental and three-dimensional numerical simulation results. Therefore, the proposed 2D modeling technique can effectively give the corresponding results of 3D models. Furthermore, by inspection of the obtained residual hoop and transverse stresses and angular distortions, proper welding procedure is suggested.

Keywords: stiffened cylindrical shell, fillet welds, residual stress, angular distortion, finite element method

Procedia PDF Downloads 340
1582 Vocational and Technical Educators’ Acceptance and Use of Digital Learning Environments Beyond Working Hours: Implications for Work-Life Balance and the Role of Integration Preference

Authors: Jacinta Ifeoma Obidile

Abstract:

Teachers (vocational and technical educators inclusive) use Information and Communications Technology (ICT) for tasks outside of their normal working hours. This expansion of work duties to non-work time challenges their work-life balance. However, there has been inconsistency in the results on how these relationships correlate. This, therefore, calls for further research studies to examine the moderating mechanisms of such relationships. The present study, therefore, ascertained how vocational and technical educators’ technology acceptance relates to their work-related ICT use beyond their working hours and work-life balance, as well as how their integration affects these relationships. The population of the study comprised 320 Vocational and Technical Educators from the Southeast geopolitical zone of Nigeria. Data were collected from the respondents using the structured questionnaire. The questionnaire was validated by three experts. The reliability of the study was conducted using 20 vocational and technical educators from the South who were not part of the population. The overall reliability coefficient of 0.81 was established using Cronbach’s alpha method. The data collected was analyzed using Structural equation modeling. Findings, among others, revealed that vocational and technical educators’ work-life balance was mediated by increased digital learning environment use after work hours, although reduced by social influence.

Keywords: vocational and technical educators, digital learning environment, working hours, work-life balance, integration preference

Procedia PDF Downloads 37
1581 Noise Source Identification on Urban Construction Sites Using Signal Time Delay Analysis

Authors: Balgaisha G. Mukanova, Yelbek B. Utepov, Aida G. Nazarova, Alisher Z. Imanov

Abstract:

The problem of identifying local noise sources on a construction site using a sensor system is considered. Mathematical modeling of detected signals on sensors was carried out, considering signal decay and signal delay time between the source and detector. Recordings of noises produced by construction tools were used as a dependence of noise on time. Synthetic sensor data was constructed based on these data, and a model of the propagation of acoustic waves from a point source in the three-dimensional space was applied. All sensors and sources are assumed to be located in the same plane. A source localization method is checked based on the signal time delay between two adjacent detectors and plotting the direction of the source. Based on the two direct lines' crossline, the noise source's position is determined. Cases of one dominant source and the case of two sources in the presence of several other sources of lower intensity are considered. The number of detectors varies from three to eight detectors. The intensity of the noise field in the assessed area is plotted. The signal of a two-second duration is considered. The source is located for subsequent parts of the signal with a duration above 0.04 sec; the final result is obtained by computing the average value.

Keywords: acoustic model, direction of arrival, inverse source problem, sound localization, urban noises

Procedia PDF Downloads 48
1580 Investigating the Role of Dystrophin in Neuronal Homeostasis

Authors: Samantha Shallop, Hakinya Karra, Tytus Bernas, Gladys Shaw, Gretchen Neigh, Jeffrey Dupree, Mathula Thangarajh

Abstract:

Abnormal neuronal homeostasis is considered a structural correlate of cognitive deficits in Duchenne Muscular Dystrophy. Neurons are highly polarized cells with multiple dendrites but a single axon. Trafficking of cellular organelles are highly regulated, with the cargo in the somatodendritic region of the neuron not permitted to enter the axonal compartment. We investigated the molecular mechanisms that regular organelle trafficking in neurons using a multimodal approach, including high-resolution structural illumination, proteomics, immunohistochemistry, and computational modeling. We investigated the expression of ankyrin-G, the master regulator controlling neuronal polarity. The expression of ankyrin G and the morphology of the axon initial segment was profoundly abnormal in the CA1 hippocampal neurons in the mdx52 animal model of DMD. Ankyrin-G colocalized with kinesin KIF5a, the anterograde protein transporter, with higher levels in older mdx52 mice than younger mdx52 mice. These results suggest that the functional trafficking from the somatodendritic compartment is abnormal. Our data suggests that dystrophin deficiency compromised neuronal homeostasis via ankyrin-G-based mechanisms.

Keywords: neurons, axonal transport, duchenne muscular dystrophy, organelle transport

Procedia PDF Downloads 83
1579 Failure Analysis of Khaliqabad Landslide along Mangla Reservoir Rim

Authors: Fatima Mehmood, Khalid Farooq

Abstract:

After the Mangla dam raising in 2010, the maximum reservoir impoundment level of 378.5 m SPD (Survey of Pakistan Datum) was achieved in September 2014. The reservoir drawdown was started on September 29, 2014 and a landslide occurred on Mirpur-Kotli Road near Khaliqabad on November 27, 2014. This landslide took place due to the failure of a slope along the reservoir rim. This study was undertaken to investigate the causative factors of Khaliqabad landslide. Site visits were carried out for recording the field observations and collection of the soil samples. The soil was subjected to different laboratory tests for the determination of index and engineering properties. The shear strength tests were performed at various levels of density and degrees of saturation. These soil parameters were used in an integrated SEEP-SLOPE/W analysis to obtain the drop in factor of safety with time and reservoir drawdown. The results showed the factor of safety dropped from 1.28 to 0.85 over a period of 60 days. The ultimate reduction in the shear strength of soil due to saturation with the simultaneous removal of the stabilizing effect of reservoir caused the disturbing forces to increase, and thus failure happened. The findings of this study can serve as a guideline for the modeling of the slopes experiencing rapid drawdown scenario with the consideration of more realistic distribution of soil moisture/ properties across the slope

Keywords: geotechnical investigation, landslide, reservoir drawdown, shear strength, slope stability

Procedia PDF Downloads 142
1578 Electric Arc Furnaces as a Source of Voltage Fluctuations in the Power System

Authors: Zbigniew Olczykowski

Abstract:

The paper presents the impact of work on the electric arc furnace power grid. The arc furnace operating will be modeled at different power conditions of steelworks. The paper will describe how to determine the increase in voltage fluctuations caused by working in parallel arc furnaces. The analysis of indicators characterizing the quality of electricity recorded during several cycles of measurement made at the same time at three points grid, with different power and different short-circuit rated voltage, will be carried out. The measurements analysis presented in this paper were conducted in the mains of one of the Polish steel. The indicators characterizing the quality of electricity was recorded during several cycles of measurement while making measurements at three points of different power network short-circuit power and various voltage ratings. Measurements of power quality indices included the one-week measurement cycles in accordance with the EN-50160. Data analysis will include the results obtained during the simultaneous measurement of three-point grid. This will determine the actual propagation of interference generated by the device. Based on the model studies and measurements of quality indices of electricity we will establish the effect of a specific arc on the mains. The short-circuit power network’s minimum value will also be estimated, this is necessary to limit the voltage fluctuations generated by arc furnaces.

Keywords: arc furnaces, long-term flicker, measurement and modeling of power quality, voltage fluctuations

Procedia PDF Downloads 273
1577 Analytical and Numerical Investigation of Friction-Restricted Growth and Buckling of Elastic Fibers

Authors: Peter L. Varkonyi, Andras A. Sipos

Abstract:

The quasi-static growth of elastic fibers is studied in the presence of distributed contact with an immobile surface, subject to isotropic dry or viscous friction. Unlike classical problems of elastic stability modelled by autonomous dynamical systems with multiple time scales (slowly varying bifurcation parameter, and fast system dynamics), this problem can only be formulated as a non-autonomous system without time scale separation. It is found that the fibers initially converge to a trivial, straight configuration, which is later replaced by divergence reminiscent of buckling phenomena. In order to capture the loss of stability, a new definition of exponential stability against infinitesimal perturbations for systems defined over finite time intervals is developed. A semi-analytical method for the determination of the critical length based on eigenvalue analysis is proposed. The post-critical behavior of the fibers is studied numerically by using variational methods. The emerging post-critical shapes and the asymptotic behavior as length goes to infinity are identified for simple spatial distributions of growth. Comparison with physical experiments indicates reasonable accuracy of the theoretical model. Some applications from modeling plant root growth to the design of soft manipulators in robotics are briefly discussed.

Keywords: buckling, elastica, friction, growth

Procedia PDF Downloads 178
1576 Hydrological Modelling to Identify Critical Erosion Areas in Gheshlagh Dam Basin

Authors: Golaleh Ghaffari

Abstract:

A basin sediment yield refers to the amount of sediment exported by a basin over a period of time, which will enter a reservoir located at the downstream limit of the basin. The Soil and Water Assessment Tool (SWAT, 2008) was used to hydrology and sediment transport modeling at daily and monthly time steps within the Gheshlagh dam basin in north-west of Iran. The SWAT model and Geographic Information System (GIS) techniques were applied to evaluate basin hydrology and sediment yield using historical flow and sediment data and to identify and prioritize critical sub-basins based on sediment transport. The results of this study indicated that simulated daily discharge and sediment values matched the observed values satisfactorily. The model predicted that mean annual basin precipitation for the total study period (413 mm) was partitioned in to evapotranspiration (36%), percolation/groundwater recharge (21%) and stream water (25%), yielding 18% surface runoff. Potential source areas of erosion were also identified with the model. The range of the annual contributing erosive zones varied spatially from 0.1 to 103 t/ha according to the slope and land use at the basin scale. Also the fifteen sub basins create the 60% of the total sediment yield between the all (102) sub basins. The results of the study indicated that SWAT can be a useful tool for assessing hydrology and sediment yield response of the watersheds in the region.

Keywords: erosion, Gheshlagh dam, sediment yield, SWAT

Procedia PDF Downloads 506
1575 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural

Authors: Mohammad Heidari

Abstract:

In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.

Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network

Procedia PDF Downloads 400